1
|
Christoph J, Lebert J. Inverse mechano-electrical reconstruction of cardiac excitation wave patterns from mechanical deformation using deep learning. CHAOS (WOODBURY, N.Y.) 2020; 30:123134. [PMID: 33380038 DOI: 10.1063/5.0023751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The inverse mechano-electrical problem in cardiac electrophysiology is the attempt to reconstruct electrical excitation or action potential wave patterns from the heart's mechanical deformation that occurs in response to electrical excitation. Because heart muscle cells contract upon electrical excitation due to the excitation-contraction coupling mechanism, the resulting deformation of the heart should reflect macroscopic action potential wave phenomena. However, whether the relationship between macroscopic electrical and mechanical phenomena is well-defined and unique enough to be utilized for an inverse imaging technique in which mechanical activation mapping is used as a surrogate for electrical mapping has yet to be determined. Here, we provide a numerical proof-of-principle that deep learning can be used to solve the inverse mechano-electrical problem in phenomenological two- and three-dimensional computer simulations of the contracting heart wall, or in elastic excitable media, with muscle fiber anisotropy. We trained a convolutional autoencoder neural network to learn the complex relationship between electrical excitation, active stress, and tissue deformation during both focal or reentrant chaotic wave activity and, consequently, used the network to successfully estimate or reconstruct electrical excitation wave patterns from mechanical deformation in sheets and bulk-shaped tissues, even in the presence of noise and at low spatial resolutions. We demonstrate that even complicated three-dimensional electrical excitation wave phenomena, such as scroll waves and their vortex filaments, can be computed with very high reconstruction accuracies of about 95% from mechanical deformation using autoencoder neural networks, and we provide a comparison with results that were obtained previously with a physics- or knowledge-based approach.
Collapse
Affiliation(s)
- Jan Christoph
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jan Lebert
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Weise LD, ten Tusscher KHWJ. Discrete mechanical growth model for plant tissue. PLoS One 2019; 14:e0221059. [PMID: 31404094 PMCID: PMC6690522 DOI: 10.1371/journal.pone.0221059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 11/19/2022] Open
Abstract
We present a discrete mechanical model to study plant development. The method is built up of mass points, springs and hinges mimicking the plant cell wall’s microstructure. To model plastic growth the resting lengths of springs are adjusted; when springs exceed a threshold length, new mass points, springs and hinges, are added. We formulate a stiffness tensor for the springs and hinges as a function of the fourth rank tensor of elasticity and the geometry of the mesh. This allows us to approximate the material law as a generalized orthotropic Hooke’s law, and control material properties during growth. The material properties of the model are illustrated in numerical simulations for finite strain and plastic growth. To solve the equations of motion of mass points we assume elastostatics and use Verlet integration. The method is demonstrated in simulations when anisotropic growth causes emergent residual strain fields in cell walls and a bending of tissue. The method can be used in multilevel models to study plant development, for example by coupling it to models for cytoskeletal, hormonal and gene regulatory processes.
Collapse
Affiliation(s)
- Louis D. Weise
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | | |
Collapse
|
3
|
Christoph J, Luther S. Marker-Free Tracking for Motion Artifact Compensation and Deformation Measurements in Optical Mapping Videos of Contracting Hearts. Front Physiol 2018; 9:1483. [PMID: 30450053 PMCID: PMC6224482 DOI: 10.3389/fphys.2018.01483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022] Open
Abstract
Optical mapping is a high-resolution fluorescence imaging technique, which provides highly detailed visualizations of the electrophysiological wave phenomena, which trigger the beating of the heart. Recent advancements in optical mapping have demonstrated that the technique can now be performed with moving and contracting hearts and that motion and motion artifacts, once a major limitation, can now be overcome by numerically tracking and stabilizing the heart's motion. As a result, the optical measurement of electrical activity can be obtained from the moving heart surface in a co-moving frame of reference and motion artifacts can be reduced substantially. The aim of this study is to assess and validate the performance of a 2D marker-free motion tracking algorithm, which tracks motion and non-rigid deformations in video images. Because the tracking algorithm does not require markers to be attached to the tissue, it is necessary to verify that it accurately tracks the displacements of the cardiac tissue surface, which not only contracts and deforms, but also fluoresces and exhibits spatio-temporal physiology-related intensity changes. We used computer simulations to generate synthetic optical mapping videos, which show the contracting and fluorescing ventricular heart surface. The synthetic data reproduces experimental data as closely as possible and shows electrical waves propagating across the deforming tissue surface, as seen during voltage-sensitive imaging. We then tested the motion tracking and motion-stabilization algorithm on the synthetic as well as on experimental data. The motion tracking and motion-stabilization algorithm decreases motion artifacts approximately by 80% and achieves sub-pixel precision when tracking motion of 1–10 pixels (in a video image with 100 by 100 pixels), effectively inhibiting motion such that little residual motion remains after tracking and motion-stabilization. To demonstrate the performance of the algorithm, we present optical maps with a substantial reduction in motion artifacts showing action potential waves propagating across the moving and strongly deforming ventricular heart surface. The tracking algorithm reliably tracks motion if the tissue surface is illuminated homogeneously and shows sufficient contrast or texture which can be tracked or if the contrast is artificially or numerically enhanced. In this study, we also show how a reduction in dissociation-related motion artifacts can be quantified and linked to tracking precision. Our results can be used to advance optical mapping techniques, enabling them to image contracting hearts, with the ultimate goal of studying the mutual coupling of electrical and mechanical phenomena in healthy and diseased hearts.
Collapse
Affiliation(s)
- Jan Christoph
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - Stefan Luther
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany.,Department of Pharmacology, University Medical Center, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Christoph J, Chebbok M, Richter C, Schröder-Schetelig J, Bittihn P, Stein S, Uzelac I, Fenton FH, Hasenfuß G, Gilmour RF, Luther S. Electromechanical vortex filaments during cardiac fibrillation. Nature 2018; 555:667-672. [PMID: 29466325 DOI: 10.1038/nature26001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/14/2018] [Indexed: 11/09/2022]
Abstract
The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.
Collapse
Affiliation(s)
- J Christoph
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - M Chebbok
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Department for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - C Richter
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Department for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - J Schröder-Schetelig
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - P Bittihn
- BioCircuits Institute, University of California San Diego, La Jolla, California, USA
| | - S Stein
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - I Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - F H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Hasenfuß
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Department for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - R F Gilmour
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - S Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany.,Institute of Pharmacology, University Medical Center Göttingen, Göttingen, Germany.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Weise LD, Panfilov AV. Mechanism for Mechanical Wave Break in the Heart Muscle. PHYSICAL REVIEW LETTERS 2017; 119:108101. [PMID: 28949179 DOI: 10.1103/physrevlett.119.108101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 06/07/2023]
Abstract
Using a reaction-diffusion-mechanics model we identify a mechanism for mechanical wave break in the heart muscle. For a wide range of strengths and durations an external mechanical load causes wave front dissipation leading to formation and breakup of spiral waves. We explain the mechanism, and discuss under which conditions it can cause or abolish cardiac arrhythmias.
Collapse
Affiliation(s)
- L D Weise
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, Ghent 9000, Belgium
- Theoretical Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - A V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, Ghent 9000, Belgium
| |
Collapse
|
6
|
Radszuweit M, Alvarez-Lacalle E, Bär M, Echebarria B. Cardiac contraction induces discordant alternans and localized block. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022703. [PMID: 25768527 DOI: 10.1103/physreve.91.022703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Indexed: 06/04/2023]
Abstract
In this paper we use a simplified model of cardiac excitation-contraction coupling to study the effect of tissue deformation on the dynamics of alternans, i.e., alternations in the duration of the cardiac action potential, that occur at fast pacing rates and are known to be proarrhythmic. We show that small stretch-activated currents can produce large effects and cause a transition from in-phase to off-phase alternations (i.e., from concordant to discordant alternans) and to conduction blocks. We demonstrate numerically and analytically that this effect is the result of a generic change in the slope of the conduction velocity restitution curve due to electromechanical coupling. Thus, excitation-contraction coupling can potentially play a relevant role in the transition to reentry and fibrillation.
Collapse
Affiliation(s)
- M Radszuweit
- Weierstrass Institute for Applied Analysis and Stochastics Mohrenstrasse 39, 10117 Berlin, Germany
| | - E Alvarez-Lacalle
- Departament de Física Aplicada, Universitat Politècnica de Catalunya.BarcelonaTech, Av. Dr. Marañón 44-50, E-08028, Barcelona, Spain
| | - M Bär
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - B Echebarria
- Departament de Física Aplicada, Universitat Politècnica de Catalunya.BarcelonaTech, Av. Dr. Marañón 44-50, E-08028, Barcelona, Spain
| |
Collapse
|
7
|
Chen YX, Xu FQ. Higher dimensional Gaussian-type solitons of nonlinear Schrödinger equation with cubic and power-law nonlinearities in PT-symmetric potentials. PLoS One 2014; 9:e115935. [PMID: 25542020 PMCID: PMC4277401 DOI: 10.1371/journal.pone.0115935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/02/2014] [Indexed: 12/03/2022] Open
Abstract
Two families of Gaussian-type soliton solutions of the (n+1)-dimensional Schrödinger equation with cubic and power-law nonlinearities in -symmetric potentials are analytically derived. As an example, we discuss some dynamical behaviors of two dimensional soliton solutions. Their phase switches, powers and transverse power-flow densities are discussed. Results imply that the powers flow and exchange from the gain toward the loss regions in the cell. Moreover, the linear stability analysis and the direct numerical simulation are carried out, which indicates that spatial Gaussian-type soliton solutions are stable below some thresholds for the imaginary part of -symmetric potentials in the defocusing cubic and focusing power-law nonlinear medium, while they are always unstable for all parameters in other media.
Collapse
Affiliation(s)
- Yi-Xiang Chen
- School of Electronics Information, Zhejiang University of Media and Communications, Hangzhou, 310018, P.R.China
- * E-mail:
| | - Fang-Qian Xu
- School of Electronics Information, Zhejiang University of Media and Communications, Hangzhou, 310018, P.R.China
| |
Collapse
|
8
|
Dai CQ, Wang Y. Three-dimensional structures of the spatiotemporal nonlinear Schrödinger equation with power-law nonlinearity in PT-symmetric potentials. PLoS One 2014; 9:e100484. [PMID: 24983624 PMCID: PMC4077705 DOI: 10.1371/journal.pone.0100484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022] Open
Abstract
The spatiotemporal nonlinear Schrödinger equation with power-law nonlinearity in PT-symmetric potentials is investigated, and two families of analytical three-dimensional spatiotemporal structure solutions are obtained. The stability of these solutions is tested by the linear stability analysis and the direct numerical simulation. Results indicate that solutions are stable below some thresholds for the imaginary part of PT-symmetric potentials in the self-focusing medium, while they are always unstable for all parameters in the self-defocusing medium. Moreover, some dynamical properties of these solutions are discussed, such as the phase switch, power and transverse power-flow density. The span of phase switch gradually enlarges with the decrease of the competing parameter k in PT-symmetric potentials. The power and power-flow density are all positive, which implies that the power flow and exchange from the gain toward the loss domains in the PT cell.
Collapse
Affiliation(s)
- Chao-Qing Dai
- School of Sciences, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, P.R.China
- Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT, Australia
- * E-mail:
| | - Yan Wang
- Institute of Theoretical Physics, Shanxi University, Taiyuan, P.R.China
| |
Collapse
|
9
|
Nayak AR, Pandit R. Spiral-wave dynamics in ionically realistic mathematical models for human ventricular tissue: the effects of periodic deformation. Front Physiol 2014; 5:207. [PMID: 24959148 PMCID: PMC4050366 DOI: 10.3389/fphys.2014.00207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 05/14/2014] [Indexed: 11/20/2022] Open
Abstract
We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity θ and the wavelength λ of a plane wave; we show that PD leads to a periodic, spatial modulation of θ and a temporally periodic modulation of λ; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNP04 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.
Collapse
Affiliation(s)
- Alok R. Nayak
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBangalore, India
- Robert Bosch Centre for Cyber Physical Systems, Indian Institute of ScienceBangalore, India
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangalore, India
| |
Collapse
|
10
|
Nayak AR, Shajahan TK, Panfilov AV, Pandit R. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and fibroblasts. PLoS One 2013; 8:e72950. [PMID: 24023798 PMCID: PMC3762734 DOI: 10.1371/journal.pone.0072950] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as , the fibroblast resting-membrane potential, the fibroblast conductance , and the MF gap-junctional coupling . Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as , and , and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity decreases as a function of , for zero-sided and one-sided couplings; however, for two-sided coupling, decreases initially and then increases as a function of , and, eventually, we observe that conduction failure occurs for low values of . In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling or . Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.
Collapse
Affiliation(s)
- Alok Ranjan Nayak
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - T. K. Shajahan
- Centre for Nonlinear Dynamics in Physiology and Medicine, McGill University, Montreal, Canada
| | - A. V. Panfilov
- Department of Physics and Astronomy, Gent University, Gent, Belgium
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail:
| |
Collapse
|
11
|
Naher H, Abdullah FA, Akbar MA. Generalized and improved (G'/G)-expansion method for (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation. PLoS One 2013; 8:e64618. [PMID: 23741355 PMCID: PMC3669414 DOI: 10.1371/journal.pone.0064618] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
The generalized and improved -expansion method is a powerful and advantageous mathematical tool for establishing abundant new traveling wave solutions of nonlinear partial differential equations. In this article, we investigate the higher dimensional nonlinear evolution equation, namely, the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation via this powerful method. The solutions are found in hyperbolic, trigonometric and rational function form involving more parameters and some of our constructed solutions are identical with results obtained by other authors if certain parameters take special values and some are new. The numerical results described in the figures were obtained with the aid of commercial software Maple.
Collapse
Affiliation(s)
- Hasibun Naher
- School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia.
| | | | | |
Collapse
|
12
|
Weise LD, Panfilov AV. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics. PLoS One 2013; 8:e59317. [PMID: 23527160 PMCID: PMC3602082 DOI: 10.1371/journal.pone.0059317] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/13/2013] [Indexed: 11/24/2022] Open
Abstract
We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.
Collapse
Affiliation(s)
- Louis D Weise
- Department of Theoretical Biology, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
13
|
Weise LD, Panfilov AV. Emergence of spiral wave activity in a mechanically heterogeneous reaction-diffusion-mechanics system. PHYSICAL REVIEW LETTERS 2012; 108:228104. [PMID: 23003658 DOI: 10.1103/physrevlett.108.228104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Indexed: 06/01/2023]
Abstract
We perform a numerical study of emergent spiral wave activity in a two-dimensional reaction-diffusion-mechanics medium with a regional inhomogeneity in active and passive mechanical properties. We find that self-sustaining spiral wave activity emerges for a wide range of mechanical parameters of the inhomogeneity via five mechanisms. We classify these mechanisms, relate them to parameters of the inhomogeneity, and discuss how these results can be applied to understand the onset of cardiac arrhythmias due to regional mechanical heterogeneity.
Collapse
Affiliation(s)
- L D Weise
- Department of Theoretical Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | | |
Collapse
|
14
|
Weise LD, Panfilov AV. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system. PLoS One 2011; 6:e27264. [PMID: 22114667 PMCID: PMC3215707 DOI: 10.1371/journal.pone.0027264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 10/12/2011] [Indexed: 11/21/2022] Open
Abstract
Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the “classical vulnerable zone.” Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the “classical,” and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the “classical vulnerable zone.” We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.
Collapse
Affiliation(s)
- Louis D Weise
- Department of Theoretical Biology, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|