1
|
Tucker SK, McHugh RE, Roe AJ. One problem, multiple potential targets: Where are we now in the development of small molecule inhibitors against Shiga toxin? Cell Signal 2024; 121:111253. [PMID: 38852937 DOI: 10.1016/j.cellsig.2024.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a group of enteric pathogens which carry phage-encoded Shiga toxins (Stx). STEC infections begin with severe abdominal pain and non-bloody diarrhoea, which can progress to bloody diarrhoea after approximately 4-days post-infection. In high-risk groups such as children and the elderly, patients may develop haemolytic uremic syndrome (HUS). HUS is characterised by microangiopathic haemolytic anaemia, thrombocytopenia, and in severe disease acute renal failure. Traditional antibiotics have been linked with increased toxin production due to the activation of recA-mediated bacterial stress response, resulting in poorer patient outcomes. Therefore, treatment relies on supportive therapies. Antivirulence strategies have been explored as an alternative treatment for bacterial infections and blockers of virulence factors such as the Type III Secretion System. Recent improvements in the mechanistic understanding of the Stx pathway have led to the design of inhibitors to disrupt the pathway, leading to toxin-mediated ribosome damage. However, compounds have yet to progress beyond Phase III clinical trials successfully. This review explores the progress in developing small molecule inhibitors by collating lead compounds derived from in-silico and experimental approaches.
Collapse
Affiliation(s)
- Samantha K Tucker
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Rebecca E McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Andrew J Roe
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
2
|
Kume Y, Go H, Maeda R, Suyama K, Mori T, Kawasaki Y, Hashimoto K, Hosoya M. Gene expression profile and injury sites in mice treated with Shiga toxin 2 and lipopolysaccharide as a Shiga toxin-associated hemolytic uremic syndrome model. Physiol Genomics 2022; 54:153-165. [PMID: 35384732 DOI: 10.1152/physiolgenomics.00124.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin 2 (Stx2) and lipopolysaccharide (LPS) contribute to the development of hemolytic uremic syndrome (HUS). Mouse models of HUS induced by LPS/Stx2 have been used for elucidating HUS pathophysiology and for therapeutic development. However, the underlying molecular mechanisms and detailed injury sites in this model remain unknown. We analyzed mouse kidneys after LPS/Stx2 administration using microarrays. Decreased urinary osmolality and urinary potassium were observed after LPS/Stx2 administration, suggestive of distal nephron disorders. A total of 1212 and 1016 differentially expressed genes were identified in microarrays at 6 and 72 h after LPS/Stx2 administration, respectively, compared with those in controls. Ingenuity pathway analysis revealed activation of TNFR1/2, iNOS, and IL-6 signaling at both time points, and inhibition of pathways associated with lipid metabolism at 72 h only. The strongly downregulated genes in the 72-h group were expressed in the distal nephrons. In particular, genes associated with distal convoluted tubule (DCT) 2 /connecting tubule (CNT) and principal cells of the cortical collection duct (CCD) were downregulated to a greater extent than those associated with DCT1 and intercalated cells. Stx receptor globotriaosylceramide 3 (Gb3) revealed no colocalization with DCT1-specific Pvalb and intercalated cell-specific Slc26a4 but did present colocalization with Slc12a3 (present in both DCT1 and DCT2), and Aqp2 in principal cells. Gb3 localization tended to coincide with the segment in which the downregulated genes were present. Thus, the LPS/Stx2-induced kidney injury model represents damage to DCT2/CNT and principal cells in the CCD, based on molecular, biological, and physiological findings.
Collapse
Affiliation(s)
- Yohei Kume
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Hayato Go
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Ryo Maeda
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Kazuhide Suyama
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Tsutomu Mori
- Department of Human Life Sciences, School of Nursing, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukihiko Kawasaki
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Abstract
Shiga toxin (Stx) is the primary cause of severe host responses including renal and central nervous system (CNS) disease in Shiga toxin-producing E. coli (STEC) infections. The interaction of Stx with different eukaryotic cell types is described. Host responses to Stx and bacterial lipopolysaccharide (LPS) are compared as related to the features of the STEC-associated Hemolytic Uremic Syndrome (HUS). Data derived from animal models of HUS and CNS disease, in vivo, and eukaryotic cells, in vitro, are evaluated in relation to HUS disease of humans.
Collapse
|
4
|
Brandelli JR, Griener TP, Laing A, Mulvey G, Armstrong GD. The Effects of Shiga Toxin 1, 2 and Their Subunits on Cytokine and Chemokine Expression by Human Macrophage-Like THP-1 Cells. Toxins (Basel) 2015; 7:4054-66. [PMID: 26473922 PMCID: PMC4626720 DOI: 10.3390/toxins7104054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 12/01/2022] Open
Abstract
Infection by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC) results in severe diarrhea, hemorrhagic colitis, and, occasionally, hemolytic-uremic syndrome (HUS). HUS is associated with an increase in pro-inflammatory cytokines and chemokines, many of which are produced by macrophages in the kidneys, indicating that localized host innate immunity likely plays a role in renal pathogenesis. EHEC serotypes may express one or two classes of serologically defined but structurally and functionally-related Shiga toxins called Stx1 and Stx2. Of these, Stx2 appears to be linked to higher rates of HUS than Stx1. To investigate a possible reason for this, we exposed human macrophage-like THP-1 cells to Stx1 or Stx2 and then used the Luminex multiplex system to assess cytokine/chemokine concentrations in culture supernatant solutions. This analysis revealed that, relative to Stx1, Stx2 significantly caused increased expression of GRO, G-CSF, IL-1β, IL-8 and TNFα in macrophage-like THP-1 cells. This was determined to not be due to a difference in cytotoxicity since both Stx1 and Stx2 displayed similar cytotoxic activities on macrophage-like THP-1 cells. These observations indicate that, in vitro, Stx2 can provoke a greater pro-inflammatory response than Stx1 in macrophages and provides a possible partial explanation for higher rates of HUS in patients infected with EHEC strains expressing Stx2. To begin to determine a mechanism for Shiga toxin-mediated cytokine production, we exposed macrophage-like THP-1 cells to Stx1 or Stx2 A and B subunits. Luminex analysis of cytokines in cell culture supernatant solutions demonstrated that neither subunit alone induced a cytokine response in THP-1 cells.
Collapse
Affiliation(s)
- Jeremy R Brandelli
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Thomas P Griener
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Austin Laing
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - George Mulvey
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Glen D Armstrong
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
5
|
Polymer antidotes for toxin sequestration. Adv Drug Deliv Rev 2015; 90:81-100. [PMID: 26026975 DOI: 10.1016/j.addr.2015.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/09/2015] [Accepted: 05/21/2015] [Indexed: 12/24/2022]
Abstract
Toxins delivered by envenomation, secreted by microorganisms, or unintentionally ingested can pose an immediate threat to life. Rapid intervention coupled with the appropriate antidote is required to mitigate the threat. Many antidotes are biological products and their cost, methods of production, potential for eliciting immunogenic responses, the time needed to generate them, and stability issues contribute to their limited availability and effectiveness. These factors exacerbate a world-wide challenge for providing treatment. In this review we evaluate a number of polymer constructs that may serve as alternative antidotes. The range of toxins investigated includes those from sources such as plants, animals and bacteria. The development of polymeric heavy metal sequestrants for use as antidotes to heavy metal poisoning faces similar challenges, thus recent findings in this area have also been included. Two general strategies have emerged for the development of polymeric antidotes. In one, the polymer acts as a scaffold for the presentation of ligands with a known affinity for the toxin. A second strategy is to generate polymers with an intrinsic affinity, and in some cases selectivity, to a range of toxins. Importantly, in vivo efficacy has been demonstrated for each of these strategies, which suggests that these approaches hold promise as an alternative to biological or small molecule based treatments.
Collapse
|
6
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
7
|
Abstract
ABSTRACT
Shiga toxin (Stx)-producing
Escherichia coli
(STEC) is an etiologic agent of bloody diarrhea. A serious sequela of disease, the hemolytic uremic syndrome (HUS) may arise in up to 25% of patients. The development of HUS after STEC infection is linked to the presence of Stx. STEC strains may produce one or more Stxs, and the Stxs come in two major immunological groups, Stx1 and Stx2. A multitude of possible therapeutics designed to inhibit the actions of the Stxs have been developed over the past 30 years. Such therapeutics are important because antibiotic treatment of STEC infections is contraindicated due to an increased potential for development of HUS. The reason for the increased risk of HUS after antibiotic treatment is likely because certain antibiotics induce expression of the Stxs, which are generally associated with lysogenic bacteriophages. There are a few potential therapeutics that either try to kill STEC without inducing Stx expression or target gene expression within STEC. However, the vast majority of the treatments under development are designed to limit Stx receptor generation or to prevent toxin binding, trafficking, processing, or activity within the cell. The potential therapies described in this review include some that have only been tested in vitro and several that demonstrate efficacy in animals. The therapeutics that are currently the furthest along in development (completed phase I and II trials) are monoclonal antibodies directed against Stx1 and Stx2.
Collapse
|
8
|
Jacobson JM, Yin J, Kitov PI, Mulvey G, Griener TP, James MNG, Armstrong G, Bundle DR. The crystal structure of shiga toxin type 2 with bound disaccharide guides the design of a heterobifunctional toxin inhibitor. J Biol Chem 2014; 289:885-94. [PMID: 24225957 PMCID: PMC3887212 DOI: 10.1074/jbc.m113.518886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/28/2013] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin type 2 (Stx2a) is clinically most closely associated with enterohemorrhagic E. coli O157:H7-mediated hemorrhagic colitis that sometimes progresses to hemolytic-uremic syndrome. The ability to express the toxin has been acquired by other Escherichia coli strains, and outbreaks of food poisoning have caused significant mortality rates as, for example, in the 2011 outbreak in northern Germany. Stx2a, an AB5 toxin, gains entry into human cells via the glycosphingolipid receptor Gb3. We have determined the first crystal structure of a disaccharide analog of Gb3 bound to the B5 pentamer of Stx2a holotoxin. In this Gb3 analog,-GalNAc replaces the terminal-Gal residue. This co-crystal structure confirms previous inferences that two of the primary binding sites identified in theB5 pentamer of Stx1 are also functional in Stx2a. This knowledge provides a rationale for the synthesis and evaluation of heterobifunctional antagonists for E. coli toxins that target Stx2a. Incorporation of GalNAc Gb3 trisaccharide in a heterobifunctional ligand with an attached pyruvate acetal, a ligand for human amyloid P component, and conjugation to poly[acrylamide-co-(3-azidopropylmethacrylamide)] produced a polymer that neutralized Stx2a in a mouse model of Shigatoxemia.
Collapse
Affiliation(s)
- Jared M. Jacobson
- From the Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Pavel I. Kitov
- From the Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - George Mulvey
- Department of Microbiology, Immunology, and Infectious Diseases, Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Tom P. Griener
- Department of Microbiology, Immunology, and Infectious Diseases, Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Michael N. G. James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Glen Armstrong
- Department of Microbiology, Immunology, and Infectious Diseases, Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David R. Bundle
- From the Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
9
|
Waugh E, Chen A, Baird MA, Brown CM, Ward VK. Characterization of the chemokine response of RAW264.7 cells to infection by murine norovirus. Virus Res 2013; 181:27-34. [PMID: 24374268 DOI: 10.1016/j.virusres.2013.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 01/25/2023]
Abstract
Noroviruses are an emerging threat to public health, causing large health and economic costs, including at least 200,000 deaths annually. The inability to replicate in cell culture or small animal models has limited the understanding of the interaction between human noroviruses and their hosts. However, an alternative strategy to gain insights into norovirus pathogenesis is to study murine norovirus (MNV-1) that replicates in cultured macrophages. While the innate immune response is central to the resolution of norovirus disease, the adaptive immune response is required for viral clearance. The specific responses of macrophages and dendritic cells to infection drive the adaptive immune response, with chemokines playing an important role. In this study, we have conducted microarray analysis of RAW264.7 macrophages infected with MNV-1 and examined the changes in chemokine transcriptional expression during infection. While the majority of chemokines showed no change, there was specific up-regulation in chemokines reflective of a bias toward a Th1 response, specifically CCL2, CCL3, CCL4, CCL5, CXCL2, CXCL10 and CXCL11. These changes in gene expression were reflected in protein levels as determined by ELISA assay. This virus-induced chemokine response will affect the resolution of infection and may limit the humoral response to norovirus infection.
Collapse
Affiliation(s)
- Emily Waugh
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Augustine Chen
- Department of Biochemistry, School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Margaret A Baird
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
10
|
Kovalchuk I, Walz P, Thomas J, Kovalchuk O. Genomic instability in liver cells caused by an LPS-induced bystander-like effect. PLoS One 2013; 8:e67342. [PMID: 23874414 PMCID: PMC3706549 DOI: 10.1371/journal.pone.0067342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022] Open
Abstract
Bacterial infection has been linked to carcinogenesis, however, there is lack of knowledge of molecular mechanisms that associate infection with the development of cancer. We analyzed possible effects of the consumption of heat-killed E. coli O157:H7 cells or its cellular components, DNA, RNA, protein or lipopolysaccharides (LPS) on gene expression in naïve liver cells. Four week old mice were provided water supplemented with whole heat-killed bacteria or bacterial components for a two week period. One group of animals was sacrificed immediately, whereas another group was allowed to consume uncontaminated tap water for an additional two weeks, and liver samples were collected, post mortem. Liver cells responded to exposure of whole heat-killed bacteria and LPS with alteration in γH2AX levels and levels of proteins involved in proliferation, DNA methylation (MeCP2, DNMT1, DNMT3A and 3B) or DNA repair (APE1 and KU70) as well as with changes in the expression of genes involved in stress response, cell cycle control and bile acid biosynthesis. Other bacterial components analysed in this study did not lead to any significant changes in the tested molecular parameters. This study suggests that lipopolysaccharides are a major component of Gram-negative bacteria that induce molecular changes within naïve cells of the host.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.
| | | | | | | |
Collapse
|
11
|
Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012; 51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.
Collapse
Affiliation(s)
- Mattias E Ivarsson
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | |
Collapse
|
12
|
|