1
|
Truchon AR, Chase EE, Stark AR, Wilhelm SW. The diel disconnect between cell growth and division in Aureococcus is interrupted by giant virus infection. Front Microbiol 2024; 15:1426193. [PMID: 39234538 PMCID: PMC11371579 DOI: 10.3389/fmicb.2024.1426193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Viruses of eukaryotic algae have become an important research focus due to their role(s) in nutrient cycling and top-down control of algal blooms. Omics-based studies have identified a boon of genomic and transcriptional potential among the Nucleocytoviricota, a phylum of large dsDNA viruses which have been shown to infect algal and non-algal eukaryotes. However, little is still understood regarding the infection cycle of these viruses, particularly in how they take over a metabolically active host and convert it into a virocell state. Of particular interest are the roles light and the diel cycle in virocell development. Yet despite such a large proportion of Nucleocytoviricota infecting phototrophs, little work has been done to tie infection dynamics to the presence, and absence, of light. Here, we examine the role of the diel cycle on the physiological and transcriptional state of the pelagophyte Aureococcus anophagefferens while undergoing infection by Kratosvirus quantuckense strain AaV. Our observations demonstrate how infection by the virus interrupts the diel growth and division of this cell strain, and that infection further complicates the system by enhancing export of cell biomass.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Ashton R Stark
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Ostovich E, Klaper R. Using a Novel Multiplexed Algal Cytological Imaging (MACI) Assay and Machine Learning as a Way to Characterize Complex Phenotypes in Plant-Type Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4894-4903. [PMID: 38446593 DOI: 10.1021/acs.est.3c07733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
High-throughput phenotypic profiling assays, popular for their ability to characterize alternations in single-cell morphological feature data, have been useful in recent years for predicting cellular targets and mechanisms of action (MoAs) for different chemicals and novel drugs. However, this approach has not been extensively used in environmental toxicology due to the lack of studies and established methods for performing this kind of assay in environmentally relevant species. Here, we developed a multiplexed algal cytological imaging (MACI) assay, based on the subcellular structures of the unicellular microalgae, Raphidocelis subcapitata, a toxicology and ecological model species. Several different herbicides and antibiotics with unique MoAs were exposed to R. subcapitata cells, and MACI was used to characterize cellular impacts by measuring subtle changes in their morphological features, including metrics of area, shape, quantity, fluorescence intensity, and granularity of individual subcellular components. This study demonstrates that MACI offers a quick and effective framework for characterizing complex phenotypic responses to environmental chemicals that can be used for determining their MoAs and identifying their cellular targets in plant-type organisms.
Collapse
Affiliation(s)
- Eric Ostovich
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Rebecca Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
3
|
Le VV, Tran QG, Ko SR, Lee SA, Oh HM, Kim HS, Ahn CY. How do freshwater microalgae and cyanobacteria respond to antibiotics? Crit Rev Biotechnol 2023; 43:191-211. [PMID: 35189751 DOI: 10.1080/07388551.2022.2026870] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibiotic pollution is an emerging environmental challenge. Residual antibiotics from various sources, including municipal and industrial wastewater, sewage discharges, and agricultural runoff, are continuously released into freshwater environments, turning them into reservoirs that contribute to the development and spread of antibiotic resistance. Thus, it is essential to understand the impacts of antibiotic residues on aquatic organisms, especially microalgae and cyanobacteria, due to their crucial roles as primary producers in the ecosystem. This review summarizes the effects of antibiotics on major biological processes in freshwater microalgae and cyanobacteria, including photosynthesis, oxidative stress, and the metabolism of macromolecules. Their adaptive mechanisms to antibiotics exposure, such as biodegradation, bioadsorption, and bioaccumulation, are also discussed. Moreover, this review highlights the important factors affecting the antibiotic removal pathways by these organisms, which will promote the use of microalgae-based technology for the removal of antibiotics. Finally, we offer some perspectives on the opportunities for further studies and applications.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
4
|
Seyed Hajizadeh H, Mortazavi SN, Ganjinajad M, Okatan V, Kahramanoğlu İ. Evaluation of the optimum threshold of gamma-ray for inducing mutation on Polianthes tuberosa cv. double and analysis of genetic variation with RAPD marker. Int J Radiat Biol 2023:1-13. [PMID: 36520583 DOI: 10.1080/09553002.2023.2159566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE This experiment aimed to investigate the effect of gamma irradiation on morpho-physiological characteristics and molecular-induced variations in Polianthes tuberosa L. METHODS Experiments were designed according to a completely randomized design with eight different gamma-ray doses (0, 20, 30, 40, 50, 60, 70, and 80 Gy) via a source of cobalt-60 with three replications. Some morpho-physiological characteristics of tuberoses were screened and evaluated at the end of the flower growth and development phases. The RAPD-PCR molecular marker technique was further used to identify the mutants of phenotypic variation flowers. RESULTS Results indicated that the effect of different levels of γ-rays on some morphological and physiological traits was significant as the gamma-ray level was increased up to 50 Gy. The doses higher than 50 Gy were found to cause stand or no growth. The 50 Gy gamma irradiation reduced germination by 70.59%, germination rate by 66.36%, dry weight by 88.15%, fresh weight by 87.41%, flowering stem height (cm) by 69.22%, leaf area (cm2) by 57.35%, leaf number by 34.41%, chlorophyll content (mg g-1 FW) by 44.79%, number of florets by 92.57%, spike height (cm) by 27.80%, bulblet number by 32.57%, and bulblet diameter (mm) by 30.21%. On the contrary, gamma radiation at 50 Gy increased relative water content (%) and electrolyte leakage (ds m-1) by 41.27 and 237.65%, respectively. The results also showed that bulbs treated with 20 Gy gamma ray had the highest germination percentage and dry weight. The RAPD analysis indicated that among 10 primers tested, nine primers showed clear bands as the highest number of amplified fragments (90) was related to the OPM13 primer and the lowest number (40) to the OPM10 primer. However, the DNA polymorphism was dose-dependent. CONCLUSION Overall results showed that although the plant morphology was changed with gamma-ray level, no changes occurred in tuberose color.
Collapse
Affiliation(s)
- Hanifeh Seyed Hajizadeh
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Morteza Ganjinajad
- Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Volkan Okatan
- Department of Horticulture, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - İbrahim Kahramanoğlu
- Department of Horticulture, Faculty of Agricultural Science and Technologies, European University of Lefke, Gemikonagi, Turkey
| |
Collapse
|
5
|
Vítová M, Lanta V, Čížková M, Jakubec M, Rise F, Halskau Ø, Bišová K, Furse S. The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158965. [PMID: 33992808 PMCID: PMC8202326 DOI: 10.1016/j.bbalip.2021.158965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Vojtěch Lanta
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic; Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Frode Rise
- Department of Chemistry, Universitetet i Oslo, P. O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4, Pathology Building, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Biological chemistry group, Jodrell laboratory, Royal Botanic Gardens Kew, United Kingdom.
| |
Collapse
|
6
|
Maharjan S, Kwon YS, Lee MG, Lee KS, Nam KS. Cell cycle arrest-mediated cell death by morin in MDA-MB-231 triple-negative breast cancer cells. Pharmacol Rep 2021; 73:1315-1327. [PMID: 33993438 DOI: 10.1007/s43440-021-00272-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Morin, a flavonoid extracted from Moraceace family and exhibits several pharmacological activities including anti-cancer activity. Although the anticancer activity of morin in breast cancer was estimated in some investigations, the pharmaceutical mechanism has not been fully elucidated. Therefore, we investigated to unveil the detail signaling pathway in morin-treated in MDA-MB-231 triple-negative breast cancer cells. METHODS The cytotoxicity of morin in MDA-MB-231 cells was confirmed by sulforhodamine B (SRB) assay and colony formation assay. Flow cytometry was performed to examine the cell cycle and cell death patterns and the protein expression and phosphorylation were detected by western blotting. RESULTS Our results showed that morin inhibited MDA-MB-231 cells proliferation in time and concentration-dependent manner. Morphological changes were observed when treated with various concentration of morin in MDA-MB-231 cells. In regard to protein expression, morin induced the phosphorylation of ERK and p-H2A.X and decreased the level of DNA repair markers, RAD51 and survivin. In addition, flow cytometry showed S and G2/M arrest by morin that was associated with the decrease in the protein expression of cyclin A2 and cyclin B1 and upregulation of p21. Interestingly, annexin V/PI staining result clearly showed that morin induced cell death without apoptosis. Furthermore, attenuated FoxM1 by morin was co-related with cell cycle regulators including p21, cyclin A2 and cyclin B1. CONCLUSION Taken together, our study indicates that morin-induced cell death of MDA-MB-231 is caused by sustained cell cycle arrest via the induction of p21 expression by activation of ERK and repression of FOXM1 signaling pathways.
Collapse
Affiliation(s)
- Sushma Maharjan
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Yun-Suk Kwon
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
7
|
Cell Cycle Arrest by Supraoptimal Temperature in the Alga Chlamydomonas reinhardtii. Cells 2019; 8:cells8101237. [PMID: 31614608 PMCID: PMC6829867 DOI: 10.3390/cells8101237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Temperature is one of the key factors affecting growth and division of algal cells. High temperature inhibits the cell cycle in Chlamydomonas reinhardtii. At 39 °C, nuclear and cellular divisions in synchronized cultures were blocked completely, while DNA replication was partly affected. In contrast, growth (cell volume, dry matter, total protein, and RNA) remained unaffected, and starch accumulated at very high levels. The cell cycle arrest could be removed by transfer to 30 °C, but a full recovery occurred only in cultures cultivated up to 14 h at 39 °C. Thereafter, individual cell cycle processes began to be affected in sequence; daughter cell release, cell division, and DNA replication. Cell cycle arrest was accompanied by high mitotic cyclin-dependent kinase activity that decreased after completion of nuclear and cellular division following transfer to 30 °C. Cell cycle arrest was, therefore, not caused by a lack of cyclin-dependent kinase activity but rather a blockage in downstream processes.
Collapse
|
8
|
Response of the Green Alga Chlamydomonas reinhardtii to the DNA Damaging Agent Zeocin. Cells 2019; 8:cells8070735. [PMID: 31319624 PMCID: PMC6678277 DOI: 10.3390/cells8070735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
DNA damage is a ubiquitous threat endangering DNA integrity in all living organisms. Responses to DNA damage include, among others, induction of DNA repair and blocking of cell cycle progression in order to prevent transmission of damaged DNA to daughter cells. Here, we tested the effect of the antibiotic zeocin, inducing double stranded DNA breaks, on the cell cycle of synchronized cultures of the green alga Chlamydomonas reinhardtii. After zeocin application, DNA replication partially occurred but nuclear and cellular divisions were completely blocked. Application of zeocin combined with caffeine, known to alleviate DNA checkpoints, decreased cell viability significantly. This was probably caused by a partial overcoming of the cell cycle progression block in such cells, leading to aberrant cell divisions. The cell cycle block was accompanied by high steady state levels of mitotic cyclin-dependent kinase activity. The data indicate that DNA damage response in C. reinhardtii is connected to the cell cycle block, accompanied by increased and stabilized mitotic cyclin-dependent kinase activity.
Collapse
|
9
|
Zachleder V, Ivanov I, Vítová M, Bišová K. Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:845-858. [PMID: 30395238 DOI: 10.1093/jxb/ery391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
The progression of the cell cycle in green algae dividing by multiple fission is, under otherwise unlimited conditions, affected by the growth rate, set by a combination of light intensity and temperature. In this study, we compared the cell cycle characteristics of Desmodesmus quadricauda at 20 °C or 30 °C and upon shifts between these two temperatures. The duration of the cell cycle in cells grown under continuous illumination at 20 °C was more than double that at 30 °C, suggesting that it was set directly by the growth rate. Similarly, the amounts of DNA, RNA, and bulk protein content per cell at 20 °C were approximately double those of cells grown at the higher temperature. For the shift experiments, cells grown at either 20 °C or 30 °C were transferred to darkness to prevent further growth, and then cultivated at the same or the other temperature. Upon transfer to the lower temperature, fewer nuclei and daughter cells were produced, and not all cells were able to finish the cell cycle by division, remaining multinuclear. Correspondingly, cells placed in the dark at the higher temperature divided faster into more daughter cells than the control cells. These differences correlated with shifts in the preceding cyclin-dependent kinase activity, suggesting that cell cycle progression was not related to growth rate or cell biomass but correlated with cyclin-dependent kinase activity.
Collapse
Affiliation(s)
- Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Opatovický mlýn, Trebon, Czech Republic
| | - Ivan Ivanov
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Opatovický mlýn, Trebon, Czech Republic
| | - Katerina Bišová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Opatovický mlýn, Trebon, Czech Republic
| |
Collapse
|
10
|
Kanamycin Resistance Cassette for Genetic Manipulation of Treponema denticola. Appl Environ Microbiol 2015; 81:4329-38. [PMID: 25888173 DOI: 10.1128/aem.00478-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/14/2015] [Indexed: 12/24/2022] Open
Abstract
Treponema denticola has been recognized as an important oral pathogen of the "red complex" bacterial consortium that is associated with the pathogenesis of endodontal and periodontal diseases. However, little is known about the virulence of T. denticola due to its recalcitrant genetic system. The difficulty in genetically manipulating oral spirochetes is partially due to the lack of antibiotic resistance cassettes that are useful for gene complementation following allelic replacement mutagenesis. In this study, a kanamycin resistance cassette was identified and developed for the genetic manipulation of T. denticola ATCC 35405. Compared to the widely used ermF-ermAM cassette, the kanamycin cassette used in the transformation experiments gave rise to additional antibiotic-resistant T. denticola colonies. The kanamycin cassette is effective for allelic replacement mutagenesis as demonstrated by inactivation of two open reading frames of T. denticola, TDE1430 and TDE0911. In addition, the cassette is also functional in trans-chromosomal complementation. This was determined by functional rescue of a periplasmic flagellum (PF)-deficient mutant that had the flgE gene coding for PF hook protein inactivated. The integration of the full-length flgE gene into the genome of the flgE mutant rescued all of the defects associated with the flgE mutant that included the lack of PF filament and spirochetal motility. Taken together, we demonstrate that the kanamycin resistance gene is a suitable cassette for the genetic manipulation of T. denticola that will facilitate the characterization of virulence factors attributed to this important oral pathogen.
Collapse
|
11
|
Karentz D. Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E. Cleaver. Photochem Photobiol 2014; 91:460-74. [PMID: 25395165 DOI: 10.1111/php.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion.
Collapse
Affiliation(s)
- Deneb Karentz
- Department of Biology, University of San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses 2014; 6:2155-85. [PMID: 24859341 PMCID: PMC4036536 DOI: 10.3390/v6052155] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed.
Collapse
Affiliation(s)
- E Xiaofei
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Machado MD, Soares EV. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:1-6. [PMID: 24342441 DOI: 10.1016/j.aquatox.2013.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwater alga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells were exposed to three nominal concentrations of each metal: low (closed to 72 h-EC10 values), intermediate (closed to 72 h-EC50 values) and high (upper than 72 h-EC90 values). The exposure to low metal concentrations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations an increase of cell volume was observed; this effect was particularly notorious for Cd and less pronounced for Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations of metals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an opposite effect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases in P. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus; and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrations resulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after the second nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). The different impact of metals on algal cell volume and cell-cycle progression, suggests that different toxicity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining and cell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of the pollutants, in P. subcapitata, and help in the elucidation of their different modes of action.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
14
|
Ševčíková T, Bišová K, Fojtová M, Lukešová A, Hrčková K, Sýkorová E. Completion of cell division is associated with maximum telomerase activity in naturally synchronized cultures of the green alga Desmodesmus quadricauda. FEBS Lett 2013; 587:743-8. [PMID: 23395610 DOI: 10.1016/j.febslet.2013.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/17/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Telomerase maintains the ends of eukaryotic chromosomes, and its activity is an important parameter correlating with the proliferative capacity of cells. We have investigated cell cycle-specific changes in telomerase activity using cultures of Desmodesmus quadricauda, a model alga naturally synchronized by light/dark entrainment. A quantitative telomerase assay revealed high activity in algal cultures, with slight changes during the light period. Significantly increased telomerase activity was observed at the end of the dark phase, when cell division was complete. In contrast to other models, a natural separation between nuclear and cellular division typical for the cell cycle in D. quadricauda made this observation possible.
Collapse
Affiliation(s)
- Tereza Ševčíková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, 612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|