1
|
Visnardi A, Ribeiro RA, de Souza AS, Churasacari Vinces TG, Llontop EE, de Almeida Ferrari AS, França Henrique PA, Valdivieso D, Sánchez-Limache DE, Silva GR, Soares EP, Santos TW, Farah CS, Sassonia RC, Salinas RK, Guzzo CR, de Souza RF. Insertion of a Divergent GAF-like Domain Defines a Novel Family of YcgR Homologues That Bind c-di-GMP in Leptospirales. ACS OMEGA 2025; 10:3988-4006. [PMID: 39926552 PMCID: PMC11800159 DOI: 10.1021/acsomega.4c09917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025]
Abstract
The Leptospiraceae family, which includes the genera Leptospira, Leptonema, and Turneriella, is an ecologically diverse group that includes saprophytic strains from soil and water as well as important pathogenic strains. Adaptation to these multiple environments relies strongly on signal transduction to adjust their morphology, motility, and metabolism to the changing environmental conditions. Members of the genus Leptospira distinguish themselves among spirochetes for having an elevated number of signal transduction genes. In this study, we describe a novel signal transduction protein that has gained multiple paralogues in the Leptospiraceae. These proteins are members of the YcgR/DgrA/MotI family, whose orthologs in several bacterial lineages have been shown to regulate the flagellar motor upon binding to c-di-GMP through their N-terminal PilZ domain. Unlike previously described versions of YcgR, the spirochetal proteins are characterized by the insertion of a divergent GAF domain within their N-terminal PilZ domain. We show that one member of this protein family from Leptospira interrogans is still a monomeric c-di-GMP binding protein and that these novel YcgR-like proteins have mostly replaced other members of the YcgR family in Leptospiraceae. Marked divergence among the paralogs suggests this family's expansion was accompanied by neofunctionalization, with the likely emergence of novel interactions in the signal transduction network controlling the flagellum rotor and other processes affected by changes in levels of c-di-GMP.
Collapse
Affiliation(s)
- Aline
Biazola Visnardi
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Rodolfo Alvarenga Ribeiro
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Anacleto Silva de Souza
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | | | - Edgar E. Llontop
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | | | | | - Daniela Valdivieso
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | | | - Gabriela Roberto Silva
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Eduardo Pereira Soares
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Thomas Wittmann
Cezar Santos
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
- Graduate
Program in Bioinformatics, University of
São Paulo, São Paulo 05508-060, Brazil
| | - Chuck Shaker Farah
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | | | - Roberto K. Salinas
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Cristiane Rodrigues Guzzo
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Robson Francisco de Souza
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
- Graduate
Program in Bioinformatics, University of
São Paulo, São Paulo 05508-060, Brazil
| |
Collapse
|
2
|
Chen Y, Tachiyama S, Li Y, Feng X, Zhao H, Wu Y, Guo Y, Lara-Tejero M, Hua C, Liu J, Gao B. Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in Campylobacter jejuni. Proc Natl Acad Sci U S A 2025; 122:e2412594121. [PMID: 39793078 PMCID: PMC11725899 DOI: 10.1073/pnas.2412594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of Campylobacter jejuni. FlgX forms a stable tetramer that does not bind cyclic di-GMP (c-di-GMP), unlike other canonical PilZ domain-containing proteins. Cryoelectron tomography and subtomogram averaging of flagellar motors in situ provide evidence that FlgX interacts with each stator unit and plays a critical role in stator ring assembly and stability. Furthermore, FlgX is conserved and was most likely present in the common ancestor of the phylum Campylobacterota. Overall, FlgX represents a divergence in function for PilZ superfamily proteins as well as a player in the key stator-rotor interaction of complex flagellar motors.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Yuqian Li
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Xueyin Feng
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hang Zhao
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Yanmin Wu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Guo
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - María Lara-Tejero
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Canfeng Hua
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Beile Gao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| |
Collapse
|
3
|
Groshong AM, Grassmann AA, Luthra A, McLain MA, Provatas AA, Radolf JD, Caimano MJ. PlzA is a bifunctional c-di-GMP biosensor that promotes tick and mammalian host-adaptation of Borrelia burgdorferi. PLoS Pathog 2021; 17:e1009725. [PMID: 34265024 PMCID: PMC8323883 DOI: 10.1371/journal.ppat.1009725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/30/2021] [Accepted: 06/18/2021] [Indexed: 02/05/2023] Open
Abstract
In this study, we examined the relationship between c-di-GMP and its only known effector protein, PlzA, in Borrelia burgdorferi during the arthropod and mammalian phases of the enzootic cycle. Using a B. burgdorferi strain expressing a plzA point mutant (plzA-R145D) unable to bind c-di-GMP, we confirmed that the protective function of PlzA in ticks is c-di-GMP-dependent. Unlike ΔplzA spirochetes, which are severely attenuated in mice, the plzA-R145D strain was fully infectious, firmly establishing that PlzA serves a c-di-GMP-independent function in mammals. Contrary to prior reports, loss of PlzA did not affect expression of RpoS or RpoS-dependent genes, which are essential for transmission, mammalian host-adaptation and murine infection. To ascertain the nature of PlzA's c-di-GMP-independent function(s), we employed infection models using (i) host-adapted mutant spirochetes for needle inoculation of immunocompetent mice and (ii) infection of scid mice with in vitro-grown organisms. Both approaches substantially restored ΔplzA infectivity, suggesting that PlzA enables B. burgdorferi to overcome an early bottleneck to infection. Furthermore, using a Borrelia strain expressing a heterologous, constitutively active diguanylate cyclase, we demonstrate that 'ectopic' production of c-di-GMP in mammals abrogates spirochete virulence and interferes with RpoS function at the post-translational level in a PlzA-dependent manner. Structural modeling and SAXS analysis of liganded- and unliganded-PlzA revealed marked conformational changes that underlie its biphasic functionality. This structural plasticity likely enables PlzA to serve as a c-di-GMP biosensor that in its respective liganded and unliganded states promote vector- and host-adaptation by the Lyme disease spirochete.
Collapse
Affiliation(s)
- Ashley M. Groshong
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
| | - André A. Grassmann
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Melissa A. McLain
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Anthony A. Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Science, UConn Health, Farmington, Connecticut, United States of America
- Department of Immunology, UConn Health, Farmington, Connecticut, United States of America
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
| |
Collapse
|
4
|
Structural Conservation and Diversity of PilZ-Related Domains. J Bacteriol 2020; 202:JB.00664-19. [PMID: 31740493 DOI: 10.1128/jb.00664-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023] Open
Abstract
The widespread bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a variety of processes, including protein secretion, motility, cell development, and biofilm formation. c-di-GMP-dependent responses are often mediated by its binding to the cytoplasmic receptors that contain the PilZ domain. Here, we present comparative structural and sequence analysis of various PilZ-related domains and describe three principal types of them: (i) the canonical PilZ domain, whose structure includes a six-stranded beta-barrel and a C-terminal alpha helix, (ii) an atypical PilZ domain that contains two extra alpha helices and forms stable tetramers, and (iii) divergent PilZ-related domains, which include the eponymous PilZ protein and PilZN (YcgR_N) and PilZNR (YcgR_2) domains. We refine the second c-di-GMP binding motif of PilZ as [D/N]hSXXG and show that the hydrophobic residue h of this motif interacts with a cluster of conserved hydrophobic residues, helping maintain the PilZ domain fold. We describe several novel PilZN-type domains that are fused to the canonical PilZ domains in specific taxa, such as spirochetes, actinobacteria, aquificae, cellulose-degrading clostridia, and deltaproteobacteria. We propose that the evolution of the three major groups of PilZ domains included (i) fusion of pilZ with other genes, which produced Alg44, cellulose synthase, and other multidomain proteins; (ii) insertion of an ∼200-bp fragment, which resulted in the formation of tetramer-forming PilZ proteins; and (iii) tandem duplication of pilZ genes, which led to the formation of PilZ dimers and YcgR-like proteins.IMPORTANCE c-di-GMP is a ubiquitous bacterial second messenger that regulates motility, biofilm formation, and virulence of many bacterial pathogens. The PilZ domain is a widespread c-di-GMP receptor that binds c-di-GMP through its RXXXR and [D/N]hSXXG motifs; some PilZ domains lack these motifs and are unable to bind c-di-GMP. We used structural and sequence analysis to assess the diversity of PilZ-related domains and define their common features. We show that the hydrophobic residue h in the second position of the second motif is highly conserved; it may serve as a readout for c-di-GMP binding. We describe three principal classes of PilZ-related domains, canonical, tetramer-forming, and divergent PilZ domains, and propose the evolutionary pathways that led to the emergence of these PilZ types.
Collapse
|
5
|
Emerging paradigms for PilZ domain-mediated C-di-GMP signaling. Biochem Soc Trans 2019; 47:381-388. [PMID: 30710060 DOI: 10.1042/bst20180543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 11/17/2022]
Abstract
PilZ domain-containing proteins constitute a large family of bacterial signaling proteins. As a widely distributed protein domain for the binding of the second messenger c-di-GMP, the canonical PilZ domain contains a set of motifs that define the binding site for c-di-GMP and an allosteric switch for propagating local conformational changes. Here, we summarize some new insights gathered from recent studies on the commonly occurring single-domain PilZ proteins, YcgR-like proteins and PilZ domain-containing cellulose synthases. The studies collectively illuminate how PilZ domains function as cis- or trans-regulatory domains that enable c-di-GMP to control the activity of its cellular targets. Overall, the review highlights the diverse protein structure, biological function and regulatory mechanism of PilZ domain-containing proteins, as well as the challenge of deciphering the function and mechanism of orphan PilZ proteins.
Collapse
|
6
|
Abstract
Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.
Collapse
|
7
|
Yang F, Tian F, Li X, Fan S, Chen H, Wu M, Yang CH, He C. The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:578-89. [PMID: 24548063 DOI: 10.1094/mpmi-12-13-0371-r] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Degenerate GGDEF and EAL domain proteins represent major types of cyclic diguanylic acid (c-di-GMP) receptors in pathogenic bacteria. Here, we characterized a FimX-like protein (Filp) which possesses both GGDEF and EAL domains in Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice. Both in silico analysis and enzyme assays indicated that the GGDEF and EAL domains of Filp were degenerate and enzymatically inactive. However, Filp bound to c-di-GMP efficiently within the EAL domain, where Q(477), E(653), and F(654) residues were crucial for the binding. Deletion of the filp gene in X. oryzae pv. oryzae resulted in attenuated virulence in rice and reduced type III secretion system (T3SS) gene expression. Complementation analysis with different truncated proteins indicated that REC, PAS, and EAL domains but not the GGDEF domain were required for the full activity of Filp in vivo. In addition, a PilZ-domain protein (PXO_02715) was identified as a Filp interactor by yeast two-hybrid and glutathione-S-transferase pull-down assays. Deletion of the PXO_02715 gene demonstrated changes in bacterial virulence and T3SS gene expression similar to Δfilp. Moreover, both mutants were impaired in their ability to induce hypersensitive response in nonhost plants. Thus, we concluded that Filp was a novel c-di-GMP receptor of X. oryzae pv. oryzae, and its function to regulate bacterial virulence expression might be via the interaction with PXO_02715.
Collapse
|
8
|
Osbourne DO, Soo VWC, Konieczny I, Wood TK. Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity. Bioengineered 2014; 5:264-8. [PMID: 24874800 DOI: 10.4161/bioe.29261] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lon protease is conserved from bacteria to humans and regulates cellular processes by degrading different classes of proteins including antitoxins, transcriptional activators, unfolded proteins, and free ribosomal proteins. Since we found that Lon has several putative cyclic diguanylate (c-di-GMP) binding sites and since Lon binds polyphosphate (polyP) and lipid polysaccharide, we hypothesized that Lon has an affinity for phosphate-based molecules that might regulate its activity. Hence we tested the effect of polyP, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), guanosine tetraphosphate (ppGpp), c-di-GMP, and GMP on the ability of Lon to degrade α-casein. Inhibition of in vitro Lon activity occurred for polyP, cAMP, ppGpp, and c-di-GMP. We also demonstrated by HPLC that Lon is able to bind c-di-GMP. Therefore, four cell signals were found to regulate the activity of Lon protease.
Collapse
Affiliation(s)
- Devon O Osbourne
- Department of Chemical Engineering; Pennsylvania State University; University Park, PA USA
| | - Valerie W C Soo
- Department of Chemical Engineering; Pennsylvania State University; University Park, PA USA
| | - Igor Konieczny
- Department of Molecular and Cellular Biology; Intercollegiate Faculty of Biotechnology; University of Gdansk; Gdansk, Poland
| | - Thomas K Wood
- Department of Chemical Engineering; Pennsylvania State University; University Park, PA USA; Department of Biochemistry and Molecular Biology; Pennsylvania State University; University Park, PA USA
| |
Collapse
|
9
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1268] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
10
|
Ham JH. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. MOLECULAR PLANT PATHOLOGY 2013; 14. [PMID: 23186372 PMCID: PMC6638695 DOI: 10.1111/mpp.12005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.
Collapse
Affiliation(s)
- Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
11
|
Wang YC, Chin KH, Chuah MLC, Liang ZX, Chou SH. Crystallization and preliminary X-ray diffraction studies of Xanthomonas campestris PNPase in the presence of c-di-GMP. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1247-50. [PMID: 23027759 PMCID: PMC3497989 DOI: 10.1107/s1744309112036202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/18/2012] [Indexed: 11/11/2022]
Abstract
Bacterial polynucleotide phosphorylase (PNPase) is a 3'-5' processive exoribonuclease that participates in mRNA turnover and quality control of rRNA precursors in many bacterial species. It also associates with the RNase E scaffold and other components to form a multi-enzyme RNA degradasome machinery that performs a wider regulatory role in degradation, quality control and maturation of mRNA and noncoding RNA. Several crystal structures of bacterial PNPases, as well as some biological activity studies, have been published. However, how the enzymatic activity of PNPase is regulated is less well understood. Recently, Escherichia coli PNPase was found to be a direct c-di-GMP binding target, raising the possibility that c-di-GMP may participate in the regulation of RNA processing. Here, the successful cloning, purification and crystallization of S1-domain-truncated Xanthomonas campestris PNPase (XcPNPaseΔS1) in the presence of c-di-GMP are reported. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 132.76, b = 128.38, c = 133.01 Å, γ = 93.3°, and diffracted to a resolution of 2.00 Å.
Collapse
Affiliation(s)
- Yu-Chuan Wang
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ko-Hsin Chin
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mary Lay-Cheng Chuah
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
12
|
Chin KH, Kuo WT, Yu YJ, Liao YT, Yang MT, Chou SH. Structural polymorphism of c-di-GMP bound to an EAL domain and in complex with a type II PilZ-domain protein. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1380-92. [PMID: 22993092 DOI: 10.1107/s0907444912030594] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/04/2012] [Indexed: 12/21/2022]
Abstract
Cyclic di-GMP (c-di-GMP) is a novel secondary-messenger molecule that is involved in regulating a plethora of important bacterial activities through binding to an unprecedented array of effectors. Proteins with a canonical PilZ domain that bind c-di-GMP play crucial roles in regulating flagellum-based motility. In contrast, noncanonical type II PilZ domains that do not effectively bind c-di-GMP regulate twitching motility, which is dependent on type IV pili (T4P). Recent data indicate that T4P biogenesis is initiated via the interaction of a noncanonical type II PilZ protein with the GGDEF/EAL-domain protein FimX and the pilus motor protein PilB at high c-di-GMP concentrations. However, the molecular details of such interactions remain to be elucidated. In this manuscript, the first hetero-complex crystal structure between a type II PilZ protein and the EAL domain of the FimX protein (FimX(EAL)) from Xanthomonas campestris pv. campestris (Xcc) in the presence of c-di-GMP is reported. This work reveals two novel conformations of monomeric c-di-GMP in the XccFimX(EAL)-c-di-GMP and XccFimX(EAL)-c-di-GMP-XccPilZ complexes, as well as a unique interaction mode of a type II PilZ domain with FimX(EAL). These findings indicate that c-di-GMP is sufficiently flexible to adjust its conformation to match the corresponding recognition motifs of different cognate effectors. Together, these results represent a first step towards an understanding of how T4P biogenesis is controlled by c-di-GMP at the molecular level and also of the ability of c-di-GMP to bind to a wide variety of effectors.
Collapse
Affiliation(s)
- Ko-Hsin Chin
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Type IV pili (T4P) are polar surface structures that play important roles in bacterial motility, biofilm formation, and pathogenicity. The protein FimX and its orthologs are known to mediate T4P formation in the human pathogen Pseudomonas aeruginosa and some other bacterial species. It was reported recently that FimX(XAC2398) from Xanthomonas axonopodis pv. citri interacts with PilZ(XAC1133) directly through the nonenzymatic EAL domain of FimX(XAC2398). Here we present experimental data to reveal that the strong interaction between FimX(XAC2398) and PilZ(XAC1133) is not conserved in P. aeruginosa and likely other Pseudomonas species. In vitro and in vivo binding experiments showed that the interaction between FimX and PilZ in P. aeruginosa is below the measurable limit. Surface plasmon resonance assays further confirmed that the interaction between the P. aeruginosa proteins is at least more than 3 orders of magnitude weaker than that between the X. axonopodis pv. citri pair. The N-terminal lobe region of FimX(XAC2398) was identified as the binding surface for PilZ(XAC1133) by amide hydrogen-deuterium exchange and site-directed mutagenesis studies. Lack of several key residues in the N-terminal lobe region of the EAL domain of FimX is likely to account for the greatly reduced binding affinity between FimX and PilZ in P. aeruginosa. All together, the results suggest that the interaction between PilZ and FimX in Xanthomonas species is not conserved in P. aeruginosa due to the evolutionary divergence among the FimX orthologs. The precise roles of FimX and PilZ in bacterial motility and T4P biogenesis are likely to vary among bacterial species.
Collapse
|
14
|
Ryan RP, McCarthy Y, Kiely PA, O'Connor R, Farah CS, Armitage JP, Dow JM. Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris. Mol Microbiol 2012; 86:557-67. [PMID: 22924852 DOI: 10.1111/mmi.12000] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain 'adaptor' protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.
Collapse
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Su YC, Tu ZL, Yang CY, Chin KH, Chuah MLC, Liang ZX, Chou SH. Crystallization studies of the murine c-di-GMP sensor protein STING. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:906-10. [PMID: 22869119 PMCID: PMC3412770 DOI: 10.1107/s1744309112024372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/28/2012] [Indexed: 11/10/2022]
Abstract
The innate immune response is the first defence system against pathogenic microorganisms, and cytosolic detection of pathogen-derived DNA is believed to be one of the major mechanisms of interferon production. Recently, the mammalian ER membrane protein STING (stimulator of IFN genes; also known as MITA, ERIS, MPYS and TMEM173) has been found to be the master regulator linking the detection of cytosolic DNA to TANK-binding kinase 1 (TBK1) and its downstream transcription factor IFN regulatory factor 3 (IRF3). In addition, STING itself was soon discovered to be a direct sensor of bacterial cyclic dinucleotides such as c-di-GMP or c-di-AMP. However, structural studies of apo STING and its complexes with these cyclic dinucleotides and with other cognate binding proteins are essential in order to fully understand the roles played by STING in these crucial signalling pathways. In this manuscript, the successful crystallization of the C-terminal domain of murine STING (STING-CTD; residues 138-344) is reported. Native and SeMet-labelled crystals were obtained and diffracted to moderate resolutions of 2.39 and 2.2 Å, respectively.
Collapse
Affiliation(s)
- Yi-Che Su
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zhi-Le Tu
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chao-Yu Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ko-Hsin Chin
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mary Lay-Cheng Chuah
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
16
|
Ryan RP, Tolker-Nielsen T, Dow JM. When the PilZ don't work: effectors for cyclic di-GMP action in bacteria. Trends Microbiol 2012; 20:235-42. [PMID: 22444828 DOI: 10.1016/j.tim.2012.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 01/25/2023]
Abstract
The second messenger cyclic di-GMP has emerged as a central regulator of many important bacterial processes including biofilm formation and virulence. Although the pathways of cyclic di-GMP synthesis and degradation have been established, the mechanisms by which this second messenger exerts its action on diverse cellular functions remain relatively poorly understood. Recent studies report considerable advances in identifying different classes of cyclic di-GMP effectors; these include the PilZ protein domain, transcription factors, proteins involved in RNA processing and riboswitches. Here, we review this range of cyclic di-GMP effectors and the biological processes that they govern using examples from several different bacteria.
Collapse
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|
17
|
Liao YT, Chin KH, Kuo WT, Chuah MLC, Liang ZX, Chou SH. Crystallization and preliminary X-ray diffraction characterization of the XccFimX(EAL)-c-di-GMP and XccFimX(EAL)-c-di-GMP-XccPilZ complexes from Xanthomonas campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:301-5. [PMID: 22442228 DOI: 10.1107/s1744309112000590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/06/2012] [Indexed: 01/12/2023]
Abstract
c-di-GMP is a major secondary-messenger molecule in regulation of bacterial pathogenesis. Therefore, the c-di-GMP-mediated signal transduction network is of considerable interest. The PilZ domain was the first c-di-GMP receptor to be predicted and identified. However, every PilZ domain binds c-di-GMP with a different binding affinity. Intriguingly, a noncanonical PilZ domain has recently been found to serve as a mediator to link FimX(EAL) to the PilB or PilT ATPase to control the function of type IV pili (T4P). It is thus essential to determine the structure of the FimX(EAL)-PilZ complex in order to determine how the binding of c-di-GMP to the FimX(EAL) domain induces conformational change of the adjoining noncanonical PilZ domain, which may transmit information to PilB or PilT to control T4P function. Here, the preparation and preliminary X-ray diffraction studies of the XccFimX(EAL)-c-di-GMP and XccFimX(EAL)-c-di-GMP-XccPilZ complexes from Xcc (Xanthomonas campestris pv. campesteris) are reported. Detailed studies of these complexes may allow a more thorough understanding of how c-di-GMP transmits its effects through the degenerate EAL domain and the noncanonical PilZ domain.
Collapse
Affiliation(s)
- Yi-Ting Liao
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|