1
|
Jia L, Zheng H, Feng J, Ding Y, Sun X, Yu Y, Hao X, Wang J, Zhang X, Tian Y, Chen F, Cui J. Upregulation of Protein O-GlcNAcylation Levels Promotes Zebrafish Fin Regeneration. Mol Cell Proteomics 2025; 24:100936. [PMID: 40044042 PMCID: PMC12002929 DOI: 10.1016/j.mcpro.2025.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
As one of the most important posttranslational modifications, glycosylation participates in various cellular activities in organisms and is closely associated with many pathogeneses. It has been reported that glycosylation affects the liver, spinal cord, and heart tissue regeneration. The zebrafish fin has become a valuable model due to its high regenerative capacity. The molecular mechanism of regeneration has been a hot research topic in the field for a long time. However, studies on the influence of glycosylation during limb regeneration in zebrafish are relatively scarce. We discovered that N-acetylglucosamine (O-GlcNAc) expression, identified by WGA, was elevated during the regeneration of the injured fin in zebrafish using lectin microarray. This phenomenon is due to the upregulation of the expression of OGT enzymes and elevated O-GlcNAcylation levels. To investigate the effects on the fin regeneration when O-GlcNAcylation changes, we used OSMI-1 or alloxan unilateral microinjection to decrease O-GlcNAcylation and observed that it prevented the fin regeneration. Conversely, the O-GlcNAcylation was impressed by a unilateral microinjection of thiamet-G or glucose into the fin, leading to a stimulation of the fin regeneration. To further understand the role of O-GlcNAcylation in fin regeneration, liquid chromatography-tandem mass spectrometry technology was performed to identify O-GlcNAc-glycoproteins. The results demonstrated that the O-GlcNAc glycoproteins, such as thrombospondin 4 and heparan sulfate proteoglycans, were involved in the regulation of zebrafish fin regeneration process and were closely associated with certain biological processes, such as stem cell differentiation, extracellular matrix-receptor interaction pathway, tissue remodeling, and so on. We demonstrated that O-GlcNAc glycoproteins are crucial for zebrafish fin regeneration, during which OGT promotes the process by upregulating the O-GlcNAcylation levels in the zebrafish fin.
Collapse
Affiliation(s)
- Liyuan Jia
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Juantao Feng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yi Ding
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xiaotian Sun
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuan Yu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Junxiang Wang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xinyu Zhang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuanfeng Tian
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Fulin Chen
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| | - Jihong Cui
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| |
Collapse
|
2
|
Singh G, Skibbens RV. Fdo1, Fkh1, Fkh2, and the Swi6-Mbp1 MBF complex regulate Mcd1 levels to impact eco1 rad61 cell growth in Saccharomyces cerevisiae. Genetics 2024; 228:iyae128. [PMID: 39110836 PMCID: PMC11457938 DOI: 10.1093/genetics/iyae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 10/09/2024] Open
Abstract
Cohesins promote proper chromosome segregation, gene transcription, genomic architecture, DNA condensation, and DNA damage repair. Mutations in either cohesin subunits or regulatory genes can give rise to severe developmental abnormalities (such as Robert Syndrome and Cornelia de Lange Syndrome) and also are highly correlated with cancer. Despite this, little is known about cohesin regulation. Eco1 (ESCO2/EFO2 in humans) and Rad61 (WAPL in humans) represent two such regulators but perform opposing roles. Eco1 acetylation of cohesin during S phase, for instance, stabilizes cohesin-DNA binding to promote sister chromatid cohesion. On the other hand, Rad61 promotes the dissociation of cohesin from DNA. While Eco1 is essential, ECO1 and RAD61 co-deletion results in yeast cell viability, but only within a limited temperature range. Here, we report that eco1rad61 cell lethality is due to reduced levels of the cohesin subunit Mcd1. Results from a suppressor screen further reveals that FDO1 deletion rescues the temperature-sensitive (ts) growth defects exhibited by eco1rad61 double mutant cells by increasing Mcd1 levels. Regulation of MCD1 expression, however, appears more complex. Elevated expression of MBP1, which encodes a subunit of the MBF transcription complex, also rescues eco1rad61 cell growth defects. Elevated expression of SWI6, however, which encodes the Mbp1-binding partner of MBF, exacerbates eco1rad61 cell growth and also abrogates the Mpb1-dependent rescue. Finally, we identify two additional transcription factors, Fkh1 and Fkh2, that impact MCD1 expression. In combination, these findings provide new insights into the nuanced and multi-faceted transcriptional pathways that impact MCD1 expression.
Collapse
Affiliation(s)
- Gurvir Singh
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
3
|
Strasser AS, Gonzalez-Reiche AS, Zhou X, Valdebenito-Maturana B, Ye X, Zhang B, Wu M, van Bakel H, Jabs EW. Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption. Nat Commun 2024; 15:7154. [PMID: 39168984 PMCID: PMC11339411 DOI: 10.1038/s41467-024-51328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Roberts syndrome (RBS) is an autosomal recessive disorder with profound growth deficiency and limb reduction caused by ESCO2 loss-of-function variants. Here, we elucidate the pathogenesis of limb reduction in an Esco2fl/fl;Prrx1-CreTg/0 mouse model using bulk- and single-cell-RNA-seq and gene co-expression network analyses during embryogenesis. Our results reveal morphological and vascular defects culminating in hemorrhage of mutant limbs at E12.5. Underlying this abnormal developmental progression is a pre-apoptotic, mesenchymal cell population specific to mutant limb buds enriched for p53-related signaling beginning at E9.5. We then characterize these p53-related processes of cell cycle arrest, DNA damage, cell death, and the inflammatory leukotriene signaling pathway in vivo. In utero treatment with pifithrin-α, a p53 inhibitor, rescued the hemorrhage in mutant limbs. Lastly, significant enrichments were identified among genes associated with RBS, thalidomide embryopathy, and other genetic limb reduction disorders, suggesting a common vascular etiology among these conditions.
Collapse
Affiliation(s)
- Arielle S Strasser
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Braulio Valdebenito-Maturana
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xiaoqian Ye
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| |
Collapse
|
4
|
Schoen JR, Chen J, Rankin S. The intrinsically disordered tail of ESCO1 binds DNA in a charge-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570177. [PMID: 38106185 PMCID: PMC10723360 DOI: 10.1101/2023.12.05.570177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
ESCO1 is an acetyltransferase enzyme that regulates chromosome organization and gene expression. It does this by modifying the Smc3 subunit of the Cohesin complex. Although ESCO1 is enriched at the base of chromatin loops in a Cohesin-dependent manner, precisely how it interacts with chromatin is unknown. Here we show that the basic and intrinsically disordered tail of ESCO1 binds DNA with very high affinity, likely through electrostatic interaction. We show that neutralization of positive residues in the N-tail reduces both DNA binding in vitro and association of the enzyme with chromatin in cells. Additionally, disruption of the chromatin state and charge distribution reduces chromatin bound ESCO1. Strikingly, defects in DNA binding do not affect total SMC3 acetylation or sister chromatid cohesion, suggesting that ESCO1-dependent acetylation can occur independently of direct chromatin association. We conclude that the intrinsically disordered tail of ESCO1 binds DNA with both high affinity and turnover, but surprisingly, ESCO1 catalytic activity occurs independently of direct DNA binding by the enzyme.
Collapse
Affiliation(s)
- Jeffrey R. Schoen
- Cell Cycle and Cancer Biology program, Oklahoma Medical Research Foundation, 825 NE 13 St, Oklahoma City, OK 73104
- Cell Biology Department, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104
| | - Jingrong Chen
- Cell Cycle and Cancer Biology program, Oklahoma Medical Research Foundation, 825 NE 13 St, Oklahoma City, OK 73104
| | - Susannah Rankin
- Cell Cycle and Cancer Biology program, Oklahoma Medical Research Foundation, 825 NE 13 St, Oklahoma City, OK 73104
- Cell Biology Department, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104
| |
Collapse
|
5
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
6
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
7
|
Sanchez AC, Thren ED, Iovine MK, Skibbens RV. Esco2 and cohesin regulate CRL4 ubiquitin ligase ddb1 expression and thalidomide teratogenicity. Cell Cycle 2022; 21:501-513. [PMID: 34989322 PMCID: PMC8942496 DOI: 10.1080/15384101.2021.2023304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) are severe developmental maladies that arise from mutation of cohesin (including SMC3, CdLS) and ESCO2 (RBS). Though ESCO2 activates cohesin, CdLS and RBS etiologies are currently considered non-synonymous and for which pharmacological treatments are unavailable. Here, we identify a unifying mechanism that integrates these genetic maladies to pharmacologically-induced teratogenicity via thalidomide. Our results reveal that Esco2 and cohesin co-regulate the transcription of a component of CRL4 ubiquitin ligase through which thalidomide exerts teratogenic effects. These findings are the first to link RBS and CdLS to thalidomide teratogenicity and offer new insights into treatments.
Collapse
Affiliation(s)
- Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Elise D. Thren
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
8
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
9
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
10
|
Kantaputra PN, Dejkhamron P, Intachai W, Ngamphiw C, Kawasaki K, Ohazama A, Krisanaprakornkit S, Olsen B, Tongsima S, Ketudat Cairns JR. Juberg-Hayward syndrome is a cohesinopathy, caused by mutation in ESCO2. Eur J Orthod 2021; 43:45-50. [PMID: 32255174 DOI: 10.1093/ejo/cjaa023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Juberg-Hayward syndrome (JHS; MIM 216100) is a rare autosomal recessive malformation syndrome, characterized by cleft lip/palate, microcephaly, ptosis, short stature, hypoplasia or aplasia of thumbs, and dislocation of radial head and fusion of humerus and radius leading to elbow restriction. OBJECTIVE To report for the first time the molecular aetiology of JHS. PATIENT AND METHODS Clinical and radiographic examination, whole exome sequencing, Sanger sequencing, mutant protein model construction, and in situ hybridization of Esco2 expression in mouse embryos were performed. RESULTS Clinical findings of the patient consisted of repaired cleft lip/palate, microcephaly, ptosis, short stature, delayed bone age, hypoplastic fingers and thumbs, clinodactyly of the fifth fingers, and humeroradial synostosis leading to elbow restriction. Intelligence is normal. Whole exome sequencing of the whole family showed a novel homozygous base substitution c.1654C>T in ESCO2 of the proband. The sister was homozygous for the wildtype variant. Parents were heterozygous for the mutation. The mutation is predicted to cause premature stop codon p.Arg552Ter. Mutations in ESCO2, a gene involved in cohesin complex formation, are known to cause Roberts/SC phocomelia syndrome. Roberts/SC phocomelia syndrome and JHS share similar clinical findings, including autosomal recessive inheritance, short stature, cleft lip/palate, severe upper limb anomalies, and hypoplastic digits. Esco2 expression during the early development of lip, palate, eyelid, digits, upper limb, and lower limb and truncated protein model are consistent with the defect. CONCLUSIONS Our study showed that Roberts/SC phocomelia syndrome and JHS are allelic and distinct entities. This is the first report demonstrating that mutation in ESCO2 causes JHS, a cohesinopathy.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Dentaland Clinic, Chiang Mai, Thailand
| | - Prapai Dejkhamron
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Worrachet Intachai
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Suttichai Krisanaprakornkit
- Center of Excellence in Oral Biology, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jame R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
11
|
Labudina A, Horsfield JA. The three-dimensional genome in zebrafish development. Brief Funct Genomics 2021:elab008. [PMID: 33675363 DOI: 10.1093/bfgp/elab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
In recent years, remarkable progress has been made toward understanding the three-dimensional (3D) organisation of genomes and the influence of genome organisation on gene regulation. Although 3D genome organisation probably plays a crucial role in embryo development, animal studies addressing the developmental roles of chromosome topology are only just starting to emerge. Zebrafish, an important model system for early development, have already contributed important advances in understanding the developmental consequences of perturbation in 3D genome organisation. Zebrafish have been used to determine the effects of mutations in proteins responsible for 3D genome organisation: cohesin and CTCF. In this review, we highlight research to date from zebrafish that has provided insight into how 3D genome organisation contributes to tissue-specific gene regulation and embryo development.
Collapse
|
12
|
Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis 2021; 59:e23407. [PMID: 33393730 PMCID: PMC8153179 DOI: 10.1002/dvg.23407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Craniofacial and limb defects are two of the most common congenital anomalies in the general population. Interestingly, these defects are not mutually exclusive. Many patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis, also present with limb defects, including polydactyly, syndactyly, brachydactyly, or ectrodactyly. The gene regulatory networks governing craniofacial and limb development initially seem distinct from one another, and yet these birth defects frequently occur together. Both developmental processes are highly conserved among vertebrates, and zebrafish have emerged as an advantageous model due to their high fecundity, relative ease of genetic manipulation, and transparency during development. Here we summarize studies that have used zebrafish models to study human syndromes that present with both craniofacial and limb phenotypes. We discuss the highly conserved processes of craniofacial and limb/fin development and describe recent zebrafish studies that have explored the function of genes associated with human syndromes with phenotypes in both structures. We attempt to identify commonalities between the two to help explain why craniofacial and limb anomalies often occur together.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
13
|
Mfarej MG, Skibbens RV. An ever-changing landscape in Roberts syndrome biology: Implications for macromolecular damage. PLoS Genet 2020; 16:e1009219. [PMID: 33382686 PMCID: PMC7774850 DOI: 10.1371/journal.pgen.1009219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Roberts syndrome (RBS) is a rare developmental disorder that can include craniofacial abnormalities, limb malformations, missing digits, intellectual disabilities, stillbirth, and early mortality. The genetic basis for RBS is linked to autosomal recessive loss-of-function mutation of the establishment of cohesion (ESCO) 2 acetyltransferase. ESCO2 is an essential gene that targets the DNA-binding cohesin complex. ESCO2 acetylates alternate subunits of cohesin to orchestrate vital cellular processes that include sister chromatid cohesion, chromosome condensation, transcription, and DNA repair. Although significant advances were made over the last 20 years in our understanding of ESCO2 and cohesin biology, the molecular etiology of RBS remains ambiguous. In this review, we highlight current models of RBS and reflect on data that suggests a novel role for macromolecular damage in the molecular etiology of RBS.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
14
|
Zuilkoski CM, Skibbens RV. PCNA promotes context-specific sister chromatid cohesion establishment separate from that of chromatin condensation. Cell Cycle 2020; 19:2436-2450. [PMID: 32926661 PMCID: PMC7553509 DOI: 10.1080/15384101.2020.1804221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022] Open
Abstract
Cellular genomes undergo various structural changes that include cis tethering (the tethering together of two loci within a single DNA molecule), which promotes chromosome condensation and transcriptional activation, and trans tethering (the tethering together of two DNA molecules), which promotes sister chromatid cohesion and DNA repair. The protein complex termed cohesin promotes both cis and trans forms of DNA tethering, but the extent to which these cohesin functions occur in temporally or spatially defined contexts remains largely unknown. Prior studies indicate that DNA polymerase sliding clamp PCNA recruits cohesin acetyltransferase Eco1, suggesting that sister chromatid cohesion is established in the context of the DNA replication fork. In support of this model, elevated levels of PCNA rescue the temperature growth and cohesion defects exhibited by eco1 mutant cells. Here, we test whether Eco1-dependent chromatin condensation is also promoted in the context of this DNA replication fork component. Our results reveal that overexpressed PCNA does not promote DNA condensation in eco1 mutant cells, even though Smc3 acetylation levels are increased. We further provide evidence that replication fork-associated E3 ligase impacts on Eco1 are more complex that previously described. In combination, the data suggests that Eco1 acetylates Smc3 and thus promotes sister chromatid cohesion in context of the DNA replication fork, whereas a distinct cohesin population participates in chromatin condensation outside the context of the DNA replication fork.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| |
Collapse
|
15
|
Kantaputra PN, Dejkhamron P, Tongsima S, Ngamphiw C, Intachai W, Ngiwsara L, Sawangareetrakul P, Svasti J, Olsen B, Cairns JRK, Bumroongkit K. Juberg-Hayward syndrome and Roberts syndrome are allelic, caused by mutations in ESCO2. Arch Oral Biol 2020; 119:104918. [PMID: 32977150 DOI: 10.1016/j.archoralbio.2020.104918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Juberg-Hayward syndrome (JHS; MIM 216100) is a rare autosomal recessive malformation syndrome, characterized by cleft lip/palate, microcephaly, ptosis, hypoplasia or aplasia of thumbs, short stature, dislocation of radial head, and fusion of humerus and radius leading to elbow restriction. A homozygous mutation in ESCO2 has recently been reported to cause Juberg-Hayward syndrome. Our objective was to investigate the molecular etiology of Juberg-Hayward syndrome in two affected Lisu tribe brothers. MATERIALS AND METHODS Two patients, the unaffected parents, and two unaffected siblings were studied. Clinical and radiographic examination, whole exome sequencing, Sanger sequencing, Western blot analysis, and chromosome testing were performed. RESULTS Two affected brothers had characteristic features of Juberg-Hayward syndrome, except for the absence of microcephaly. The elder brother had bilateral cleft lip and palate, short stature, humeroradial synostosis, and simple partial seizure with secondary generalization. The younger brother had unilateral cleft lip and palate, short stature, and dislocation of radial heads. The homozygous (c.1654C > T; p.Arg552Ter) mutation in ESCO2 was identified in both patients. The other unaffected members of the family were heterozygous for the mutation. The presence of humeroradial synostosis and radial head dislocation in the same family is consistent with both being in the same spectrum of forearm malformations. Chromosome testing of the affected patients showed premature centromere separation. Western blot analysis showed reduced amount of truncated protein. CONCLUSION Our findings confirm that a homozygous mutation in ESCO2 is the underlying cause of Juberg-Hayward syndrome. Microcephaly does not appear to be a consistent feature of the syndrome.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Dentaland Clinic, Chiang Mai, Thailand.
| | - Prapai Dejkhamron
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Worrachet Intachai
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - James R Ketudat Cairns
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand; School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kanokkan Bumroongkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Sezer A, Kayhan G, Zenker M, Percin EF. Hypopigmented patches in Roberts/SC phocomelia syndrome occur via aneuploidy susceptibility. Eur J Med Genet 2019; 62:103608. [DOI: 10.1016/j.ejmg.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
|
17
|
Hong S, Joo JH, Yun H, Kim K. The nature of meiotic chromosome dynamics and recombination in budding yeast. J Microbiol 2019; 57:221-231. [PMID: 30671743 DOI: 10.1007/s12275-019-8541-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
Abstract
During meiosis, crossing over allows for the exchange of genes between homologous chromosomes, enabling their segregation and leading to genetic variation in the resulting gametes. Spo11, a topoisomerase-like protein expressed in eukaryotes, and diverse accessory factors induce programmed double-strand breaks (DSBs) to initiate meiotic recombination during the early phase of meiosis after DNA replication. DSBs are further repaired via meiosis-specific homologous recombination. Studies on budding yeast have provided insights into meiosis and genetic recombination and have improved our understanding of higher eukaryotic systems. Cohesin, a chromosome-associated multiprotein complex, mediates sister chromatid cohesion (SCC), and is conserved from yeast to humans. Diverse cohesin subunits in budding yeast have been identified in DNA metabolic pathways, such as DNA replication, chromosome segregation, recombination, DNA repair, and gene regulation. During cell cycle, SCC is established by multiple cohesin subunits, which physically bind sister chromatids together and modulate proteins that involve in the capturing and separation of sister chromatids. Cohesin components include at least four core subunits that establish and maintain SCC: two structural maintenance chromosome subunits (Smc1 and Smc3), an α-kleisin subunit (Mcd1/Scc1 during mitosis and Rec8 during meiosis), and Scc3/Irr1 (SA1 and SA2). In addition, the cohesin-associated factors Pds5 and Rad61 regulate structural modifications and cell cyclespecific dynamics of chromatin to ensure accurate chromosome segregation. In this review, we discuss SCC and the recombination pathway, as well as the relationship between the two processes in budding yeast, and we suggest a possible conserved mechanism for meiotic chromosome dynamics from yeast to humans.
Collapse
Affiliation(s)
- Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong Hwan Joo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeseon Yun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keunpil Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
18
|
Vanlerberghe C, Boutry N, Petit F. Genetics of patella hypoplasia/agenesis. Clin Genet 2018; 94:43-53. [PMID: 29322497 DOI: 10.1111/cge.13209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
The patella is a sesamoid bone, crucial for knee stability. When absent or hypoplastic, recurrent knee subluxations, patellofemoral dysfunction and early gonarthrosis may occur. Patella hypoplasia/agenesis may be isolated or observed in syndromic conditions, either as the main clinical feature (Nail-patella syndrome, small patella syndrome), as a clue feature which can help diagnosis assessment, or as a background feature that may be disregarded. Even in the latter, the identification of patella anomalies is important for an appropriate patient management. We review the clinical characteristics of these rare diseases, provide guidance to facilitate the diagnosis and discuss how the genes involved could affect patella development.
Collapse
Affiliation(s)
- C Vanlerberghe
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Clinique de Génétique Médicale, Lille, France
| | - N Boutry
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Service de Radiopédiatrie, Lille, France
| | - F Petit
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Clinique de Génétique Médicale, Lille, France
| |
Collapse
|
19
|
Chen H, Zhang L, He W, Liu T, Zhao Y, Chen H, Li Y. ESCO2 knockdown inhibits cell proliferation and induces apoptosis in human gastric cancer cells. Biochem Biophys Res Commun 2018; 496:475-481. [PMID: 29330052 DOI: 10.1016/j.bbrc.2018.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Establishment of cohesion 1 homolog 2 (ESCO2), an essential gene for cohesion regulation and genomic stability, has not been studied in human gastric cancer (GC). We found that ESCO2 knockdown in human GC cell lines dramatically inhibited cell proliferation and induced cell apoptosis in vitro and suppressed tumor xenograft development in vivo. Furthermore, adenosine monophosphate-activated protein kinase (AMPK) was activated following the suppression of its downstream targets, including mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase 1 (p70S6K1), and this result was consistent with p53 activation. Significantly, co-immunoprecipitation (Co-IP) analyses indicated that ESCO2 can interact with p53 in GC cells. Taken together, our data demonstrate that ESCO2 is essential for the development of GC and might be a potential therapeutic target for treating GC.
Collapse
Affiliation(s)
- Hongmei Chen
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Tian-Shui South Road, Lanzhou 730000, Gansu, China; Institute of Medical Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, 199 Dong-Gang West Road, Lanzhou 730000, Gansu, China.
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, 1 Dong-Gang West Road, Lanzhou 730000, Gansu, China.
| | - Wenting He
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Tao Liu
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Yang Zhao
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Hao Chen
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Yumin Li
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Tian-Shui South Road, Lanzhou 730000, Gansu, China; Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| |
Collapse
|
20
|
Banerji R, Skibbens RV, Iovine MK. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome. Biol Open 2017; 6:1802-1813. [PMID: 29084713 PMCID: PMC5769645 DOI: 10.1242/bio.026013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS) are human developmental disorders characterized by craniofacial deformities, limb malformation and mental retardation. These birth defects are collectively termed cohesinopathies as both arise from mutations in cohesion genes. CdLS arises due to autosomal dominant mutations or haploinsufficiencies in cohesin subunits (SMC1A, SMC3 and RAD21) or cohesin auxiliary factors (NIPBL and HDAC8) that result in transcriptional dysregulation of developmental programs. RBS arises due to autosomal recessive mutations in cohesin auxiliary factor ESCO2, the gene that encodes an N-acetyltransferase which targets the SMC3 subunit of the cohesin complex. The mechanism that underlies RBS, however, remains unknown. A popular model states that RBS arises due to mitotic failure and loss of progenitor stem cells through apoptosis. Previous findings in the zebrafish regenerating fin, however, suggest that Esco2-knockdown results in transcription dysregulation, independent of apoptosis, similar to that observed in CdLS patients. Previously, we used the clinically relevant CX43 to demonstrate a transcriptional role for Esco2. CX43 is a gap junction gene conserved among all vertebrates that is required for direct cell-cell communication between adjacent cells such that cx43 mutations result in oculodentodigital dysplasia. Here, we show that morpholino-mediated knockdown of smc3 reduces cx43 expression and perturbs zebrafish bone and tissue regeneration similar to those previously reported for esco2 knockdown. Also similar to Esco2-dependent phenotypes, Smc3-dependent bone and tissue regeneration defects are rescued by transgenic Cx43 overexpression, suggesting that Smc3 and Esco2 cooperatively act to regulate cx43 transcription. In support of this model, chromatin immunoprecipitation assays reveal that Smc3 binds to a discrete region of the cx43 promoter, suggesting that Esco2 exerts transcriptional regulation of cx43 through modification of Smc3 bound to the cx43 promoter. These findings have the potential to unify RBS and CdLS as transcription-based mechanisms.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
21
|
Banerji R, Skibbens RV, Iovine MK. How many roads lead to cohesinopathies? Dev Dyn 2017; 246:881-888. [PMID: 28422453 DOI: 10.1002/dvdy.24510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2023] Open
Abstract
Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
22
|
Genetic Research of Hand Congenital Deformities and Advancement in Plastic and Reconstructive Treatment. Plast Reconstr Surg 2017. [DOI: 10.1007/978-981-10-5101-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Abstract
The cohesin protein complex regulates multiple cellular events including sister chromatid cohesion and gene expression. Several distinct human diseases called cohesinopathies have been associated with genetic mutations in cohesin subunit genes or genes encoding regulators of cohesin function. Studies in different model systems, from yeast to mouse have provided insights into the molecular mechanisms of action of cohesin/cohesin regulators and their implications in the pathogenesis of cohesinopathies. The zebrafish has unique advantages for embryonic analyses and quantitative gene knockdown with morpholinos during the first few days of development, in contrast to knockouts of cohesin regulators in flies or mammals, which are either lethal as homozygotes or dramatically compensated for in heterozygotes. This has been particularly informative for Rad21, where a role in gene expression was first shown in zebrafish, and Nipbl, where the fish work revealed tissue-specific functions in heart, gut, and limbs, and long-range enhancer-promoter interactions that control Hox gene expression in vivo. Here we discuss the utility of the zebrafish in studying the developmental and pathogenic roles of cohesin.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
24
|
Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation. Eur J Med Genet 2016; 60:22-31. [PMID: 27639441 DOI: 10.1016/j.ejmg.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Exposure to teratogenic drugs during pregnancy is associated with a wide range of embryo-fetal anomalies and sometimes results in recurrent and recognizable patterns of malformations; however, the comprehension of the mechanisms underlying the pathogenesis of drug-induced birth defects is difficult, since teratogenesis is a multifactorial process which is always the result of a complex interaction between several environmental factors and the genetic background of both the mother and the fetus. Animal models have been extensively used to assess the teratogenic potential of pharmacological agents and to study their teratogenic mechanisms; however, a still open issue concerns how the information gained through animal models can be translated to humans. Instead, significant information can be obtained by the identification and analysis of human genetic syndromes characterized by clinical features overlapping with those observed in drug-induced embryopathies. Until now, genetic phenocopies have been reported for the embryopathies/fetopathies associated with prenatal exposure to warfarin, leflunomide, mycophenolate mofetil, fluconazole, thalidomide and ACE inhibitors. In most cases, genetic phenocopies are caused by mutations in genes encoding for the main targets of teratogens or for proteins belonging to the same molecular pathways. The aim of this paper is to review the proposed teratogenic mechanisms of these drugs, by the analysis of human monogenic disorders and their molecular pathogenesis.
Collapse
|
25
|
Percival SM, Parant JM. Observing Mitotic Division and Dynamics in a Live Zebrafish Embryo. J Vis Exp 2016:10.3791/54218. [PMID: 27501381 PMCID: PMC6082026 DOI: 10.3791/54218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitosis is critical for organismal growth and differentiation. The process is highly dynamic and requires ordered events to accomplish proper chromatin condensation, microtubule-kinetochore attachment, chromosome segregation, and cytokinesis in a small time frame. Errors in the delicate process can result in human disease, including birth defects and cancer. Traditional approaches investigating human mitotic disease states often rely on cell culture systems, which lack the natural physiology and developmental/tissue-specific context advantageous when studying human disease. This protocol overcomes many obstacles by providing a way to visualize, with high resolution, chromosome dynamics in a vertebrate system, the zebrafish. This protocol will detail an approach that can be used to obtain dynamic images of dividing cells, which include: in vitro transcription, zebrafish breeding/collecting, embryo embedding, and time-lapse imaging. Optimization and modifications of this protocol are also explored. Using H2A.F/Z-EGFP (labels chromatin) and mCherry-CAAX (labels cell membrane) mRNA-injected embryos, mitosis in AB wild-type, auroraB(hi1045) (,) and esco2(hi2865) mutant zebrafish is visualized. High resolution live imaging in zebrafish allows one to observe multiple mitoses to statistically quantify mitotic defects and timing of mitotic progression. In addition, observation of qualitative aspects that define improper mitotic processes (i.e., congression defects, missegregation of chromosomes, etc.) and improper chromosomal outcomes (i.e., aneuploidy, polyploidy, micronuclei, etc.) are observed. This assay can be applied to the observation of tissue differentiation/development and is amenable to the use of mutant zebrafish and pharmacological agents. Visualization of how defects in mitosis lead to cancer and developmental disorders will greatly enhance understanding of the pathogenesis of disease.
Collapse
Affiliation(s)
- Stefanie M Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham;
| |
Collapse
|
26
|
Cucco F, Musio A. Genome stability: What we have learned from cohesinopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2016; 172:171-8. [PMID: 27091086 DOI: 10.1002/ajmg.c.31492] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cohesin is a multiprotein complex involved in many DNA-related processes such as proper chromosome segregation, replication, transcription, and repair. Mutations in cohesin gene pathways are responsible for human diseases, collectively referred to as cohesinopathies. In addition, both cohesin gene expression dysregulation and mutations have been identified in cancer. Cohesinopathy cells are characterized by genome instability (GIN) visualized by a constellation of markers such as chromosome aneuploidies, chromosome aberrations, precocious sister chromatid separation, premature centromere separation, micronuclei formation, and sensitivity to genotoxic drugs. The emerging picture suggests that GIN observed in cohesinopathies may result from the synergistic effects of the multiple cohesin dysfunctions. © 2016 Wiley Periodicals, Inc.
Collapse
|
27
|
Xu B, Gogol M, Gaudenz K, Gerton JL. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genomics 2016; 17:25. [PMID: 26729373 PMCID: PMC4700579 DOI: 10.1186/s12864-015-2354-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Background Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 signaling was depressed and overall translation was reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved development. Results In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed independent of L-leucine treatment, including imprinted genes such as H19 and GTL2, miRNAs regulated by GTL2, HOX genes, and genes in nucleolar associated domains. Conclusions Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-leucine stimulation of mTORC1 in RBS cells and supports that normal gene expression and translation requires ESCO2 function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2354-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Karin Gaudenz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA. .,Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
28
|
Banerji R, Eble DM, Iovine MK, Skibbens RV. Esco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin. Dev Dyn 2015; 245:7-21. [PMID: 26434741 DOI: 10.1002/dvdy.24354] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/09/2015] [Accepted: 09/24/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Roberts syndrome (RBS) is a rare genetic disorder characterized by craniofacial abnormalities, limb malformation, and often severe mental retardation. RBS arises from mutations in ESCO2 that encodes an acetyltransferase and modifies the cohesin subunit SMC3. Mutations in SCC2/NIPBL (encodes a cohesin loader), SMC3 or other cohesin genes (SMC1, RAD21/MCD1) give rise to a related developmental malady termed Cornelia de Lange syndrome (CdLS). RBS and CdLS exhibit overlapping phenotypes, but RBS is thought to arise through mitotic failure and limited progenitor cell proliferation while CdLS arises through transcriptional dysregulation. Here, we use the zebrafish regenerating fin model to test the mechanism through which RBS-type phenotypes arise. RESULTS esco2 is up-regulated during fin regeneration and specifically within the blastema. esco2 knockdown adversely affects both tissue and bone growth in regenerating fins-consistent with a role in skeletal morphogenesis. esco2-knockdown significantly diminishes cx43/gja1 expression which encodes the gap junction connexin subunit required for cell-cell communication. cx43 mutations cause the short fin (sof(b123) ) phenotype in zebrafish and oculodentodigital dysplasia (ODDD) in humans. Importantly, miR-133-dependent cx43 overexpression rescues esco2-dependent growth defects. CONCLUSIONS These results conceptually link ODDD to cohesinopathies and provide evidence that ESCO2 may play a transcriptional role critical for human development.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Diane M Eble
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
29
|
Greenald D, Jeyakani J, Pelster B, Sealy I, Mathavan S, van Eeden FJ. Genome-wide mapping of Hif-1α binding sites in zebrafish. BMC Genomics 2015; 16:923. [PMID: 26559940 PMCID: PMC4642629 DOI: 10.1186/s12864-015-2169-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia Inducible Factor (HIF) regulates a cascade of transcriptional events in response to decreased oxygenation, acting from the cellular to the physiological level. This response is evolutionarily conserved, allowing the use of zebrafish (Danio rerio) as a model for studying the hypoxic response. Activation of the hypoxic response can be achieved in zebrafish by homozygous null mutation of the von Hippel-Lindau (vhl) tumour suppressor gene. Previous work from our lab has focused on the phenotypic characterisation of this mutant, establishing the links between vhl mutation, the hypoxic response and cancer. To further develop fish as a model for studying hypoxic signalling, we examine the transcriptional profile of the vhl mutant with respect to Hif-1α. As our approach uses embryos consisting of many cell types, it has the potential to uncover additional HIF regulated genes that have escaped detection in analogous mammalian cell culture studies. Results We performed high-density oligonucleotide microarray analysis of the gene expression changes in von Hippel-Lindau mutant zebrafish, which identified up-regulation of well-known hypoxia response genes and down-regulation of genes primarily involved in lipid processing. To identify the dependency of these transcriptional changes on HIF, we undertook Chromatin Immunoprecipitation linked next generation sequencing (ChIP-seq) for the transcription factor Hypoxia Inducible Factor 1α (HIF-1α). We identified HIF-1α binding sites across the genome, with binding sites showing enrichment for an RCGTG motif, showing conservation with the mammalian hypoxia response element. Conclusions Transcriptome analysis of vhl mutant embryos detected activation of key hypoxia response genes seen in human cell models of hypoxia, but also suppression of many genes primarily involved in lipid processing. ChIP-seq analysis of Hif-1α binding sites unveiled an unprecedented number of loci, with a high proportion containing a canonical hypoxia response element. Whether these sites are functional remains unknown, nevertheless their frequent location near transcriptional start sites suggests functionality, and will allow for investigation into the potential hypoxic regulation of genes in their vicinity. We expect that our data will be an excellent starting point for analysis of both fish and mammalian gene regulation by HIF. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2169-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Greenald
- Bateson Centre, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK.
| | - Justin Jeyakani
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,The Genome Institute of Singapore, Biopolis, Biopolis Street, Singapore, Singapore.
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Technikerstr, Innsbruck, Austria.
| | - Ian Sealy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| | - Sinnakaruppan Mathavan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,The Genome Institute of Singapore, Biopolis, Biopolis Street, Singapore, Singapore.
| | - Fredericus J van Eeden
- Bateson Centre, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
30
|
Abstract
The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.
Collapse
|
31
|
Percival SM, Thomas HR, Amsterdam A, Carroll AJ, Lees JA, Yost HJ, Parant JM. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Dis Model Mech 2015; 8:941-55. [PMID: 26044958 PMCID: PMC4527282 DOI: 10.1242/dmm.019059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/29/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations in ESCO2, one of two establishment of cohesion factors necessary for proper sister chromatid cohesion (SCC), cause a spectrum of developmental defects in the autosomal-recessive disorder Roberts syndrome (RBS), warranting in vivo analysis of the consequence of cohesion dysfunction. Through a genetic screen in zebrafish targeting embryonic-lethal mutants that have increased genomic instability, we have identified an esco2 mutant zebrafish. Utilizing the natural transparency of zebrafish embryos, we have developed a novel technique to observe chromosome dynamics within a single cell during mitosis in a live vertebrate embryo. Within esco2 mutant embryos, we observed premature chromatid separation, a unique chromosome scattering, prolonged mitotic delay, and genomic instability in the form of anaphase bridges and micronuclei formation. Cytogenetic studies indicated complete chromatid separation and high levels of aneuploidy within mutant embryos. Amongst aneuploid spreads, we predominantly observed decreases in chromosome number, suggesting that either cells with micronuclei or micronuclei themselves are eliminated. We also demonstrated that the genomic instability leads to p53-dependent neural tube apoptosis. Surprisingly, although many cells required Esco2 to establish cohesion, 10-20% of cells had only weakened cohesion in the absence of Esco2, suggesting that compensatory cohesion mechanisms exist in these cells that undergo a normal mitotic division. These studies provide a unique in vivo vertebrate view of the mitotic defects and consequences of cohesion establishment loss, and they provide a compensation-based model to explain the RBS phenotypes.
Collapse
Affiliation(s)
- Stefanie M Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew J Carroll
- Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
32
|
Rankin S. Complex elaboration: making sense of meiotic cohesin dynamics. FEBS J 2015; 282:2426-43. [PMID: 25895170 PMCID: PMC4490075 DOI: 10.1111/febs.13301] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
In mitotically dividing cells, the cohesin complex tethers sister chromatids, the products of DNA replication, together from the time they are generated during S phase until anaphase. Cohesion between sister chromatids ensures accurate chromosome segregation, and promotes normal gene regulation and certain kinds of DNA repair. In somatic cells, the core cohesin complex is composed of four subunits: Smc1, Smc3, Rad21 and an SA subunit. During meiotic cell divisions meiosis-specific isoforms of several of the cohesin subunits are also expressed and incorporated into distinct meiotic cohesin complexes. The relative contributions of these meiosis-specific forms of cohesin to chromosome dynamics during meiotic progression have not been fully worked out. However, the localization of these proteins during chromosome pairing and synapsis, and their unique loss-of-function phenotypes, suggest non-overlapping roles in controlling meiotic chromosome behavior. Many of the proteins that regulate cohesin function during mitosis also appear to regulate cohesin during meiosis. Here we review how cohesin contributes to meiotic chromosome dynamics, and explore similarities and differences between cohesin regulation during the mitotic cell cycle and meiotic progression. A deeper understanding of the regulation and function of cohesin in meiosis will provide important new insights into how the cohesin complex is able to promote distinct kinds of chromosome interactions under diverse conditions.
Collapse
Affiliation(s)
- Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, OK, USA
| |
Collapse
|
33
|
Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. ACTA ACUST UNITED AC 2015; 105:140-56. [PMID: 26043938 PMCID: PMC4737249 DOI: 10.1002/bdrc.21096] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Nearly 60 years ago thalidomide was prescribed to treat morning sickness in pregnant women. What followed was the biggest man‐made medical disaster ever, where over 10,000 children were born with a range of severe and debilitating malformations. Despite this, the drug is now used successfully to treat a range of adult conditions, including multiple myeloma and complications of leprosy. Tragically, a new generation of thalidomide damaged children has been identified in Brazil. Yet, how thalidomide caused its devastating effects in the forming embryo remains unclear. However, studies in the past few years have greatly enhanced our understanding of the molecular mechanisms the drug. This review will look at the history of the drug, and the range and type of damage the drug caused, and outline the mechanisms of action the drug uses including recent molecular advances and new findings. Some of the remaining challenges facing thalidomide biologists are also discussed. Birth Defects Research (Part C) 105:140–156, 2015. © 2015 The Authors Birth Defects Research Part C: Embryo Today: Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neil Vargesson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
34
|
Cornelia de Lange Syndrome: A Variable Disorder of Cohesin Pathology. CURRENT GENETIC MEDICINE REPORTS 2015. [DOI: 10.1007/s40142-015-0065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Yelick PC, Trainor PA. Ribosomopathies: Global process, tissue specific defects. Rare Dis 2015; 3:e1025185. [PMID: 26442198 PMCID: PMC4590025 DOI: 10.1080/21675511.2015.1025185] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/18/2015] [Accepted: 02/26/2015] [Indexed: 01/01/2023] Open
Abstract
Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions - provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute ; Kansas City, MO USA ; University of Kansas Medical Center ; Kansas City, KS USA
| |
Collapse
|
36
|
Lamikanra AA, Merryweather-Clarke AT, Tipping AJ, Roberts DJ. Distinct mechanisms of inadequate erythropoiesis induced by tumor necrosis factor alpha or malarial pigment. PLoS One 2015; 10:e0119836. [PMID: 25781011 PMCID: PMC4363658 DOI: 10.1371/journal.pone.0119836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
The role of infection in erythropoietic dysfunction is poorly understood. In children with P. falciparum malaria, the by-product of hemoglobin digestion in infected red cells (hemozoin) is associated with the severity of anemia which is independent of circulating levels of the inflammatory cytokine tumor necrosis alpha (TNF-α). To gain insight into the common and specific effects of TNF-α and hemozoin on erythropoiesis, we studied the gene expression profile of purified primary erythroid cultures exposed to either TNF-α (10ng/ml) or to hemozoin (12.5μg/ml heme units) for 24 hours. Perturbed gene function was assessed using co-annotation of associated gene ontologies and expression of selected genes representative of the profile observed was confirmed by real time PCR (rtPCR). The changes in gene expression induced by each agent were largely distinct; many of the genes significantly modulated by TNF-α were not affected by hemozoin. The genes modulated by TNF-α were significantly enriched for those encoding proteins involved in the control of type 1 interferon signalling and the immune response to viral infection. In contrast, genes induced by hemozoin were significantly enriched for functional roles in regulation of transcription and apoptosis. Further analyses by rtPCR revealed that hemozoin increases expression of transcription factors that form part of the integrated stress response which is accompanied by reduced expression of genes involved in DNA repair. This study confirms that hemozoin induces cellular stress on erythroblasts that is additional to and distinct from responses to inflammatory cytokines and identifies new genes that may be involved in the pathogenesis of severe malarial anemia. More generally the respective transcription profiles highlight the varied mechanisms through which erythropoiesis may be disrupted during infectious disease.
Collapse
Affiliation(s)
- Abigail A. Lamikanra
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9BQ, United Kingdom
- National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, United Kingdom
- * E-mail:
| | - Alison T. Merryweather-Clarke
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9BQ, United Kingdom
- National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, United Kingdom
| | - Alex J. Tipping
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9BQ, United Kingdom
- National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, United Kingdom
| | - David J. Roberts
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9BQ, United Kingdom
- National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, United Kingdom
| |
Collapse
|
37
|
Filipek-Górniok B, Carlsson P, Haitina T, Habicher J, Ledin J, Kjellén L. The NDST gene family in zebrafish: role of NDST1B in pharyngeal arch formation. PLoS One 2015; 10:e0119040. [PMID: 25767878 PMCID: PMC4359090 DOI: 10.1371/journal.pone.0119040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans are ubiquitous components of the extracellular matrix and plasma membrane of metazoans. The sulfation pattern of the HS glycosaminoglycan chain is characteristic for each tissue and changes during development. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes catalyze N-deacetylation and N-sulfation during HS biosynthesis and have a key role in designing the sulfation pattern. We here report on the presence of five NDST genes in zebrafish. Zebrafish ndst1a, ndst1b, ndst2a and ndst2b represent duplicated mammalian orthologues of NDST1 and NDST2 that arose through teleost specific genome duplication. Interestingly, the single zebrafish orthologue ndst3, is equally similar to tetrapod Ndst3 and Ndst4. It is likely that a local duplication in the common ancestor of lobe-finned fish and tetrapods gave rise to these two genes. All zebrafish Ndst genes showed distinct but partially overlapping expression patterns during embryonic development. Morpholino knockdown of ndst1b resulted in delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length, resembling some of the features of the Ndst1 mouse knockout.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Husargatan 3, PO Box 582, SE-751 23, Uppsala, Sweden
| | - Pernilla Carlsson
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Husargatan 3, PO Box 582, SE-751 23, Uppsala, Sweden
| | - Tatjana Haitina
- Dept. of Organismal Biology, Science for Life Laboratory, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Judith Habicher
- Dept. of Organismal Biology, Science for Life Laboratory, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Johan Ledin
- Dept. of Organismal Biology, Science for Life Laboratory, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Lena Kjellén
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Husargatan 3, PO Box 582, SE-751 23, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
38
|
Abstract
A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
39
|
Xu B, Sowa N, Cardenas ME, Gerton JL. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome. Hum Mol Genet 2014; 24:1540-55. [PMID: 25378554 PMCID: PMC4351377 DOI: 10.1093/hmg/ddu565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Nenja Sowa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA, Medical Faculty, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA, Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA,
| |
Collapse
|
40
|
Dupont C, Bucourt M, Guimiot F, Kraoua L, Smiljkovski D, Le Tessier D, Lebugle C, Gerard B, Spaggiari E, Bourdoncle P, Tabet AC, Benzacken B, Dupont JM. 3D-FISH analysis reveals chromatid cohesion defect during interphase in Roberts syndrome. Mol Cytogenet 2014; 7:59. [PMID: 25320640 PMCID: PMC4197286 DOI: 10.1186/s13039-014-0059-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/21/2014] [Indexed: 01/12/2023] Open
Abstract
Background Roberts syndrome (RBS) is a rare autosomal recessive disorder mainly characterized by growth retardation, limb defects and craniofacial anomalies. Characteristic cytogenetic findings are “railroad track” appearance of chromatids and premature centromere separation in metaphase spreads. Mutations in the ESCO2 (establishment of cohesion 1 homolog 2) gene located in 8p21.1 have been found in several families. ESCO2, a member of the cohesion establishing complex, has a role in the effective cohesion between sister chromatids. In order to analyze sister chromatids topography during interphase, we performed 3D-FISH using pericentromeric heterochromatin probes of chromosomes 1, 4, 9 and 16, on preserved nuclei from a fetus with RBS carrying compound heterozygous null mutations in the ESCO2 gene. Results Along with the first observation of an abnormal separation between sister chromatids in heterochromatic regions, we observed a statistically significant change in the intranuclear localization of pericentromeric heterochromatin of chromosome 1 in cells of the fetus compared to normal cells, demonstrating for the first time a modification in the spatial arrangement of chromosome domains during interphase. Conclusion We hypothesize that the disorganization of nuclear architecture may result in multiple gene deregulations, either through disruption of DNA cis interaction –such as modification of chromatin loop formation and gene insulation - mediated by cohesin complex, or by relocation of chromosome territories. These changes may modify interactions between the chromatin and the proteins associated with the inner nuclear membrane or the pore complexes. This model offers a link between the molecular defect in cohesion and the complex phenotypic anomalies observed in RBS. Electronic supplementary material The online version of this article (doi:10.1186/s13039-014-0059-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Celine Dupont
- Unité fonctionnelle de Cytogénétique-Département de Génétique- APHP, Hôpital Robert Debré, 48 Bd Sérurier, 75935 Paris, France
| | - Martine Bucourt
- Laboratoire de Fœtopathologie- APHP, Hôpital Jean Verdier, Bondy, France
| | - Fabien Guimiot
- Service de Biologie du Développement- APHP, Hôpital Robert Debré, Paris, France ; Université Paris Diderot Sorbonne Paris Cité, UMR 1141, F-75019 Paris, France
| | - Lilia Kraoua
- Unité fonctionnelle de Génétique moléculaire - Département de Génétique- APHP, Hôpital Robert Debré, Paris, France
| | - Daniel Smiljkovski
- Génomique, Epigénétique et Physiopathologie de la Reproduction, U1016 INSERM-UMR 8104 CNRS (Institut Cochin), Université Paris Descartes, Faculté de Médecine, Paris, France ; Laboratoire de Cytogénétique- APHP, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Dominique Le Tessier
- Laboratoire de Cytogénétique- APHP, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Camille Lebugle
- Institut Cochin, Plateforme d'imagerie cellulaire, Paris, France
| | - Benedicte Gerard
- Unité fonctionnelle de Génétique moléculaire - Département de Génétique- APHP, Hôpital Robert Debré, Paris, France
| | - Emmanuel Spaggiari
- Service de Biologie du Développement- APHP, Hôpital Robert Debré, Paris, France
| | | | - Anne-Claude Tabet
- Unité fonctionnelle de Cytogénétique-Département de Génétique- APHP, Hôpital Robert Debré, 48 Bd Sérurier, 75935 Paris, France
| | - Brigitte Benzacken
- Unité fonctionnelle de Cytogénétique-Département de Génétique- APHP, Hôpital Robert Debré, 48 Bd Sérurier, 75935 Paris, France ; Service d'Histologie, Embryologie et Cytogénétique, Biologie de la Reproduction- APHP, Hôpital Jean Verdier, Bondy, France; UFR-SMBH, Paris, XIII France
| | - Jean-Michel Dupont
- Génomique, Epigénétique et Physiopathologie de la Reproduction, U1016 INSERM-UMR 8104 CNRS (Institut Cochin), Université Paris Descartes, Faculté de Médecine, Paris, France ; Laboratoire de Cytogénétique- APHP, Hôpitaux Universitaires Paris Centre, Paris, France
| |
Collapse
|
41
|
Laldinsangi C, Vijayaprasadarao K, Rajakumar A, Murugananthkumar R, Prathibha Y, Sudhakumari CC, Mamta SK, Dutta-Gupta A, Senthilkumaran B. Two-dimensional proteomic analysis of gonads of air-breathing catfish, Clarias batrachus after the exposure of endosulfan and malathion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1006-1014. [PMID: 24742880 DOI: 10.1016/j.etap.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
Endocrine disrupting chemicals have raised public concern, since their effects have been found to interfere with the physiological systems of various organisms, especially during critical stage of development and reproduction. Endosulfan and malathion, pesticides widely used for agricultural purposes, have been known to disrupt physiological functions in aquatic organisms. The current work analyzes the effects of endosulfan (2.5 parts per billion [ppb]) and malathion (10 ppb) on the reproductive physiology of catfish (Clarias batrachus) by evaluating protein expression profiles after 21 days of exposure. The proteomic profile of testis and ovary after exposure to endosulfan showed downregulation of proteins such as ubiquitin and Esco2, and upregulation in melanocortin-receptor-2 respectively. Malathion exposed ovary showed upregulated prolactin levels. Identification of proteins differentially expressed in gonads due to the exposure to these pesticides may serve as crucial indications to denote their disruptive effects at the level of proteins.
Collapse
Affiliation(s)
- C Laldinsangi
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - K Vijayaprasadarao
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - A Rajakumar
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - R Murugananthkumar
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Y Prathibha
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - C C Sudhakumari
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - S K Mamta
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - A Dutta-Gupta
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - B Senthilkumaran
- Department of Animal Sciences, School of Life Sciences-Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| |
Collapse
|
42
|
Ball AR, Chen YY, Yokomori K. Mechanisms of cohesin-mediated gene regulation and lessons learned from cohesinopathies. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:191-202. [PMID: 24269489 PMCID: PMC3951616 DOI: 10.1016/j.bbagrm.2013.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/09/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
Abstract
Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin's subunits and its regulator proteins in human developmental disorders, so-called "cohesinopathies," reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin's functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Alexander R Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA.
| |
Collapse
|
43
|
Xu B, Lu S, Gerton JL. Roberts syndrome: A deficit in acetylated cohesin leads to nucleolar dysfunction. Rare Dis 2014; 2:e27743. [PMID: 25054091 PMCID: PMC4091327 DOI: 10.4161/rdis.27743] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 01/06/2014] [Indexed: 12/26/2022] Open
Abstract
All living organisms must go through cycles of replicating their genetic information and then dividing the copies between two new cells. This cyclical process, in cells from bacteria and human alike, requires a protein complex known as cohesin. Cohesin is a structural maintenance of chromosomes (SMC) complex. While bacteria have one form of this complex, yeast have several SMC complexes, and humans have at least a dozen cohesin complexes alone. Therefore the ancient structure and function of SMC complexes has been both conserved and specialized over the course of evolution. These complexes play roles in replication, repair, organization, and segregation of the genome. Mutations in the genes that encode cohesin and its regulatory factors are associated with developmental disorders such as Roberts syndrome, Cornelia de Lange syndrome, and cancer. In this review, we focus on how acetylation of cohesin contributes to its function. In Roberts syndrome, the lack of cohesin acetylation contributes to nucleolar defects and translational inhibition. An understanding of basic SMC complex function will be essential to unraveling the molecular etiology of human diseases associated with defective SMC function.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research; Kansas City, MO USA
| | - Shuai Lu
- Stowers Institute for Medical Research; Kansas City, MO USA ; Department of Biochemistry and Molecular Biology; University of Kansas School of Medicine; Kansas City, KS USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research; Kansas City, MO USA ; Department of Biochemistry and Molecular Biology; University of Kansas School of Medicine; Kansas City, KS USA
| |
Collapse
|
44
|
Skibbens RV, Colquhoun JM, Green MJ, Molnar CA, Sin DN, Sullivan BJ, Tanzosh EE. Cohesinopathies of a feather flock together. PLoS Genet 2013; 9:e1004036. [PMID: 24367282 PMCID: PMC3868590 DOI: 10.1371/journal.pgen.1004036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Roberts Syndrome (RBS) and Cornelia de Lange Syndrome (CdLS) are severe developmental maladies that present with nearly an identical suite of multi-spectrum birth defects. Not surprisingly, RBS and CdLS arise from mutations within a single pathway--here involving cohesion. Sister chromatid tethering reactions that comprise cohesion are required for high fidelity chromosome segregation, but cohesin tethers also regulate gene transcription, promote DNA repair, and impact DNA replication. Currently, RBS is thought to arise from elevated levels of apoptosis, mitotic failure, and limited progenitor cell proliferation, while CdLS is thought to arise, instead, from transcription dysregulation. Here, we review new information that implicates RBS gene mutations in altered transcription profiles. We propose that cohesin-dependent transcription dysregulation may extend to other developmental maladies; the diagnoses of which are complicated through multi-functional proteins that manifest a sliding scale of diverse and severe phenotypes. We further review evidence that cohesinopathies are more common than currently posited.
Collapse
Affiliation(s)
- Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Jennifer M. Colquhoun
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Megan J. Green
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Merck, Sharp & Dohme, West Point, Pennsylvania, United States of America
| | - Cody A. Molnar
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Danielle N. Sin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Brian J. Sullivan
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Eden E. Tanzosh
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Janssen R&D, LLC, Raritan, New Jersey, United States of America
| |
Collapse
|
45
|
Trainor PA, Merrill AE. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:769-78. [PMID: 24252615 DOI: 10.1016/j.bbadis.2013.11.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
The skeleton affords a framework and structural support for vertebrates, while also facilitating movement, protecting vital organs, and providing a reservoir of minerals and cells for immune system and vascular homeostasis. The mechanical and biological functions of the skeleton are inextricably linked to the size and shape of individual bones, the diversity of which is dependent in part upon differential growth and proliferation. Perturbation of bone development, growth and proliferation, can result in congenital skeletal anomalies, which affect approximately 1 in 3000 live births [1]. Ribosome biogenesis is integral to all cell growth and proliferation through its roles in translating mRNAs and building proteins. Disruption of any steps in the process of ribosome biogenesis can lead to congenital disorders termed ribosomopathies. In this review, we discuss the role of ribosome biogenesis in skeletal development and in the pathogenesis of congenital skeletal anomalies. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Carretero M, Ruiz-Torres M, Rodríguez-Corsino M, Barthelemy I, Losada A. Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J 2013; 32:2938-49. [PMID: 24141881 PMCID: PMC3831313 DOI: 10.1038/emboj.2013.230] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/02/2013] [Indexed: 12/23/2022] Open
Abstract
Cohesin mediates sister chromatid cohesion and contributes to the organization of interphase chromatin through DNA looping. In vertebrate somatic cells, cohesin consists of Smc1, Smc3, Rad21, and either SA1 or SA2. Three additional factors Pds5, Wapl, and Sororin bind to cohesin and modulate its dynamic association with chromatin. There are two Pds5 proteins in vertebrates, Pds5A and Pds5B, but their functional specificity remains unclear. Here, we demonstrate that Pds5 proteins are essential for cohesion establishment by allowing Smc3 acetylation by the cohesin acetyl transferases (CoATs) Esco1/2 and binding of Sororin. While both proteins contribute to telomere and arm cohesion, Pds5B is specifically required for centromeric cohesion. Furthermore, reduced accumulation of Aurora B at the inner centromere region in cells lacking Pds5B impairs its error correction function, promoting chromosome mis-segregation and aneuploidy. Our work supports a model in which the composition and function of cohesin complexes differs between different chromosomal regions.
Collapse
Affiliation(s)
- María Carretero
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Ruiz-Torres
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Barthelemy
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
47
|
Abstract
Thalidomide remains one of the world’s most notorious drugs due to the severe birth defects it induced in children between 1957 and 1962. Yet, to some this drug is a lifesaver, as it now enjoys renaissance in the treatment for a wide range of conditions including leprosy, multiple myeloma, Behcet’s disease, and some cancers. However, thalidomide has also been linked to causing a new generation of thalidomide survivors in Brazil, where the drug is used to treat leprosy. Surprisingly how thalidomide causes birth defects and how it acts in the treatment of clinical conditions are still far from clear. In the past decade great strides in our understanding of the actions of the drug, as well as molecular targets, have been made. The purpose of this review is to look at the recent work carried out into understanding how thalidomide causes birth defects, it’s molecular targets and the challenges that remain to be elucidated. These challenges include identifying clinically relevant but nonteratogenic forms of the drug, and the mechanisms underlying phocomelia and species specificity.
Collapse
|
48
|
Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts. Cell Death Dis 2013; 4:e866. [PMID: 24136230 PMCID: PMC3824680 DOI: 10.1038/cddis.2013.371] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/21/2023]
Abstract
Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.
Collapse
|
49
|
Xu B, Lee KK, Zhang L, Gerton JL. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome. PLoS Genet 2013; 9:e1003857. [PMID: 24098154 PMCID: PMC3789817 DOI: 10.1371/journal.pgen.1003857] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022] Open
Abstract
Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Kenneth K. Lee
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Lily Zhang
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| |
Collapse
|
50
|
Abstract
Cohesin is a ring-shaped complex, conserved from yeast to human, that was named for its ability to mediate sister chromatid cohesion. This function is essential for chromosome segregation in both mitosis and meiosis, and also for DNA repair. In addition, more recent studies have shown that cohesin influences gene expression during development through mechanisms that likely involve DNA looping and interactions with several transcriptional regulators. Here, we provide an overview of how cohesin functions, highlighting its role both in development and in disease.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | |
Collapse
|