1
|
Jung S, Jung Y, Sul H, Jung YG, Ham J, Oh D, Lee J, Hyun SH. L-proline supplementation in the freezing medium enhances the viability and quality of bovine blastocysts after slow freezing and thawing. Theriogenology 2025; 240:117399. [PMID: 40153975 DOI: 10.1016/j.theriogenology.2025.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
L-proline (Pro) is a natural amino acid with known antioxidant and cryoprotectant activity. This study aimed to assess the impact of Pro supplementation in freezing medium on blastocyst survival and quality. In vitro fertilization (IVF) was conducted using oocytes collected from Korean cattle, and Day 7 blastocysts were cryopreserved through slow freezing. Optimal post-thaw blastocyst survival was determined by adding various Pro concentrations to the freezing medium. Additionally, the effect of Sucrose (Suc) alone or in conjunction with Pro was evaluated. To assess blastocyst quality, we analyzed reactive oxygen species (ROS) levels, apoptosis, and gene expression in blastocysts that survived 24 h after slow freezing-thawing. The hatching rate at 72 h was significantly higher in the 0.3 M Pro group than that in the 0 M group (p = 0.0466). The hatching rates at 48 and 72 h were significantly higher in the Pro group than in the Suc and Suc + Pro groups (48 h: Suc, p = 0.0037; Suc + Pro, p = 0.0052; 72 h: Suc, p = 0.0024; Suc + Pro, p = 0.0009). ROS levels and the apoptosis index were significantly lower in the Pro group than in the Suc group (p = 0.0099, and 0.0098, respectively). Furthermore, mRNA expression of HSPA1A was significantly lower in the Pro and Suc + Pro groups than in the Suc group (p = 0.0074, and p = 0.01174, respectively). Additionally, GCLC mRNA expression was significantly higher in the Pro group than in the Suc group (p = 0.0308). These findings indicate that Pro supplementation in a slow freezing medium enhances the viability and quality of embryos.
Collapse
Affiliation(s)
- Seungki Jung
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, 28644, Republic of Korea; ET Biotech Co. Ltd., Jangsu, 55609, Republic of Korea
| | - Yeonsub Jung
- ET Biotech Co. Ltd., Jangsu, 55609, Republic of Korea
| | - Hyeonseok Sul
- ET Biotech Co. Ltd., Jangsu, 55609, Republic of Korea
| | - Yeon-Gil Jung
- ET Biotech Co. Ltd., Jangsu, 55609, Republic of Korea
| | - Jaehyung Ham
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, 28644, Republic of Korea; Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, 28644, Republic of Korea; Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea.
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, 28644, Republic of Korea; Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Republic of Korea; Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea; Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Kim TG, Choe YH, Kim SH, Lee SY, Jang M, Yun SH, Kim SJ, Lee SL, Lee WJ. Increased apoptosis in late-developing in vitro fertilized bovine blastocysts decreases successful pregnancy. Anim Biosci 2025; 38:454-465. [PMID: 39810502 PMCID: PMC11917418 DOI: 10.5713/ab.24.0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Pregnancy in cattle after embryo transfer (ET) is influenced by several factors, including embryo quality. Therefore, preparing high-quality embryos with the greatest developmental potential is essential for achieving a successful pregnancy after ET. Meanwhile, blastocysts produced by in vitro fertilization (IVF) procedure have different developmental speed during in vitro culture (IVC) and they exhibited different competence in the establishment of pregnancy. METHODS This study aimed to identify the comparative features of early-, mid-, and late-developing bovine IVF blastocysts, when they first appeared at Day 7, 8, and 9 during IVC, respectively. In addition, the correlations between their molecular features and pregnancy ability were analyzed. RESULTS The results showed no difference in the morphological characteristics, including total cell count and diameter, between the Day 7, 8, and 9 blastocysts. However, the pregnancy rate post-ET was significantly different between the groups at 51.7%, 36.7%, and 17.8% for Day 7, 8, and 9 blastocysts, respectively. During early embryo development, late-developing blastocysts demonstrated a reduced cell count in the inner cell mass and decreased expression of the early embryo developmental genes (Oct4 and Sox2) compared with the early- and mid-developing blastocysts. In addition, the number of apoptotic cells and apoptosis-related gene expression (increased Bax and decreased Bcl2) gradually elevated from the Day 7 to Day 9 blastocysts. However, there was no difference in mitochondrial activity and mitochondria-relevant gene expression (Tfam and Cox1) between the groups. Correlation analysis identified a significantly negative correlation between the pregnancy rate and the blastocysts' degree of apoptosis, indicating that the low pregnancy ability of late-developing blastocysts was mainly caused by increased apoptosis. CONCLUSION This study's results may contribute to the field of animal biotechnology by assisting in establishing an improved strategy for bovine ET with IVF embryos.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Yong-Ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Sung-Ho Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sang-Yup Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Bovivet, Gumi 39133, Korea
| | - Min Jang
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sung-Ho Yun
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Seung-Joon Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
3
|
Gualtieri R, De Gregorio V, Candela A, Travaglione A, Genovese V, Barbato V, Talevi R. In Vitro Culture of Mammalian Embryos: Is There Room for Improvement? Cells 2024; 13:996. [PMID: 38920627 PMCID: PMC11202082 DOI: 10.3390/cells13120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Preimplantation embryo culture, pivotal in assisted reproductive technology (ART), has lagged in innovation compared to embryo selection advancements. This review examines the persisting gap between in vivo and in vitro embryo development, emphasizing the need for improved culture conditions. While in humans this gap is hardly estimated, animal models, particularly bovines, reveal clear disparities in developmental competence, cryotolerance, pregnancy and live birth rates between in vitro-produced (IVP) and in vivo-derived (IVD) embryos. Molecular analyses unveil distinct differences in morphology, metabolism, and genomic stability, underscoring the need for refining culture conditions for better ART outcomes. To this end, a deeper comprehension of oviduct physiology and embryo transport is crucial for grasping embryo-maternal interactions' mechanisms. Research on autocrine and paracrine factors, and extracellular vesicles in embryo-maternal tract interactions, elucidates vital communication networks for successful implantation and pregnancy. In vitro, confinement, and embryo density are key factors to boost embryo development. Advanced dynamic culture systems mimicking fluid mechanical stimulation in the oviduct, through vibration, tilting, and microfluidic methods, and the use of innovative softer substrates, hold promise for optimizing in vitro embryo development.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples ‘’Federico II’’, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.D.G.); (A.C.); (A.T.); (V.G.); (V.B.); (R.T.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Viana Silva M, Valente RS, Annes K, Marsico TV, Oliveira AM, Maiollo BAP, Lopes NJ, Tannura JH, Sudano MJ. Effect of IL-10 and TNF-α on the competence and cryosurvival of in vitro produced Bos indicus embryos. Theriogenology 2024; 215:170-176. [PMID: 38071763 DOI: 10.1016/j.theriogenology.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
In vitro-produced embryos are constantly exposed to stressful conditions that can lead to the activation of the apoptotic pathway. The nuclear Kappa B factor (NF-κB) is an inflammatory mediator that induces the expression of tumor necrosis factor (TNF-α), a pro-inflammatory cytokine, while interleukin-10 (IL-10), an anti-inflammatory cytokine, inhibits NF-κB activity. This study aimed to investigate the effects of IL-10 and TNF-α on the competence and cryosurvival of in vitro-produced bovine embryos. Embryos were produced in vitro using standard protocols, and Grade I blastocysts were vitrified using the Cryotop method. Non-vitrified and vitrified blastocysts were subjected to the TUNEL assay. In Experiment I, on day 6.5 (156 h post-insemination), the embryos were treated with PBS (control), 50 ng/mL of IL-10, or a combination of 25 ng/mL of TNF-α and 50 ng/mL of IL-10. Embryonic development and apoptotic rates were monitored. In Experiment II, the same groups were set up, with the addition of a group treated with 25 ng/mL of TNF-α alone. Grade I blastocysts were vitrified 5 h after treatment, and cryosurvival was monitored at until 48 h post-warming. The apoptosis rate and total cell number were investigated in the vitrified-hatched blastocysts. IL-10 alone did not affect developmental competence or cryosurvival (P > 0.05). The IL-10-treated embryos, when exposed in combination with TNF-α, presented a detrimental effect (P < 0.05) in the embryonic development of non-vitrified embryos. However, vitrified blastocysts had no negative effect (P > 0.05). The TNF-α treatment reduced (P < 0.05) the re-expansion rate at 6 h post-warming and increased (P < 0.05) the apoptosis rate in vitrified hatched blastocysts, whereas no effect (P > 0.05) of the treatments was detected in the hatching rate and total cell number post-warming. In conclusion, TNF-α has a detrimental effect on embryonic developmental competence and cryosurvival by compromising the development of non-vitrified embryos and apoptotic-related events of vitrified blastocysts, whereas IL-10, when in combination with TNF-α, appears to attenuate the detrimental effects of TNF-α.
Collapse
Affiliation(s)
- Mara Viana Silva
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Roniele Santana Valente
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Thamiris Vieira Marsico
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Andressa Minozzo Oliveira
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | | | | | | | - Mateus José Sudano
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Benagiano G, Mancuso S, Guo SW, Di Renzo GC. Events Leading to the Establishment of Pregnancy and Placental Formation: The Need to Fine-Tune the Nomenclature on Pregnancy and Gestation. Int J Mol Sci 2023; 24:15420. [PMID: 37895099 PMCID: PMC10607313 DOI: 10.3390/ijms242015420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Today, there is strong and diversified evidence that in humans at least 50% of early embryos do not proceed beyond the pre-implantation period. This evidence comes from clinical investigations, demography, epidemiology, embryology, immunology, and molecular biology. The purpose of this article is to highlight the steps leading to the establishment of pregnancy and placenta formation. These early events document the existence of a clear distinction between embryonic losses during the first two weeks after conception and those occurring during the subsequent months. This review attempts to highlight the nature of the maternal-embryonic dialogue and the major mechanisms active during the pre-implantation period aimed at "selecting" embryos with the ability to proceed to the formation of the placenta and therefore to the completion of pregnancy. This intense molecular cross-talk between the early embryo and the endometrium starts even before the blastocyst reaches the uterine cavity, substantially initiating and conditioning the process of implantation and the formation of the placenta. Today, several factors involved in this dialogue have been identified, although the best-known and overall, the most important, still remains Chorionic Gonadotrophin, indispensable during the first 8 to 10 weeks after fertilization. In addition, there are other substances acting during the first days following fertilization, the Early Pregnancy Factor, believed to be involved in the suppression of the maternal response, thereby allowing the continued viability of the early embryo. The Pre-Implantation Factor, secreted between 2 and 4 days after fertilization. This linear peptide molecule exhibits a self-protective and antitoxic action, is present in maternal blood as early as 7 days after conception, and is absent in the presence of non-viable embryos. The Embryo-Derived Platelet-activating Factor, produced and released by embryos of all mammalian species studied seems to have a role in the ligand-mediated trophic support of the early embryo. The implantation process is also guided by signals from cells in the decidualized endometrium. Various types of cells are involved, among them epithelial, stromal, and trophoblastic, producing a number of cellular molecules, such as cytokines, chemokines, growth factors, and adhesion molecules. Immune cells are also involved, mainly uterine natural killer cells, macrophages, and T cells. In conclusion, events taking place during the first two weeks after fertilization determine whether pregnancy can proceed and therefore whether placenta's formation can proceed. These events represent the scientific basis for a clear distinction between the first two weeks following fertilization and the rest of gestation. For this reason, we propose that a new nomenclature be adopted specifically separating the two periods. In other words, the period from fertilization and birth should be named "gestation", whereas that from the completion of the process of implantation leading to the formation of the placenta, and birth should be named "pregnancy".
Collapse
Affiliation(s)
- Giuseppe Benagiano
- Faculty of Medicine and Surgery, Sapienza University of Rome, 00185 Rome, Italy;
- Geneva Foundation for Medical Education and Research, 1206 Geneva, Switzerland
| | - Salvatore Mancuso
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Sun-Wei Guo
- Research Institute, Shanghai Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China;
| | - Gian Carlo Di Renzo
- Center for Perinatal and Reproductive Medicine, University of Perugia, 06156 Perugia, Italy
- Department of Obstetrics, Gynecology and Perinatology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
7
|
The effects of temperature variation treatments on embryonic development: a mouse study. Sci Rep 2022; 12:2489. [PMID: 35169175 PMCID: PMC8847426 DOI: 10.1038/s41598-022-06158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Since the development of ART, embryos have been cultured at 37 °C in an attempt to mimic the in vivo conditions and the average body temperature of an adult. However, a gradient of temperatures within the reproductive tract has been demonstrated in humans and several other mammalian species. Therefore, the aim of this study was to evaluate the effects of temperature variation treatments on mouse embryo quality through morphokinetic events, blastocyst morphology, the relative gene expression of Igf2, Bax, Bcl2 and Apaf1 and the metabolomics of individual culture media. Study groups consisted of 2 circadian treatments, T1 with embryos being cultured at 37 °C during the day and 35.5 °C during the night, T2 with 38.5 °C during the day and 37 °C during the night and a control group with constant 37 °C. Our main findings are that the lower-temperature group (T1) showed a consistent negative effect on mouse embryo development with “slow” cleaving embryos, poor-quality blastocysts, a higher expression of the apoptotic gene Apaf1, and a significantly different set of amino acids representing a more stressed metabolism. On the other hand, our higher-temperature group (T2) showed similar results to the control group, with no adverse effects on blastocyst viability.
Collapse
|
8
|
Gutiérrez-Reinoso MA, Aguilera CJ, Navarrete F, Cabezas J, Castro FO, Cabezas I, Sánchez O, García-Herreros M, Rodríguez-Alvarez L. Effects of Extra-Long-Acting Recombinant Bovine FSH (bscrFSH) on Cattle Superovulation. Animals (Basel) 2022; 12:ani12020153. [PMID: 35049777 PMCID: PMC8772581 DOI: 10.3390/ani12020153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last few years, several commercial FSH products have been developed for cattle superovulation (SOV) purposes in Multiple Ovulation and Embryo Transfer (MOET) programs. The SOV response is highly variable among individuals and remains one of the main limiting factors in obtaining a profitable number of transferable embryos. In this study, follicle stimulating hormone (FSH) from different origins was included in two SOV protocols, (a) FSH from purified pig pituitary extract (NIH-FSH-p; two doses/day, 12 h apart, four consecutive days); and (b) extra-long-acting bovine recombinant FSH (bscrFSH; a single dose/day, four consecutive days), to test the effects of bscrFSH on the ovarian response, hormone profile levels, in vivo embryo production and the pluripotency gene expression of the obtained embryos. A total of 68 healthy primiparous red Angus cows (Bos taurus) were randomly distributed into two experimental groups (n = 34 each). Blood sample collection for progesterone (P4) and cortisol (C) level determination was performed together with ultrasonographic assessment for ovarian size, follicles (FL) and corpora lutea (CL) quantification in each SOV protocol (Day 0, 4, 8, and 15). Moreover, FSH profiles were monitorised throughout both protocols (Day 0, 4, 5, 6, 7, 8, 9, 10, and 15). In vivo embryo quantity and quality (total structures, morulae, blastocysts, viable, degenerated and blocked embryos) were recorded in each SOV protocol. Finally, embryo quality in both protocols was assessed by the analysis of the expression level of crucial genes for early embryo development (OCT4, IFNt, CDX2, BCL2, and BAX). P4 and cortisol concentration peaks in both SOV protocols were obtained on Day 15 and Day 8, respectively, which were statistically different compared to the other time-points (p < 0.05). Ovarian dimensions increased from Day 0 to Day 15 irrespective of the SOV protocol considered (p < 0.05). Significant changes in CL number were observed over time till Day 15 irrespective of the SOV protocol applied (p < 0.05), being non- significantly different between SOV protocols within each time-point (p > 0.05). The number of CL was higher on Day 15 in the bscrFSH group compared to the NIH-FSH-p group (p < 0.05). The number of embryonic structures recovered was higher in the bscrFSH group (p = 0.025), probably as a result of a tendency towards a greater number of follicles developed compared to the NIH-FSH-p group. IFNt and BAX were overexpressed in embryos from the bscrFSH group (p < 0.05), with a fold change of 16 and 1.3, respectively. However, no statistical differences were detected regarding the OCT4, CDX2, BCL2, and BCL2/BAX expression ratio (p > 0.05). In conclusion, including bscrFSH in SOV protocols could be an important alternative by reducing the number of applications and offering an improved ovarian response together with better embryo quality and superior performance in embryo production compared to NIH-FSH-p SOV protocols.
Collapse
Affiliation(s)
- Miguel A. Gutiérrez-Reinoso
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (C.J.A.); (F.N.); (J.C.); (F.O.C.)
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador
| | - Constanza J. Aguilera
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (C.J.A.); (F.N.); (J.C.); (F.O.C.)
| | - Felipe Navarrete
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (C.J.A.); (F.N.); (J.C.); (F.O.C.)
| | - Joel Cabezas
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (C.J.A.); (F.N.); (J.C.); (F.O.C.)
| | - Fidel O. Castro
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (C.J.A.); (F.N.); (J.C.); (F.O.C.)
| | - Ignacio Cabezas
- Departamento de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile;
| | - Oliberto Sánchez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepcion 4070386, Chile;
| | - Manuel García-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
- Correspondence: (M.G.-H.); (L.R.-A.); Tel.: +56-42-220-8835 (L.R.-A.); Fax: +351-24-3767 (M.G.-H.) (ext. 330)
| | - Lleretny Rodríguez-Alvarez
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (C.J.A.); (F.N.); (J.C.); (F.O.C.)
- Correspondence: (M.G.-H.); (L.R.-A.); Tel.: +56-42-220-8835 (L.R.-A.); Fax: +351-24-3767 (M.G.-H.) (ext. 330)
| |
Collapse
|
9
|
Saleh AC, Sabry R, Mastromonaco GF, Favetta LA. BPA and BPS affect the expression of anti-Mullerian hormone (AMH) and its receptor during bovine oocyte maturation and early embryo development. Reprod Biol Endocrinol 2021; 19:119. [PMID: 34344364 PMCID: PMC8330045 DOI: 10.1186/s12958-021-00773-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/28/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals, such as Bisphenol A (BPA) and Bisphenol S (BPS), is widespread and has negative implications on embryonic development. Preliminary evidence revealed that in women undergoing IVF treatment, urinary BPA levels were associated with low serum anti-Mullerian hormone, however a definitive relationship between the two has not yet been characterized. METHODS This study aimed to evaluate BPA and BPS effects on in vitro oocyte maturation and early preimplantation embryo development through i) analysis of anti-Mullerian hormone (AMH) and anti-Mullerian hormone receptor II (AMHRII), ii) investigation of developmental parameters, such as cleavage, blastocyst rates and developmental arrest, iii) detection of apoptosis and iv) assessment of possible sex ratio skew. An in vitro bovine model was used as a translational model for human early embryonic development. We first assessed AMH and AMHRII levels after bisphenol exposure during oocyte maturation. Zygotes were also analyzed during cleavage and blastocysts stages. Techniques used include in vitro fertilization, quantitative polymerase chain reaction (qPCR), western blotting, TUNEL and immunofluorescence. RESULTS Our findings show that BPA significantly decreased cleavage (p < 0.001), blastocyst (p < 0.005) and overall developmental rates as well as significantly increased embryonic arrest at the 2-4 cell stage (p < 0.05). Additionally, both BPA and BPS significantly increased DNA fragmentation in 2-4 cells, 8-16 cells and blastocyst embryos (p < 0.05). Furthermore, BPA and BPS alter AMH and AMHRII at the mRNA and protein level in both oocytes and blastocysts. BPA, but not BPS, also significantly skews sex ratios towards female blastocysts (p < 0.05). CONCLUSION This study shows that BPA affects AMH and AMHRII expression during oocyte maturation and that BPS exerts its effects to a greater extent after fertilization and therefore may not be a safer alternative to BPA. Our data lay the foundation for future functional studies, such as receptor kinetics, downstream effectors, and promoter activation/inhibition to prove a functional relationship between bisphenols and the AMH signalling system.
Collapse
Affiliation(s)
- Angela Christina Saleh
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Reem Sabry
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Gabriela Fabiana Mastromonaco
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
- grid.507770.20000 0001 0698 6008Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| | - Laura Alessandra Favetta
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| |
Collapse
|
10
|
Saraf KK, Kumaresan A, Sinha MK, Datta TK. Spermatozoal transcripts associated with oxidative stress and mitochondrial membrane potential differ between high- and low-fertile crossbred bulls. Andrologia 2021; 53:e14029. [PMID: 33665828 DOI: 10.1111/and.14029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/31/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
The presence of various forms of RNAs having roles in fertilisation and early embryonic development is well documented in mammalian spermatozoa. In the present study, using Agilent microarray platform, we compared sperm mRNA expression profiles between high- and low-fertile crossbred bulls with normal semen parameters. Microarray data acquisition and analysis were performed using GeneSpring GX version software, wherein spermatozoa from high-fertile bulls were kept as control while spermatozoa from low-fertile bulls were considered as treatment group. A total of 6,238 transcripts were detected in crossbred bull spermatozoa; 559 transcripts (>1.5-fold) were differentially regulated between high- and low-fertile bulls. Functional annotation has categorised these transcripts into biological process, cellular, and molecular functions. It was observed that transcripts associated with oxidation reduction process (p = .003), mitochondrial membrane potential (p = .03), were significantly down-regulated while transcripts associated with apoptosis (p = .04) were up-regulated in low-fertile spermatozoa. The dysregulated genes were involved in important cellular pathways including oxidative phosphorylation (p = .002), oestrogen signalling (p = .002), Wnt signalling (p = .035), cGMP-PKG signalling (p = .007) and MAPK signalling (p = .032) pathways. Collectively, the present study discovered profound discrepancies in sperm mRNA expression between high- and low-fertile crossbred bulls, with potential possibilities for their use in fertility prediction.
Collapse
Affiliation(s)
- Kaustubh Kishor Saraf
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
11
|
Yu B, van Tol HTA, Stout TAE, Roelen BAJ. Cellular Fragments in the Perivitelline Space Are Not a Predictor of Expanded Blastocyst Quality. Front Cell Dev Biol 2021; 8:616801. [PMID: 33469540 PMCID: PMC7813684 DOI: 10.3389/fcell.2020.616801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
The presence of cellular fragments in the perivitelline space is a commonly used parameter to determine quality before transfer of in vitro produced (IVP) embryos. However, this parameter is difficult to assess after blastocyst expansion. In this study, we used mechanical hatching to confirm the presence of cellular fragments in the perivitelline space of bovine IVP blastocysts. We further looked for associations between possible apoptosis within extruded cells/ cellular fragments and the quality of bovine blastocysts using quantitative RT-PCR and immunofluorescence. Surprisingly, more than 42% of expanded blastocysts had cellular fragments in the perivitelline space; however, more than 37% of extruded cells were TUNEL negative. We observed no significant difference in embryo quality between expanded blastocysts with and without cellular fragments in the perivitelline space. Overall, our data suggest that embryos extrude abnormal cells to maintain their developmental potential. The presence of fragmented cells is not an indicator of embryo quality.
Collapse
Affiliation(s)
- Bo Yu
- Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Helena T A van Tol
- Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tom A E Stout
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bernard A J Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Ramos-Ibeas P, Gimeno I, Cañón-Beltrán K, Gutiérrez-Adán A, Rizos D, Gómez E. Senescence and Apoptosis During in vitro Embryo Development in a Bovine Model. Front Cell Dev Biol 2020; 8:619902. [PMID: 33392207 PMCID: PMC7775420 DOI: 10.3389/fcell.2020.619902] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, infertility affects up to 14% of couples under reproductive age, leading to an exponential rise in the use of assisted reproduction as a route for conceiving a baby. In the same way, thousands of embryos are produced in cattle and other farm animals annually, leading to increased numbers of individuals born. All reproductive manipulations entail deviations of natural phenotypes and genotypes, with in vitro embryo technologies perhaps showing the biggest effects, although these alterations are still emerging. Most of these indications have been provided by animal models, in particular the bovine species, due to its similarities to human early embryo development. Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. Thus, during in vitro culture, a number of stressful conditions affect embryonic quality and viability, inducing subfertility and/or long-term consequences that may reach the offspring. A high proportion of the embryos produced in vitro are arrested at a species-specific stage of development during the first cell divisions. These arrested embryos do not show signs of programmed cell death during early cleavage stages. Instead, defective in vitro produced embryos would enter a permanent cell cycle arrest compatible with cellular senescence, in which they show active metabolism and high reactive oxygen species levels. Later in development, mainly during the morula and blastocyst stages, apoptosis would mediate the elimination of certain cells, accomplishing both a physiological role in to balancing cell proliferation and death, and a pathological role preventing the transmission of damaged cells with an altered genome. The latter would acquire relevant importance in in vitro produced embryos that are submitted to stressful environmental stimuli. In this article, we review the mechanisms mediating apoptosis and senescence during early embryo development, with a focus on in vitro produced bovine embryos. Additionally, we shed light on the protective role of senescence and apoptosis to ensure that unhealthy cells and early embryos do not progress in development, avoiding long-term detrimental effects.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Gijón, Spain
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Gijón, Spain
| |
Collapse
|
13
|
ÖZDEMİR A, KARLI P, AVCI B. Do midkine levels in serum and follicular fluid affect IVF-ICSI outcome? JOURNAL OF HEALTH SCIENCES AND MEDICINE 2020. [DOI: 10.32322/jhsm.735162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Drews B, Landaverde LF, Kühl A, Drews U. Spontaneous embryo resorption in the mouse is triggered by embryonic apoptosis followed by rapid removal via maternal sterile purulent inflammation. BMC DEVELOPMENTAL BIOLOGY 2020; 20:1. [PMID: 31918653 PMCID: PMC6953269 DOI: 10.1186/s12861-019-0201-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/16/2019] [Indexed: 01/14/2023]
Abstract
Background In normal mammalian development a high percentage of implantations is lost by spontaneous resorption. This is a major problem in assisted reproduction and blastocyst transfer. Which embryo will be resorbed is unpredictable. Resorption is very fast, so that with conventional methods only final haemorrhagic stages are encountered. Here we describe the histology and immunohistochemistry of 23 spontaneous embryo resorptions between days 7 and 13 of murine development, which were identified by high-resolution ultrasound (US) in a previous study. Results In the early resorptions detected at day 7, the embryo proper was replaced by maternal haemorrhage and a suppurate focus of maternal neutrophils. In the decidua maternal macrophages transformed to foam cells and formed a second focus of tissue dissolution. In the late resorptions detected at day 9, the embryo underwent apoptosis without involvement of maternal cells. The apoptotic embryonic cells expressed caspase 3 and embryonic blood cells developed a macrophage like phenotype. Subsequently, the wall of the embryonic vesicle ruptured and the apoptotic embryo was aborted into the uterine lumen. Abortion was initiated by degeneration of the embryonic lacunar trophoblast and dissolution of the maternal decidua capsularis via sterile inflammation and accompanied by maternal haemorrhage, invasion of the apoptotic embryo by maternal neutrophils, and contraction rings of the uterine muscle layers. Conclusions We conclude that spontaneous resorption starts with endogenous apoptosis of the embryo without maternal contribution. After break down of the foetal-maternal border, the apoptotic embryo is invaded by maternal neutrophils, aborted into the uterine lumen, and rapidly resorbed. We assume that the innate maternal unspecific inflammation is elicited by disintegrating apoptotic embryonic cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Barbara Drews
- Group Animal Physiology, Institute of Agricultural Sciences, Departement Environmental System Science, Swiss Federal Institue of Technology (ETH),, Zurich, Switzerland.
| | - Luis Flores Landaverde
- Group Reproduction Management, Institute of Zoo- and Wildlife Medicine (IZW), Berlin, Germany
| | - Anja Kühl
- Core Unit Immunopathology (ipath), Charité, Berlin, Germany
| | - Ulrich Drews
- Institute of Anatomy, Prof. em., University of Tubingen, Tubingen, Germany
| |
Collapse
|
15
|
Madeja ZE, Warzych E, Pawlak P, Lechniak D. Inhibitor mediated WNT and MEK/ERK signalling affects apoptosis and the expression of quality related genes in bovine in vitro obtained blastocysts. Biochem Biophys Res Commun 2019; 510:403-408. [PMID: 30711254 DOI: 10.1016/j.bbrc.2019.01.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
Culture conditions determine embryo quality, which may be affected on many levels (timing of development, blastomere count, transcripts, metabolite content, apoptosis). Molecular interactions of signalling pathways like MEK/ERK and WNT/β-catenin are critical for cell-to-cell communication and cellular differentiation. Both pathways are important regulators of apoptosis. We have aimed to verify the prolonged effect of MEK/ERK silencing and WNT activation by chemical inhibitors (2i or 3i systems) on bovine IVP embryos. Apoptotic index, total cell count and transcription of embryo quality markers were evaluated. A higher rate of apoptosis was observed in 2i blastocysts, but was not accompanied by changes in transcript content of genes controlling apoptosis (BAX, BCL2, BAK, BAX/BCL2 ratio). Therefore, alternative pathways of apoptotic activation cannot be ruled out. The expression of genes related to embryo quality (HSPA1A, SLC2A1) was not affected. GJA1 transcripts were significantly higher in 3i blastocysts, what indicates a stimulatory effect of the applied inhibitors on cell-to-cell interactions. The lowest mRNA level of the IFNT2 gene was found in 2i embryos. A variation in the SDHA gene transcript was observed (with the highest content in the 3i blastocysts), what may suggest their reduced quality. It may be concluded that the modifications of culture conditions (activation of the WNT and silencing of the MEK/ERK signalling) might alter pathways crucial for embryo development without causing embryonic death.
Collapse
Affiliation(s)
- Zofia E Madeja
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| |
Collapse
|
16
|
Effects of BPA on expression of apoptotic genes and migration of ovine trophectoderm (oTr1) cells during the peri-implantation period of pregnancy. Reprod Toxicol 2019; 83:73-79. [DOI: 10.1016/j.reprotox.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
|
17
|
Nuttinck F, Jouneau A, Charpigny G, Hue I, Richard C, Adenot P, Ruffini S, Laffont L, Chebrout M, Duranthon V, Guienne BML. Prosurvival effect of cumulus prostaglandin G/H synthase 2/prostaglandin2 signaling on bovine blastocyst: impact on in vivo posthatching development. Biol Reprod 2017; 96:531-541. [PMID: 28339853 PMCID: PMC5819843 DOI: 10.1095/biolreprod.116.145367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
Apoptotic activity is a common physiological process which culminates at the blastocyst stage in the preimplantation embryo of many mammals. The degree of embryonic cell death can be influenced by the oocyte microenvironment. However, the prognostic significance of the incidence of apoptosis remains undefined. Prostaglandin E2 (PGE2) derived from prostaglandin G/H synthase-2 (PTGS2) activity is a well-known prosurvival factor that is mainly studied in oncology. PGE2 is the predominant PTGS2-derived prostaglandin present in the oocyte microenvironment during the periconceptional period. Using an in vitro model of bovine embryo production followed by transfer and collection procedures, we investigated the impact of periconceptional PGE2 on the occurrence of spontaneous apoptosis in embryos and on subsequent in vivo posthatching development. Different periconceptional PGE2 environments were obtained using NS-398, a specific inhibitor of PTGS2 activity, and exogenous PGE2. We assessed the level of embryonic cell death in blastocysts at day 8 postfertilization by counting total cell numbers, by the immunohistochemical staining of active caspase-3, and by quantifying terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling signals and apoptosis regulator (BCL-2/BAX) mRNA expression. Morphometric parameters were used to estimate the developmental stage of the embryonic disk and the extent of trophoblast elongation on day 15 conceptuses. Our findings indicate that periconceptional PGE2 signaling durably impacts oocytes, conferring increased resistance to spontaneous apoptosis in blastocysts and promoting embryonic disk development and the elongation process during preimplantation development.
Collapse
Affiliation(s)
| | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | - Pierre Adenot
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Sylvie Ruffini
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Ludivine Laffont
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | |
Collapse
|
18
|
Non-apoptotic cell death in animal development. Cell Death Differ 2017; 24:1326-1336. [PMID: 28211869 DOI: 10.1038/cdd.2017.20] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.
Collapse
|
19
|
Effect of potential role of p53 on embryo development arrest induced by H 2O 2 in mouse. In Vitro Cell Dev Biol Anim 2017; 53:344-353. [PMID: 28127704 DOI: 10.1007/s11626-016-0122-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
During mammalian embryo development in vitro, mechanism of embryonic development arrest caused by oxidative stress has not been clear so far. The tumor suppressor protein p53 controls cell cycle and programmed cell death by regulating relevant signal pathway. Recent researches revealed that the concentration and distribution of p53 are closely related with reactive oxygen species (ROS). The main objective of this experiment was to explore the role of p53 on embryonic development arrest caused by oxidative stress. Results showed that embryo arrest at two-four-cell stage was significantly increased in the presence of 50 μM H2O2 (39.01 ± 2.74 vs. 77.20 ± 5.34%, p < 0.05). Supplementation of N-acetyl-L-cysteine (NAC) obviously reduced the ratio of development arrest (39.01 ± 2.74 vs. 71.18 ± 5.34%, p < 0.05), which was accompanied by an increase in ROS level, and H2O2 treatment sharply increased messenger RNA (mRNA) expression and protein levels of p53 and p53-ser15. Further increased transcription of GADD45a and p21, a downstream of p53, has an especially significant effect on the mRNA expression of GADD45a. However, expressions of cdc2 were reduced by H2O2. In addition, using Pifithrin-α (PFT-α), the suppresser of p53, the result showed that GADD45a and p21 were significantly downregulated, but the cell cycle gene cdc2 was significantly upregulated, while the protein level of p53 and p53-ser15 was significantly decreased. Taken together, these results demonstrate that ROS could activate p53 and regulate p53 target genes to influence early embryo development in in vitro culture.
Collapse
|
20
|
Sepulveda-Rincon LP, Dube D, Adenot P, Laffont L, Ruffini S, Gall L, Campbell BK, Duranthon V, Beaujean N, Maalouf WE. Random Allocation of Blastomere Descendants to the Trophectoderm and ICM of the Bovine Blastocyst. Biol Reprod 2016; 95:123. [PMID: 27760750 PMCID: PMC5333943 DOI: 10.1095/biolreprod.116.141200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 10/17/2016] [Indexed: 01/27/2023] Open
Abstract
The first lineage specification during mammalian embryo development can be visually distinguished at the blastocyst stage. Two cell lineages are observed on the embryonic-abembryonic axis of the blastocyst: the inner cell mass and the trophectoderm. The timing and mechanisms driving this process are still not fully understood. In mouse embryos, cells seem prepatterned to become certain cell lineage because the first cleavage plane has been related with further embryonic-abembryonic axis at the blastocyst stage. Nevertheless, this possibility has been very debatable. Our objective was to determine whether this would be the case in another mammalian species, the bovine. To achieve this, cells of in vitro produced bovine embryos were traced from the 2-cell stage to the blastocyst stage. Blastocysts were then classified according to the allocation of the labeled cells in the embryonic and/or abembryonic part of the blastocyst. Surprisingly, we found that there is a significant percentage of the embryos (∼60%) with labeled and nonlabeled cells randomly distributed and intermingled. Using time-lapse microscopy, we have identified the emergence of this random pattern at the third to fourth cell cycle, when cells started to intermingle. Even though no differences were found on morphokinetics among different embryos, these random blastocysts and those with labeled cells separated by the embryonic-abembryonic axis (deviant pattern) are significantly bigger; moreover deviant embryos have a significantly higher number of cells. Interestingly, we observed that daughter cells allocation at the blastocyst stage is not affected by biopsies performed at an earlier stage.
Collapse
Affiliation(s)
- Lessly P Sepulveda-Rincon
- Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Delphine Dube
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Pierre Adenot
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Ludivine Laffont
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Sylvie Ruffini
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Laurence Gall
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Bruce K Campbell
- Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
- Univ Lyon, Université de Lyon 1, Inserm, Bron, France
| | - Walid E Maalouf
- Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
21
|
Edwards NA, Watson AJ, Betts DH. P66Shc, a key regulator of metabolism and mitochondrial ROS production, is dysregulated by mouse embryo culture. Mol Hum Reprod 2016; 22:634-47. [PMID: 27385725 DOI: 10.1093/molehr/gaw043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/17/2016] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Do high oxygen tension and high glucose concentrations dysregulate p66Shc (Src homologous-collagen homologue adaptor protein) expression during mouse preimplantation embryo culture? SUMMARY ANSWER Compared with mouse blastocysts in vivo, P66Shc mRNA and protein levels in blastocysts maintained in vitro increased under high oxygen tension (21%), but not high glucose concentration. WHAT IS KNOWN ALREADY Growth in culture adversely impacts preimplantation embryo development and alters the expression levels of the oxidative stress adaptor protein p66Shc, but it is not known if p66Shc expression is linked to metabolic changes observed in cultured embryos. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We used a standard wild-type CD1 mouse model of preimplantation embryo development and embryo culture with different atmospheric oxygen tension and glucose media concentrations. Changes to p66Shc expression in mouse blastocysts were measured using quantitative RT-PCR, immunoblotting and immunofluorescence followed by confocal microscopy. Changes to oxidative phosphorylation metabolism were measured by total ATP content and superoxide production. Statistical analyses were performed on a minimum of three experimental replicates using Students' t-test or one-way ANOVA. MAIN RESULTS AND THE ROLE OF CHANCE P66Shc is basally expressed during in vivo mouse preimplantation development. Within in vivo blastocysts, p66Shc is primarily localized to the cell periphery of the trophectoderm. Blastocysts cultured under atmospheric oxygen levels have significantly increased p66Shc mRNA transcript and protein abundances compared to in vivo controls (P < 0.05). However, the ratio of phosphorylated serine 36 (S36) p66Shc to total p66Shc decreased in culture regardless of O2 atmosphere used, supporting a shift in the mitochondrial fraction of p66Shc. Total p66Shc localized to the cell periphery of the blastocyst trophectoderm and phosphorylated S36 p66Shc displayed nuclear and cytoplasmic immunoreactivity, suggesting distinct compartmentalization of phosphorylated S36 p66Shc and the remaining p66Shc fraction. Glucose concentration in the culture medium did not significantly change p66Shc mRNA or protein abundance or its localization. Blastocysts cultured under low or high oxygen conditions exhibited significantly decreased cellular ATP and increased superoxide production compared to in vivo derived embryos (P < 0.05). LIMITATIONS/REASONS FOR CAUTION This study associates embryonic p66Shc expression levels with metabolic abnormalities but does not directly implicate p66Shc in metabolic changes. Additionally, we used one formulation of embryo culture medium that differs from that used in other mouse model studies and from clinical media used to support human blastocyst development. Our findings may, therefore, be limited to this media, or may be a species-specific phenomenon. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to show distinct immunolocalization of p66Shc to the trophectoderm of mouse blastocysts and that its levels are abnormally increased in embryos exposed to culture conditions. Changes in p66Shc expression and/or localization could possibly serve as a molecular marker of embryo viability for clinical applications. The outcomes provide insight into the potential metabolic role of p66Shc. Metabolic anomalies are induced even under the current optimal culture conditions, which could negatively impact trophectoderm and placental development. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS Canadian Institutes of Health Research (CIHR) operating funds, Ontario Graduate Scholarship (OGS). There are no competing interests.
Collapse
Affiliation(s)
- Nicole A Edwards
- Departments of Physiology and Pharmacology, The University of Western Ontario, Canada
| | - Andrew J Watson
- Departments of Physiology and Pharmacology, The University of Western Ontario, Canada Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Ontario, Canada N6A 5C1
| | - Dean H Betts
- Departments of Physiology and Pharmacology, The University of Western Ontario, Canada Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Ontario, Canada N6A 5C1
| |
Collapse
|
22
|
Biocompatibility assessment of fibrous nanomaterials in mammalian embryos. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1151-9. [DOI: 10.1016/j.nano.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/04/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
|
23
|
Pang YW, Sun YQ, Sun WJ, Du WH, Hao HS, Zhao SJ, Zhu HB. Melatonin inhibits paraquat-induced cell death in bovine preimplantation embryos. J Pineal Res 2016; 60:155-66. [PMID: 26607207 DOI: 10.1111/jpi.12297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Preimplantation embryos are sensitive to oxidative stress-induced damage that can be caused by reactive oxygen species (ROS) originating from normal embryonic metabolism and/or the external surroundings. Paraquat (PQ), a commonly used pesticide and potent ROS generator, can induce embryotoxicity. The present study aimed to investigate the effects of melatonin on PQ-induced damage during embryonic development in bovine preimplantation embryos. PQ treatment significantly reduced the ability of bovine embryos to develop to the blastocyst stage, and the addition of melatonin markedly reversed the developmental failure caused by PQ (20.9% versus 14.3%). Apoptotic assay showed that melatonin pretreatment did not change the total cell number in blastocysts, but the incidence of apoptotic nuclei and the release of cytochrome c were significantly decreased. Using real-time quantitative polymerase chain reaction analysis, we found that melatonin pre-incubation significantly altered the expression levels of genes associated with redox signaling, particularly by attenuating the transcript level of Txnip and reinforcing the expression of Trx. Furthermore, melatonin pretreatment significantly reduced the expression of the pro-apoptotic caspase-3 and Bax, while the expression of the anti-apoptotic Bcl-2 and XIAP was unaffected. Western blot analysis showed that melatonin protected bovine embryos from PQ-induced damage in a p38-dependent manner, but extracellular signal-regulated kinase (ERK) and c-JUN N-terminal kinase (JNK) did not appear to be involved. Together, these results identify an underlying mechanism by which melatonin enhances the developmental potential of bovine preimplantation embryos under oxidative stress conditions.
Collapse
Affiliation(s)
- Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ye-Qing Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Jun Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Ghys E, Dallemagne M, De Troy D, Sauvegarde C, Errachid A, Donnay I. Female bovine blastocysts are more prone to apoptosis than male ones. Theriogenology 2016; 85:591-600. [DOI: 10.1016/j.theriogenology.2015.09.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 01/28/2023]
|
25
|
Zullo G, Albero G, Neglia G, De Canditiis C, Bifulco G, Campanile G, Gasparrini B. L-ergothioneine supplementation during culture improves quality of bovine in vitro–produced embryos. Theriogenology 2016; 85:688-97. [DOI: 10.1016/j.theriogenology.2015.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/16/2015] [Accepted: 10/03/2015] [Indexed: 12/01/2022]
|
26
|
Schulte K, Ehmcke J, Schlatt S, Boiani M, Nordhoff V. Lower total cell numbers in mouse preimplantation embryos cultured in human assisted reproductive technique (ART) media are not induced by apoptosis. Theriogenology 2015; 84:1620-30. [DOI: 10.1016/j.theriogenology.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022]
|
27
|
Barbato O, Chiaradia E, Barile VL, Pierri F, de Sousa NM, Terracina L, Canali C, Avellini L. Investigation into homocysteine [corrected], vitamin E and malondialdehyde as indicators of successful artificial insemination in synchronized buffalo cows (Bubalus bubalis). Res Vet Sci 2015; 104:100-5. [PMID: 26850546 DOI: 10.1016/j.rvsc.2015.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/17/2015] [Accepted: 11/29/2015] [Indexed: 01/11/2023]
Abstract
The aim of this study was to describe modifications in plasma homocysteine (Hcy), vitamin E (VitE) and malondialdehyde (MDA) concentrations in the first 56 days after artificial insemination (AI) in buffalo. Thirty-five buffalo cows were divided, ex post, into three groups on the basis of pregnancy diagnosis: pregnant, not pregnant, with embryonic mortality. Pregnancy was diagnosed by ultrasonography and plasma concentrations of pregnancy-associated glycoproteins (PAGs). Our results showed that, in pregnant buffaloes, included those with embryonic mortality, MDA increased progressively while VitE decreased. In non-pregnant buffaloes, MDA and Vit E were unchanged. Hcy concentrations also remained unchanged within each group throughout the study period, but were lower in non-pregnant buffaloes than in the pregnant ones and in those with embryonic mortality. In conclusion, present data suggest that successful pregnancy in buffalo cows might be linked to Hcy metabolism and oxidative stress involvement.
Collapse
Affiliation(s)
- Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Vittoria Lucia Barile
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Animal Production Research Centre (CRA-PCM), Via Salaria, 31, 00015 Monterotondo, Rome, Italy
| | - Francesca Pierri
- Department of Economics, Statistical Section University of Perugia, Via A. Pascoli 20, 06123 Perugia, Italy
| | - Noelita Melo de Sousa
- Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Animal Endocrinology and Reproduction, Faculty of Veterinary Medicine, University of Liege, B-4000 Liege, Belgium
| | - Luigi Terracina
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Claudio Canali
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Luca Avellini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy.
| |
Collapse
|
28
|
Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, Guengoer T, Graf A, Krebs S, Blum H, Zakhartchenko V, Wolf E, Cremer T. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2015; 5:555-89. [PMID: 25482066 PMCID: PMC4615760 DOI: 10.4161/19491034.2014.979712] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.
Collapse
Key Words
- 3D-CLSM, 3-dimensional confocal laser scanning microscopy
- 3D-SIM, 3-dimensional structured illumination microscopy
- B23, nucleophosmin B23
- BTA, Bos taurus
- CDC, chromatin domain cluster
- CT, chromosome territory
- EM, electron microscopy
- ENC, embryonic nuclei with conventional nuclear architecture
- ENP, embryonic nuclei with peripheral CT distribution
- H3K4me3
- H3K4me3, histone H3 with tri-methylated lysine 4
- H3K9me3
- H3K9me3, histone H3 with tri-methylated lysine 9
- H3S10p, histone H3 with phosphorylated serine 10
- IC, interchromatin compartment
- IVF, in vitro fertilization
- MCB, major chromatin body
- PR, perichromatin region
- RNA polymerase II
- RNA polymerase II-S2p, RNA polymerase II with phosphorylated serine 2 of its CTD domain
- RNA polymerase II-S5p, RNA polymerase II with phosphorylated serine 5 of its CTD domain
- SC-35, splicing factor SC-35
- SCNT, somatic cell nuclear transfer.
- bovine preimplantation development
- chromatin domain
- chromosome territory
- embryonic genome activation
- in vitro fertilization (IVF)
- interchromatin compartment
- major EGA, major embryonic genome activation
- somatic cell nuclear transfer (SCNT)
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics ; Biocenter; LMU Munich ; Munich , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mori M, Hayashi T, Isozaki Y, Takenouchi N, Sakatani M. Heat shock decreases the embryonic quality of frozen-thawed bovine blastocysts produced in vitro. J Reprod Dev 2015; 61:423-9. [PMID: 26096768 PMCID: PMC4623148 DOI: 10.1262/jrd.2015-003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/23/2015] [Indexed: 01/30/2023] Open
Abstract
In this study, the effect of heat shock on frozen-thawed blastocysts was evaluated using in vitro-produced (IVP) bovine embryos. In experiment 1, the effects of 6 h of heat shock at 41.0 C on fresh blastocysts were evaluated. HSPA1A expression as a reflection of stress was increased by heat shock (P < 0.05), but the expressions of the quality markers IFNT and POU5F1 were not affected. In experiment 2, frozen-thawed blastocysts were incubated at 38.5 C for 6 h (cryo-con) or exposed to heat shock at 41.0 C for 6 h (cryo-HS). Then, blastocysts were cultured at 38.5 C until 48 h after thawing (both conditions). Cryo-HS blastocysts exhibited a decreased recovery rate: HSPA1A expression was dramatically increased compared with that in fresh or cryo-con blastocysts at 6 h, and IFNT expression was decreased compared with that in cryo-con blastocysts at 6 h (both P < 0.05). Cryo-con blastocysts at 6 h also exhibited higher HSPA1A expression than fresh blastocysts (P < 0.05). At 48 h after thawing, the number of hatched blastocysts and blastocyst diameter were lower in cryo-HS blastocysts (P < 0.05). Cryo-con blastocysts showed lower POU5F1 levels at 48 h than fresh, cryo-con or cryo-HS blastocysts at 6 h (P < 0.05), but their POU5F1 levels were not different from those of cryo-HS blastocysts at 48 h. These results indicated that application of heat shock to frozen-thawed blastocysts was highly damaging. The increase in damage by the interaction of freezing-thawing and heat shock might be one reason for the low conception rate in frozen-thawed embryo transfer in summer.
Collapse
Affiliation(s)
- Miyuki Mori
- Fukuoka Agriculture and Forestry Research Center, Fukuoka 818-8549, Japan
| | | | | | | | | |
Collapse
|
30
|
Gómez E, Correia-Álvarez E, Caamaño JN, Díez C, Carrocera S, Peynot N, Martín D, Giraud-Delville C, Duranthon V, Sandra O, Muñoz M. Hepatoma-derived growth factor: from the bovine uterus to the in vitro embryo culture. Reproduction 2014; 148:353-65. [DOI: 10.1530/rep-14-0304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early in cow embryo development, hepatoma-derived growth factor (HDGF) is detectable in uterine fluid. The origin of HDGF in maternal tissues is unknown, as is the effect of the induction on developing embryos. Herein, we analyze HDGF expression in day 8 endometrium exposed to embryos, as well as the effects of recombinant HDGF (rHDGF) on embryo growth. Exposure to embryos did not alter endometrial levels of HDGF mRNA or protein. HDGF protein localized to cell nuclei in the luminal epithelium and superficial glands and to the apical cytoplasm in deep glands. After uterine passage, levels of embryonic HDGF mRNA decreased and HDGF protein was detected only in the trophectoderm. In fetal fibroblast cultures, addition of rHDGF promoted cell proliferation. In experiments with group cultures of morulae in protein-free medium containing polyvinyl alcohol, adding rHDGF inhibited blastocyst development and did not affect cell counts when the morulae were early (day 5), whereas it enhanced blastocyst development and increased cell counts when the morulae were compact (day 6). In cultures of individual day 6 morulae, adding rHDGF promoted blastocyst development and increased cell counts. Our experiments with rHDGF indicate that the growth factor stimulates embryonic development and cell proliferation. HDGF is synthesized similarly by the endometrium and embryo, and it may exert embryotropic effects by autocrine and/or paracrine mechanisms.
Collapse
|
31
|
Insulin-like growth factor 2: A modulator of anti-apoptosis related genes (HSP70, BCL2-L1) in bovine preimplantation embryos. Theriogenology 2014; 82:942-50. [DOI: 10.1016/j.theriogenology.2014.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 01/09/2023]
|
32
|
Jeong JK, Kang MH, Gurunathan S, Cho SG, Park C, Seo HG, Kim JH. Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR). BMC Res Notes 2014; 7:675. [PMID: 25256308 PMCID: PMC4181407 DOI: 10.1186/1756-0500-7-675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 09/05/2014] [Indexed: 01/26/2023] Open
Abstract
Background Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied. Results mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively. Conclusions These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-675) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin-Hoi Kim
- Department of Animal Biotechnology, KonKuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
33
|
Meuter A, Rogmann LM, Winterhoff BJ, Tchkonia T, Kirkland JL, Morbeck DE. Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. J Assist Reprod Genet 2014; 31:1259-67. [PMID: 25106938 DOI: 10.1007/s10815-014-0299-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We aimed to determine whether embryo culture induces markers of cellular senescence and whether these effects were dependent on culture conditions. METHODS Murine blastocysts were derived in vitro and in vivo and assessed for 2 primary markers of senescence: senescence-associated β-galactosidase (SA-β-gal) and phosphorylated H2A.X (γ-H2A.X), the latter being a mark of DNA oxidative damage. Expression of senescence-associated genes p21, p16, and interleukin 6 (IL6) were also assessed. RESULTS Compared with in vivo-derived blastocysts, in vitro embryos had high levels of SA-β-gal, nuclear γ-H2A.X, and p21 mRNA expression, indicating that a senescence-like phenotype is induced by in vitro culture. To determine the role of culture conditions, we studied the effect of oxygen (5 % vs 20 %) and protein supplementation on senescence markers. Blastocysts in reduced oxygen (5 %) had low levels of both SA-β-gal and γ-H2A.X compared with blastocysts cultured in ambient oxygen. Senescence markers also were reduced in the presence of protein, suggesting that antioxidant properties of protein reduce oxidative DNA damage in vitro. CONCLUSION Elevated SA-β-gal, γ-H2A.X, and p21 suggest that in vitro stress can induce a senescence-like phenotype. Reduced oxygen during embryo culture minimizes these effects, providing further evidence for potential adverse effects of culturing embryos at ambient oxygen concentrations.
Collapse
Affiliation(s)
- Alexandra Meuter
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, 200St SW, Rochester, MN, 55905, USA
| | | | | | | | | | | |
Collapse
|
34
|
van Leeuwen J, Berg DK, Smith CS, Wells DN, Pfeffer PL. Specific epiblast loss and hypoblast impairment in cattle embryos sensitized to survival signalling by ubiquitous overexpression of the proapoptotic gene BAD. PLoS One 2014; 9:e96843. [PMID: 24806443 PMCID: PMC4013130 DOI: 10.1371/journal.pone.0096843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 04/11/2014] [Indexed: 01/16/2023] Open
Abstract
Early embryonic lethality is common, particularly in dairy cattle. We made cattle embryos more sensitive to environmental stressors by raising the threshold of embryo survival signaling required to overcome the deleterious effects of overexpressing the proapoptotic protein BAD. Two primary fibroblast cell lines expressing BAD and exhibiting increased sensitivity to stress-induced apoptosis were used to generate transgenic Day13/14 BAD embryos. Transgenic embryos were normal in terms of retrieval rates, average embryo length or expression levels of the trophectoderm marker ASCL2. However both lines of BAD-tg embryos lost the embryonic disc and thus the entire epiblast lineage at significantly greater frequencies than either co-transferrred IVP controls or LacZ-tg embryos. Embryos without epiblast still contained the second ICM-derived lineage, the hypopblast, albeit frequently in an impaired state, as shown by reduced expression of the hypoblast markers GATA4 and FIBRONECTIN. This indicates a gradient of sensitivity (epiblast > hypoblast > TE) to BAD overexpression. We postulate that the greater sensitivity of specifically the epiblast lineage that we have seen in our transgenic model, reflects an inherent greater susceptibility of this lineage to environmental stress and may underlie the epiblast-specific death seen in phantom pregnancies.
Collapse
Affiliation(s)
- Jessica van Leeuwen
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- Department of Biological Sciences, University of Waikato, Hamilton, Waikato, New Zealand
| | - Debra K. Berg
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
| | - Craig S. Smith
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - David N. Wells
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
| | - Peter L. Pfeffer
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- * E-mail:
| |
Collapse
|
35
|
Lysophosphatidic acid signaling in late cleavage and blastocyst stage bovine embryos. Mediators Inflamm 2014; 2014:678968. [PMID: 24833815 PMCID: PMC4009307 DOI: 10.1155/2014/678968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/19/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a known cell signaling lipid mediator in reproductive tissues. In the cow, LPA is involved in luteal and early pregnancy maintenance. Here, we evaluated the presence and role of LPA in bovine early embryonic development. In relevant aspects, bovine embryos reflect more closely the scenario occurring in human embryos than the mouse model. Transcription of mRNA and protein expression of enzymes involved in LPA synthesis (ATX and cPLA2) and of LPA receptors (LPAR1–4) were detected in Days 5 and 8 in vitro produced embryos. Embryonic LPA production into culture medium was also detected at both stages of development. Supplementation of culture medium with LPA (10−5 M) between Days 2 and 8 had no effect on embryo yield and quality and on blastocyst relative mRNA abundance of genes involved in prostaglandin synthesis (PTGS2, PGES, and PGFS) and steroidogenesis (3βHSD). However, LPA treatment affected transcription levels of embryo quality markers, decreasing BAX (apoptotic) and increasing BCL2 (antiapoptotic) and IGF2R (growth marker) gene transcription levels. Blastocyst transcription of OCT4 (pluripotency marker) was not affected by LPA stimulation. In conclusion, LPA is an early bovine embryonic autocrine/paracrine signaling mediator, and LPA action may be relevant in early embryo-maternal interactions leading to embryonic survival.
Collapse
|
36
|
Santana PPB, Carvalho CMF, da Costa NN, Silva TVG, Ramos PCA, Cordeiro MS, Santos SSD, Khayat AS, Ohashi OM, Miranda MS. Effect of dexamethasone on development of in vitro-produced bovine embryos. Theriogenology 2014; 82:10-6. [PMID: 24656431 DOI: 10.1016/j.theriogenology.2014.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/05/2014] [Accepted: 02/15/2014] [Indexed: 11/15/2022]
Abstract
Studies in somatic cells have shown that glucocorticoids such as dexamethasone (DEX) may trigger or prevent apoptosis depending on the cell type in culture. Because the dysregulation of apoptosis may lower in vitro embryo production efficiency, we sought to investigate the effects of supplementing IVC medium with DEX (0.1 μg/mL) on embryo morphology, development kinetics, and apoptosis rates of in vitro-produced bovine preimplantation embryos. Embryo morphology was graded on Day 7, and development rates were assessed on Days 4 and 7 of IVC. Apoptosis was evaluated via annexin/propidium iodide staining under fluorescence microscopy where a cell labeled with annexin, propidium iodide, or both would be considered apoptotic. An embryo was counted in the apoptosis rates, if it displayed at least one such labeled cell. Although DEX supplementation did not reduce apoptosis rates, it had a positive impact on developmental kinetics and cell number both on Days 4 and 7 of embryo culture. Presumably, such effect resulted from increased cell proliferation rather than a direct inhibition of apoptosis. Further studies may evaluate the mechanisms by which glucocorticoids may affect embryo development, as DEX supplementation could become a tool to improve in vitro embryo yield in mammalian species.
Collapse
Affiliation(s)
- Priscila P B Santana
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil.
| | - Carla M F Carvalho
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil
| | - Nathália N da Costa
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil
| | - Thiago V G Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil
| | - Priscilla C A Ramos
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil
| | - Marcela S Cordeiro
- Federal Institute of Education, Science and Technology of Pará, Abaetetuba, Para, Brazil
| | - Simone S D Santos
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil
| | - André S Khayat
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil
| | - Otávio M Ohashi
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil
| | - Moysés S Miranda
- Institute of Biological Sciences, Federal University of Pará, Belém, Para, Brazil
| |
Collapse
|
37
|
Ikeda S, Yamada M. Midkine and cytoplasmic maturation of mammalian oocytes in the context of ovarian follicle physiology. Br J Pharmacol 2014; 171:827-36. [PMID: 23889362 PMCID: PMC3925021 DOI: 10.1111/bph.12311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Midkine (MK) was originally characterized as a member of a distinct family of neurotrophic factors functioning in the CNS. However, it was later discovered that MK is abundantly expressed in ovarian follicles. Since then, the physiological roles of this molecule in the ovary have been steadily investigated. During the in vitro maturation (IVM) of oocytes MK was shown to promote the cytoplasmic maturation of oocytes, as indicated by post-fertilization development. This effect of MK could be mediated via its pro-survival (anti-apoptotic) effects on the cumulus-granulosa cells that surround oocytes. The oocyte competence-promoting effects of MK are discussed in the context of the recently discovered involvement of MK in the full maturation of ovarian follicles. MK was at the frontline of a new paradigm for neurotrophic factors as oocytetrophic factors. MK may promote the developmental competence of oocytes via common signalling molecules with the other neurotrophic factor(s). Alternatively or concomitantly, MK may also interact with various transmembrane molecules on cumulus-granulosa cells, which are important for ovarian follicle growth, dominance and differentiation, and act as a unique pro-survival factor in ovarian follicles, such that MK promotes oocyte competence. MK, along with other ovarian neurotrophic factors, may contribute to the optimization of the IVM system. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
| | - Masayasu Yamada
- Laboratory of Reproductive Biology Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| |
Collapse
|
38
|
Betts DH, Bain NT, Madan P. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos. PLoS One 2014; 9:e86978. [PMID: 24475205 PMCID: PMC3901717 DOI: 10.1371/journal.pone.0086978] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.
Collapse
Affiliation(s)
- Dean H. Betts
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| | - Nathan T. Bain
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
39
|
Abstract
Growth hormone (GH) plays an important role in early embryo development. It has been shown to activate multiple pathways, the most comprehensively studied being the STAT/JAK (Signal transducers and activators of transcription/Janus kinase) pathway. The objective of the present study was to investigate STAT5A gene expression during early bovine embryogenesis. Real-time polymerase chain reaction (RT-PCR) was used to measure the abundance of STAT5A transcripts. The mRNA was present at all stages of preimplantation bovine embryos investigated. The most abundant STAT5A expression occurred at the 2-cell stage. Expression was markedly reduced between the 4-cell and 8-cell stages, coinciding with the known time of embryo genome activation and loss of maternal mRNAs. This finding suggests that the embryonic STAT5A gene is primarily activated by maternal gene products.
Collapse
|
40
|
Wrenzycki C, Stinshoff H. Maturation Environment and Impact on Subsequent Developmental Competence of Bovine Oocytes. Reprod Domest Anim 2013; 48 Suppl 1:38-43. [DOI: 10.1111/rda.12204] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C Wrenzycki
- Faculty of Veterinary Medicine; Justus-Liebig-University Giessen; Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals; Giessen; Germany
| | - H Stinshoff
- Faculty of Veterinary Medicine; Justus-Liebig-University Giessen; Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals; Giessen; Germany
| |
Collapse
|
41
|
Kuroki T, Ikeda S, Okada T, Maoka T, Kitamura A, Sugimoto M, Kume S. Astaxanthin ameliorates heat stress-induced impairment of blastocyst development in vitro:--astaxanthin colocalization with and action on mitochondria--. J Assist Reprod Genet 2013; 30:623-31. [PMID: 23536152 DOI: 10.1007/s10815-013-9987-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/18/2013] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The effects of astaxanthin (Ax) on the in vitro development of bovine embryos cultured under heat stress were investigated in combination with the assessment of its cellular accumulation and action on mitochondrial membrane potential (ΔΨm). METHODS Bovine ≥8-cell embryos were collected on day 3 after in vitro fertilization and exposed to single (day 4) or repeated (day 4 and 5) heat stress (10 h/day at 40.5 °C). Ax was added into culture medium under the repeated heat stress and blastocyst development was evaluated. The cellular uptake of Ax in embryos was examined using bright-field and confocal laser-scanning microscopy, and high-performance liquid chromatography. The relationship between Ax and mitochondria localization was assessed using MitoTracker dye. The effects of Ax on ΔΨm were investigated using JC-1 dye. RESULTS Blastocyst development in the repeated heat stress treatment decreased significantly (P < 0.05) compared with those in single heat stress or normal thermal treatment. The addition of Ax into culture medium did lead to a significant recovery in blastocyst development in the repeated heat-treated group. Ax was detected in cytoplasm of embryos and observed to colocalize with mitochondria. Ax recovered ΔΨm in embryos that was decreased by the heat treatment. CONCLUSIONS Ax ameliorated the heat stress-induced impairment of blastocyst development. Our results suggest that the direct action of Ax on mitochondrial activity via cellular uptake is a mechanism of the ameliorating effects.
Collapse
Affiliation(s)
- T Kuroki
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Alberto MLV, Meirelles FV, Perecin F, Ambrósio CE, Favaron PO, Franciolli ALR, Mess AM, dos Santos JM, Rici REG, Bertolini M, Miglino MA. Development of bovine embryos derived from reproductive techniques. Reprod Fertil Dev 2013; 25:907-17. [DOI: 10.1071/rd12092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/01/2012] [Indexed: 11/23/2022] Open
Abstract
Assisted reproduction techniques have improved agricultural breeding in the bovine. However, important development steps may differ from the situation in vivo and there is a high mortality rate during the first trimester of gestation. To better understand these events, we investigated the development of embryos and fetal membranes following fixed-time AI (FTAI), IVF and nuclear transfer (NT). The onset of yolk-sac development was not normal in cloned embryos. Later steps differed from conditions in vivo in all three groups; the yolk-sac was yellowish and juxtaposed with the amniotic membrane. Vascularisation of the chorioallantoic membrane was relatively late and low in NT gestations, but normal in the others. The overall development of the embryos was normal, as indicated by morphology and regression analysis of growth rate. However, NT conceptuses were significantly smaller, with the livers in some embryos occupying the abdominal cavity and others exhibiting heart abnormalities. In conclusion, the yolk-sac and the cardiovascular system seem to be vulnerable to morphogenetic alterations. Future studies will focus on gene expression and early vascularisation processes to investigate whether these changes may be responsible for the high incidence of intrauterine mortality, especially in clones.
Collapse
|
43
|
Ferreira CR, Pirro V, Eberlin LS, Hallett JE, Cooks RG. Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2012; 404:2915-26. [DOI: 10.1007/s00216-012-6426-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 08/26/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
|