1
|
DelaCuesta-Barrutia J, Hidema S, Caldwell HK, Nishimori K, Erdozain AM, Peñagarikano O. In need of a specific antibody against the oxytocin receptor for neuropsychiatric research: A KO validation study. J Psychiatr Res 2024; 173:260-270. [PMID: 38554622 DOI: 10.1016/j.jpsychires.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/22/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Antibodies are one of the most utilized tools in biomedical research. However, few of them are rigorously evaluated, as there are no accepted guidelines or standardized methods for determining their validity before commercialization. Often, an antibody is considered validated if it detects a band by Western blot of the expected molecular weight and, in some cases, if blocking peptides result in loss of staining. Neither of these approaches are unquestionable proof of target specificity. Since the oxytocin receptor has recently become a popular target in neuropsychiatric research, the need for specific antibodies to be used in brain has arisen. In this work, we have tested the specificity of six commercially available oxytocin receptor antibodies, indicated by the manufacturers to be suitable for Western blot and with an available image showing the correct size band (45-55 KDa). Antibodies were first tested by Western blot in brain lysates of wild-type and oxytocin receptor knockout mice. Uterus tissue was also tested as control for putative differential tissue specificity. In brain, the six tested antibodies lacked target specificity, as both wild-type and receptor knockout samples resulted in a similar staining pattern, including the expected 45-55 KDa band. Five of the six antibodies detected a selective band in uterus (which disappeared in knockout tissue). These five specific antibodies were also tested for immunohistochemistry in uterus, where only one was specific. However, when the uterine-specific antibody was tested in brain tissue, it lacked specificity. In conclusion, none of the six tested commercial antibodies are suitable to detect oxytocin receptor in brain by either Western blot or immunohistochemistry, although some do specifically detect it in uterus. The present work highlights the need to develop standardized antibody validation methods, including a proper negative control, in order to grant quality and reproducibility of the generated data.
Collapse
Affiliation(s)
- Jon DelaCuesta-Barrutia
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Shizu Hidema
- Department of Obesity and Inflammation, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Heather K Caldwell
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Ohio, 44242, USA
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Amaia M Erdozain
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Leioa, 48940, Spain
| | - Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Leioa, 48940, Spain.
| |
Collapse
|
2
|
Rescue of Vasopressin Synthesis in Magnocellular Neurons of the Supraoptic Nucleus Normalises Acute Stress-Induced Adrenocorticotropin Secretion and Unmasks an Effect on Social Behaviour in Male Vasopressin-Deficient Brattleboro Rats. Int J Mol Sci 2022; 23:ijms23031357. [PMID: 35163282 PMCID: PMC8836014 DOI: 10.3390/ijms23031357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/03/2023] Open
Abstract
The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.
Collapse
|
3
|
Zhao DQ, Xue H, Sun HJ. Nervous mechanisms of restraint water-immersion stress-induced gastric mucosal lesion. World J Gastroenterol 2020; 26:2533-2549. [PMID: 32523309 PMCID: PMC7265141 DOI: 10.3748/wjg.v26.i20.2533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Stress-induced gastric mucosal lesion (SGML) is one of the most common visceral complications after trauma. Exploring the nervous mechanisms of SGML has become a research hotspot. Restraint water-immersion stress (RWIS) can induce GML and has been widely used to elucidate the nervous mechanisms of SGML. It is believed that RWIS-induced GML is mainly caused by the enhanced activity of vagal parasympathetic nerves. Many central nuclei, such as the dorsal motor nucleus of the vagus, nucleus of the solitary tract, supraoptic nucleus and paraventricular nucleus of the hypothalamus, mediodorsal nucleus of the thalamus, central nucleus of the amygdala and medial prefrontal cortex, are involved in the formation of SGML in varying degrees. Neurotransmitters/neuromodulators, such as nitric oxide, hydrogen sulfide, vasoactive intestinal peptide, calcitonin gene-related peptide, substance P, enkephalin, 5-hydroxytryptamine, acetylcholine, catecholamine, glutamate, γ-aminobutyric acid, oxytocin and arginine vasopressin, can participate in the regulation of stress. However, inconsistent and even contradictory results have been obtained regarding the actual roles of each nucleus in the nervous mechanism of RWIS-induced GML, such as the involvement of different nuclei with the time of RWIS, the different levels of involvement of the sub-regions of the same nucleus, and the diverse signalling molecules, remain to be further elucidated.
Collapse
Affiliation(s)
- Dong-Qin Zhao
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Hua Xue
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Hai-Ji Sun
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| |
Collapse
|
4
|
Lopes-Azevedo S, Fortaleza EAT, Busnardo C, Scopinho AA, Matthiesen M, Antunes-Rodrigues J, Corrêa FMA. The Supraoptic Nucleus of the Hypothalamus Modulates Autonomic, Neuroendocrine, and Behavioral Responses to Acute Restraint Stress in Rats. Neuroendocrinology 2020; 110:10-22. [PMID: 31280264 DOI: 10.1159/000500160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
AIMS Acute restraint stress (RS) has been reported to cause neuronal activation in the supraoptic nucleus of the hypothalamus (SON). The aim of the study was to evaluate the role of SON on autonomic (mean arterial pressure [MAP], heart rate [HR], and tail temperature), neuroendocrine (corticosterone, oxytocin, and vasopressin plasma levels), and behavioral responses to RS. METHODS Guide cannulas were implanted bilaterally in the SON of male Wistar rats for microinjection of the unspecific synaptic blocker cobalt chloride (CoCl2, 1 mM) or vehicle (artificial cerebrospinal fluid, 100 nL). A catheter was introduced into the femoral artery for MAP and HR recording. Rats were subjected to RS, and it was studied the effect of microinjection of CoCl2 or vehicle into the SON on pressor and tachycardic responses, drop in tail temperature, plasma oxytocin, vasopressin, and corticosterone levels, and anxiogenic-like effect induced by RS. RESULTS SON pretreatment with CoCl2 reduced the RS-induced MAP and HR increase, without affecting the RS-evoked tail temperature decrease. Microinjection of CoCl2 into areas surrounding the SON did not affect RS-induced increase in MAP and HR, reinforcing the idea that SON influences RS-evoked cardiovascular responses. Also, SON pretreatment with CoCl2 reduced RS-induced increase in corticosterone and oxytocin, without affecting vasopressin plasma levels, suggesting its involvement in RS-induced neuroendocrine responses. Finally, the CoCl2 microinjection into SON inhibited the RS-caused delayed anxiogenic-like effect. CONCLUSION The results indicate that SON is an important component of the neural pathway that controls autonomic, neuroendocrine, and behavioral responses induced by RS.
Collapse
Affiliation(s)
- Silvana Lopes-Azevedo
- Department of Pharmacology of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil,
| | | | - Cristiane Busnardo
- Department of Pharmacology of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - América Augusto Scopinho
- Department of Pharmacology of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Melina Matthiesen
- Department of Pharmacology of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - José Antunes-Rodrigues
- Department of Pharmacology of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fernando Morgan Aguiar Corrêa
- Department of Pharmacology of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
5
|
Frare C, Jenkins ME, McClure KM, Drew KL. Seasonal decrease in thermogenesis and increase in vasoconstriction explain seasonal response to N 6 -cyclohexyladenosine-induced hibernation in the Arctic ground squirrel (Urocitellus parryii). J Neurochem 2019; 151:316-335. [PMID: 31273780 PMCID: PMC6819227 DOI: 10.1111/jnc.14814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
Hibernation is a seasonal phenomenon characterized by a drop in metabolic rate and body temperature. Adenosine A1 receptor agonists promote hibernation in different mammalian species, and the understanding of the mechanism inducing hibernation will inform clinical strategies to manipulate metabolic demand that are fundamental to conditions such as obesity, metabolic syndrome, and therapeutic hypothermia. Adenosine A1 receptor agonist-induced hibernation in Arctic ground squirrels is regulated by an endogenous circannual (seasonal) rhythm. This study aims to identify the neuronal mechanism underlying the seasonal difference in response to the adenosine A1 receptor agonist. Arctic ground squirrels were implanted with body temperature transmitters and housed at constant ambient temperature (2°C) and light cycle (4L:20D). We administered CHA (N6 -cyclohexyladenosine), an adenosine A1 receptor agonist in euthermic-summer phenotype and euthermic-winter phenotype and used cFos and phenotypic immunoreactivity to identify cell groups affected by season and treatment. We observed lower core and subcutaneous temperature in winter animals and CHA produced a hibernation-like response in winter, but not in summer. cFos-ir was greater in the median preoptic nucleus and the raphe pallidus in summer after CHA. CHA administration also resulted in enhanced cFos-ir in the nucleus tractus solitarius and decreased cFos-ir in the tuberomammillary nucleus in both seasons. In winter, cFos-ir was greater in the supraoptic nucleus and lower in the raphe pallidus than in summer. The seasonal decrease in the thermogenic response to CHA and the seasonal increase in vasoconstriction, assessed by subcutaneous temperature, reflect the endogenous seasonal modulation of the thermoregulatory systems necessary for CHA-induced hibernation. Cover Image for this issue: doi: 10.1111/jnc.14528.
Collapse
Affiliation(s)
- Carla Frare
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mackenzie E Jenkins
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kelsey M McClure
- Department of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
6
|
Zhao DQ, Gong SN, Ma YJ, Zhu JP. Medial prefrontal cortex exacerbates gastric dysfunction of rats upon restraint water‑immersion stress. Mol Med Rep 2019; 20:2303-2315. [PMID: 31322177 PMCID: PMC6691265 DOI: 10.3892/mmr.2019.10462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Restraint water-immersion stress (RWIS) can induce a gastric mucosal lesions within a few hours. The medial prefrontal cortex (mPFC) is involved in the RWIS process. The present study investigated the modulatory effects and molecular mechanisms of the mPFC on gastric function under an RWIS state. Male Wistar rats were divided into four groups; namely, the control, RWIS 4 h (RWIS for 4 h only), sham-operated and bilateral-lesioned (bilateral-lesioned mPFC) groups. The gastric erosion index (EI) and gastric motility (GM) were determined, and the proteomic profiles of the mPFC were assessed by isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography and tandem mass spectrometry. Additionally, iTRAQ results were verified by western blot analysis. Compared with the RWIS 4 h group and the sham-control group, the bilateral-lesioned group exhibited a significantly lower EI (P<0.01). In the bilateral-lesioned group, RWIS led to a significant decrease in EI and GM. When comparing the control and RWIS 4 h groups, 129 dysregulated proteins were identified, of which 88 were upregulated and 41 were downregulated. Gene Ontology functional analysis demonstrated that 29 dysregulated proteins, including postsynaptic density protein 95, were directly associated with axon morphology, axon growth and synaptic plasticity. Ingenuity pathway analysis revealed that the dysregulated proteins were mainly involved in neurological disease signaling pathways, including the NF-κB and ERK signaling pathways. These data indicated that the presence of the mPFC exacerbates gastric mucosal injury in awake rats during RWIS. Although the quantitative proteomic analysis elucidated the nervous system molecular targets associated with the production of gastric mucosal lesions, such as the role of PSD95. The underlying molecular mechanisms of synaptic plasticity need to be further elucidated.
Collapse
Affiliation(s)
- Dong-Qin Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Sheng-Nan Gong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Ying-Jie Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Jian-Ping Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
7
|
Gong SN, Zhu JP, Ma YJ, Zhao DQ. Proteomics of the mediodorsal thalamic nucleus of rats with stress-induced gastric ulcer. World J Gastroenterol 2019; 25:2911-2923. [PMID: 31249449 PMCID: PMC6589736 DOI: 10.3748/wjg.v25.i23.2911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/08/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stress-induced gastric ulcer (SGU) is one of the most common visceral complications after trauma. Restraint water-immersion stress (RWIS) can cause serious gastrointestinal dysfunction and has been widely used to study the pathogenesis of SGU to identify medications that can cure the disease. The mediodorsal thalamic nucleus (MD) is the centre integrating visceral and physical activity and contributes to SGU induced by RWIS. Hence, the role of the MD during RWIS needs to be studied.
AIM To screen for differentially expressed proteins in the MD of the RWIS rats to further elucidate molecular mechanisms of SGU.
METHODS Male Wistar rats were selected randomly and divided into two groups, namely, a control group and an RWIS group. Gastric mucosal lesions of the sacrificed rats were measured using the erosion index and the proteomic profiles of the MD were generated through isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography and tandem mass spectrometry. Additionally, iTRAQ results were verified by Western blot analysis.
RESULTS A total of 2853 proteins were identified, and these included 65 dysregulated (31 upregulated and 34 downregulated) proteins (fold change ratio ≥ 1.2). Gene Ontology (GO) analysis showed that most of the upregulated proteins are primarily related to cell division, whereas most of the downregulated proteins are related to neuron morphogenesis and neurotransmitter regulation. Ingenuity Pathway Analysis revealed that the dysregulated proteins are mainly involved in the neurological disease signalling pathways. Furthermore, our results indicated that glycogen synthase kinase-3 beta might be related to the central mechanism through which RWIS gives rise to SGU.
CONCLUSION Quantitative proteomic analysis elucidated the molecular targets associated with the production of SGU and provides insights into the role of the MD. The underlying molecular mechanisms need to be further dissected.
Collapse
Affiliation(s)
- Sheng-Nan Gong
- College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Jian-Ping Zhu
- College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Ying-Jie Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Dong-Qin Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| |
Collapse
|
8
|
He F, Wang M, Geng X, Ai H. Effect of Electroacupuncture on the Activity of Corticotrophin-Releasing Hormone Neurons in the Hypothalamus and Amygdala in Rats Exposed to Restraint Water-Immersion Stress. Acupunct Med 2018; 36:394-400. [DOI: 10.1136/acupmed-2017-011450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Objective To investigate the effects of electroacupuncture (EA) treatment on gastric mucosal lesions and the activity of corticotrophin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus and the central nucleus of the amygdala (CNA) in a rat model of restraint water-immersion stress (RWIS). Methods 24 male Wistar rats were randomly divided into three groups: normal, RWIS, and RWIS+EA (n=8 per group). Rats in the RWIS group and RWIS+EA group received RWIS for 3 hours. For rats in the RWIS+EA group, EA was applied at ST36 in the bilateral hind legs for 30 min before RWIS. Rats in the normal group did not receive stressors or EA treatment. The gastric mucosal lesions of each rat were evaluated by the erosion index (EI) according to the methods of Guth. The activity of CRH neurons in the PVN and CNA was measured by a dual immunohistochemical test for Fos and CRH in the brain sections. Results RWIS induced serious gastric mucosal lesions. The mean gastric EI was significantly decreased in the RWIS+EA group versus the RWIS group (P=0.005). Stress induced significant activation of CRH neurons in the PVN and CNA compared with the normal group (P<0.001 for both). The mean number of Fos+CRH immunoreactive neurons in the PVN and CNA were both decreased inRWIS+EA versusRWIS groups (P<0.001 and P=0.001). Conclusions EA at ST36 can ameliorate RWIS-induced gastric mucosal lesions and suppress the Fos expression of CRH neurons in the PVN and CNA, suggesting a potentially therapeutic role for EA in stress-related gastric disorders.
Collapse
Affiliation(s)
- Feng He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiwen Geng
- Advanced Materials Genome Innovation Team, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China
| | - Hongbin Ai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
9
|
Altered Neuronal Activity in the Central Nucleus of the Amygdala Induced by Restraint Water-Immersion Stress in Rats. Neurosci Bull 2018; 34:1067-1076. [PMID: 30171524 PMCID: PMC6246852 DOI: 10.1007/s12264-018-0282-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Restraint water-immersion stress (RWIS), a compound stress model, has been widely used to induce acute gastric ulceration in rats. A wealth of evidence suggests that the central nucleus of the amygdala (CEA) is a focal region for mediating the biological response to stress. Different stressors induce distinct alterations of neuronal activity in the CEA; however, few studies have reported the characteristics of CEA neuronal activity induced by RWIS. Therefore, we explored this issue using immunohistochemistry and in vivo extracellular single-unit recording. Our results showed that RWIS and restraint stress (RS) differentially changed the c-Fos expression and firing properties of neurons in the medial CEA. In addition, RWIS, but not RS, induced the activation of corticotropin-releasing hormone neurons in the CEA. These findings suggested that specific neuronal activation in the CEA is involved in the formation of RWIS-induced gastric ulcers. This study also provides a possible theoretical explanation for the different gastric dysfunctions induced by different stressors.
Collapse
|
10
|
Sun H, Zhao P, Liu W, Li L, Ai H, Ma X. Ventromedial hypothalamic nucleus in regulation of stress-induced gastric mucosal injury in rats. Sci Rep 2018; 8:10170. [PMID: 29977067 PMCID: PMC6033936 DOI: 10.1038/s41598-018-28456-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023] Open
Abstract
Previous studies showed that restraint water-immersion stress (RWIS) increases the expression of Fos protein in the ventromedial hypothalamic nucleus (VMH), indicating the VMH involving in the stress-induced gastric mucosal injury (SGMI). The present study was designed to investigate its possible neuro-regulatory mechanisms in rats receiving either VMH lesions or sham surgery. The model for SGMI was developed by restraint and water (21 ± 1 °C) immersion for 2 h. Gastric mucosal injury index, gastric motility, gastric acid secretion and Fos expression in the hypothalamus and brainstem were examined on the 15th postoperative day in RWIS rats. Gastric mucosal injury in VMH-lesioned rats was obviously aggravated compared to the control. Gastric acidity under RWIS was obviously higher in VMH-lesioned rats than that in sham rats. Meantime, the VMH-lesioned rats exhibited marked increases in the amplitude of gastric motility in the VMH lesions group after RWIS. In VMH-lesioned rats, Fos expression significantly increased in the dorsal motor nucleus of the vagus (DMV), the nucleus of the solitary tract (NTS), the area postrema (AP), the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) in response to RWIS. These results indicate that VMH lesions can aggravate the stress-induced gastric mucosal injury through the VMH-dorsal vagal complex (DVC)-vagal nerve pathway.
Collapse
Affiliation(s)
- Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China.
| | - Pan Zhao
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Wenkai Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Lei Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Hongbin Ai
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China.
| |
Collapse
|
11
|
Bülbül M, Travagli RA. Novel transmitters in brain stem vagal neurocircuitry: new players on the pitch. Am J Physiol Gastrointest Liver Physiol 2018; 315:G20-G26. [PMID: 29597355 PMCID: PMC6109706 DOI: 10.1152/ajpgi.00059.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The last few decades have seen a major increase in the number of neurotransmitters and neuropeptides recognized as playing a role in brain stem neurocircuits, including those involved in homeostatic functions such as stress responsiveness, gastrointestinal motility, feeding, and/or arousal/wakefulness. This minireview will focus on the known physiological role of three of these novel neuropeptides, i.e., apelin, nesfatin-1, and neuropeptide-S, with a special emphasis on their hypothetical roles in vagal signaling related to gastrointestinal motor functions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- 1Faculty of Medicine, Department of Physiology, Akdeniz UniversityAntalya, Turkey
| | - R. Alberto Travagli
- 2Department of Neural and Behavioral Neurosciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
12
|
Bülbül M, Sinen O, Gemici B, İzgüt-Uysal VN. Opposite effects of central oxytocin and arginine vasopressin on changes in gastric motor function induced by chronic stress. Peptides 2017; 87:1-11. [PMID: 27829122 DOI: 10.1016/j.peptides.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 01/24/2023]
Abstract
Hypothalamic oxytocin (OXT) and arginine vasopressin (AVP) are known to act oppositely on hypothalamic-pituitary-adrenal (HPA) axis, stress response and gastrointestinal (GI) motility. In rodents, exposure to restraint stress (RS) delays gastric emptying (GE), however, repeated exposure to the same stressor (chronic homotypic stress (CHS)), the delayed GE is restored to basal level, while hypothalamic OXT is upregulated. In contrast, when rats are exposed to chronic heterotypic stress (CHeS), these adaptive changes are not observed. Although the involvement of central OXT in gastric motor adaptation is partly investigated, the role of hypothalamic AVP in CHeS-induced maladaptive paradigm is poorly understood. Using in-vivo brain microdialysis in rats, the changes OXT and AVP release from hypothalamus were monitored under basal non-stressed (NS) conditions and in rats exposed to acute stress (AS), CHS and CHeS. To investigate the involvement of central endogenous OXT or AVP in CHS-induced habituation and CHeS-induced maladaptation, chronic central administration of selective OXT receptor antagonist L-371257 and selective AVP V1b receptor antagonist SSR-149415 was performed daily. OXT was measured higher in AS and CHS group, but not in CHeS-loaded rats, whereas AVP significantly increased in rats exposed to AS and CHeS. Additionally, the response of the hypothalamic OXT- and AVP-producing cells was amplified following CHS and CHeS, respectively. In rats exposed to AS for 90min solid GE significantly delayed. The delayed-GE was completely restored to the basal level following CHS, however, it remained delayed in CHeS-loaded rats. The CHS-induced restoration was prevented by L-371257, whereas SSR-149415 abolished the CHeS-induced impaired GE. A significant correlation was observed between GE and (i) OXT in CHS-loaded rats (rho=0.61, p<0.05, positively), (ii) AVP in CHeS-loaded rats (rho=0.69, p<0.05, negatively). Under long term stressed conditions, the release of AVP and OXT from hypothalamus may vary depending on the content of the stressors. Central AVP appears to act oppositely to OXT by mediating CHeS-induced gastric motor maladaptation. Long term central AVP antagonism might be a pharmacological approach for the treatment of stress-related gastric motility disorders.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey.
| | - Osman Sinen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, İstanbul, Turkey
| | - V Nimet İzgüt-Uysal
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| |
Collapse
|
13
|
Interactions between astrocytes and neurons in the brainstem involved in restraint water immersion stress-induced gastric mucosal damage. Neuroreport 2016; 27:151-9. [PMID: 26720891 DOI: 10.1097/wnr.0000000000000515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Restraint water-immersion stress (RWIS) is considered a compound stress model as it includes both psychological and physical stimulation. Studies have shown that neurons are involved in RWIS, but the role of astrocytes in RWIS has not been reported as yet. Here, we tested our hypothesis that astrocytes are involved in RWIS and interact with neurons in the brainstem to regulate gastric mucosal damage induced by RWIS. RWIS of different durations (0.5, 1, 2, 3, and 5 h) induced significant gastric mucosal damage and activated astrocytes by increasing the expression of glial fibrillary acidic protein and neurons, as indicated by the Fos expression in the nucleus of solitary tract and the dorsal motor nucleus of the vagus. Intracerebroventricular administration of both astroglial toxin L-α-aminoadipate and c-fos antisense oligodeoxy nucleotides reduced RWIS-induced gastric mucosal damage. Immunohistochemistry results showed that L-α-aminoadipate decreased the activation of both astrocytes and neurons by RWIS. Similarly, antisense oligodeoxy nucleotides significantly suppressed activation of both neurons and astrocytes induced by RWIS. Our data showed that astrocytic and neuronal activations may be closely related to the gastric mucosal damage induced by RWIS through reciprocal 'crosstalk'. This study suggests that an intervention targeting this interaction may offer some novel therapeutic strategies for gastric ulcers.
Collapse
|
14
|
Koch CE, Bartlang MS, Kiehn JT, Lucke L, Naujokat N, Helfrich-Förster C, Reber SO, Oster H. Time-of-day-dependent adaptation of the HPA axis to predictable social defeat stress. J Endocrinol 2016; 231:209-221. [PMID: 27660201 DOI: 10.1530/joe-16-0163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/22/2016] [Indexed: 11/08/2022]
Abstract
In modern societies, the risk of developing a whole array of affective and somatic disorders is associated with the prevalence of frequent psychosocial stress. Therefore, a better understanding of adaptive stress responses and their underlying molecular mechanisms is of high clinical interest. In response to an acute stressor, each organism can either show passive freezing or active fight-or-flight behaviour, with activation of sympathetic nervous system and the hypothalamus-pituitary-adrenal (HPA) axis providing the necessary energy for the latter by releasing catecholamines and glucocorticoids (GC). Recent data suggest that stress responses are also regulated by the endogenous circadian clock. In consequence, the timing of stress may critically affect adaptive responses to and/or pathological effects of repetitive stressor exposure. In this article, we characterize the impact of predictable social defeat stress during daytime versus nighttime on bodyweight development and HPA axis activity in mice. While 19 days of social daytime stress led to a transient reduction in bodyweight without altering HPA axis activity at the predicted time of stressor exposure, more detrimental effects were seen in anticipation of nighttime stress. Repeated nighttime stressor exposure led to alterations in food metabolization and reduced HPA axis activity with lower circulating adrenocorticotropic hormone (ACTH) and GC concentrations at the time of predicted stressor exposure. Our data reveal a circadian gating of stress adaptation to predictable social defeat stress at the level of the HPA axis with impact on metabolic homeostasis underpinning the importance of timing for the body's adaptability to repetitive stress.
Collapse
Affiliation(s)
- C E Koch
- University of LübeckChronophysiology Group, Medical Department 1, Lübeck, Germany
| | - M S Bartlang
- University of WürzburgBiocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg, Germany
| | - J T Kiehn
- University of LübeckChronophysiology Group, Medical Department 1, Lübeck, Germany
| | - L Lucke
- Department of Behavioral and Molecular NeurobiologyUniversity of Regensburg, Regensburg, Germany
| | - N Naujokat
- University of LübeckChronophysiology Group, Medical Department 1, Lübeck, Germany
| | - C Helfrich-Förster
- University of WürzburgBiocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg, Germany
| | - S O Reber
- Department of Behavioral and Molecular NeurobiologyUniversity of Regensburg, Regensburg, Germany
| | - H Oster
- University of LübeckChronophysiology Group, Medical Department 1, Lübeck, Germany
| |
Collapse
|
15
|
Arginine Vasopressin Injected into the Dorsal Motor Nucleus of the Vagus Inhibits Gastric Motility in Rats. Gastroenterol Res Pract 2015; 2016:4618672. [PMID: 26843857 PMCID: PMC4710933 DOI: 10.1155/2016/4618672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022] Open
Abstract
Background. Until now, the effect of arginine vasopressin (AVP) in the DMV on gastric motility and the possible modulating pathway between the DMV and the gastrointestinal system remain poorly understood. Objectives. We aimed to explore the role of AVP in the DMV in regulating gastric motility and the possible central and peripheral pathways. Material and Methods. Firstly, we microinjected different doses of AVP into the DMV and investigated its effects on gastric motility in rats. Then, the possible central and peripheral pathways that regulate gastric motility were also discussed by microinjecting SR49059 (a specific AVP receptor antagonist) into the DMV and intravenous injection of hexamethonium (a specific neuronal nicotinic cholinergic receptor antagonist) before AVP microinjection. Results. Following microinjection of AVP (180 pmol and 18 pmol) into the DMV, the gastric motility (including total amplitude, total duration, and motility index of gastric contraction) was significantly inhibited (P < 0.05). Moreover, the inhibitory effect of AVP (180 pmol) on gastric motility could be blocked completely by both SR49059 (320 pmol) and hexamethonium (8 μmol). Conclusions. It is concluded that AVP inhibits the gastric motility by acting on the specific AVP receptor in the DMV, with the potential involvement of the parasympathetic preganglionic cholinergic fibers.
Collapse
|
16
|
Zhang Y, Yang Y, Dai R, Wu H, Li C, Guo Q. Oxytocin in the paraventricular nucleus attenuates incision-induced mechanical allodynia. Exp Ther Med 2015; 9:1351-1356. [PMID: 25780434 PMCID: PMC4353795 DOI: 10.3892/etm.2015.2285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/21/2014] [Indexed: 11/23/2022] Open
Abstract
Oxytocin (OT) neurons localized in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) send fibers to the brain and spinal cord. While most previous studies have looked at the role of OT in chronic pain, few have investigated the role of OT in acute pain, particularly postoperative pain. In the present study, the role of OT in incision-induced allodynia was explored for the first time, using a rat incisional pain model. Immunohistochemical staining showed that, compared with the baseline (prior to incision) measurements, the OT content in the PVN was significantly decreased at 0.5, 1.0 and 3.0 h post-incision and returned to the baseline level at 6.0 h post-incision. By contrast, there was no significant difference in the OT content in the SON prior to and subsequent to incision. A dose-dependent inhibition of mechanical hypersensitivity was detected 30 min after intracerebroventricular injection of OT (100, 400 or 600 ng) and lasted for 3.0 h. No significant difference was noted, however, between the intrathecal OT injection group (600 ng) and the control group. In conclusion, the present study provides the first in vivo evidence that OT in the PVN predominantly attenuates incision-induced mechanical allodynia at the supraspinal, rather than the spinal, level. This suggests that OT is involved in supraspinal analgesia for postoperative pain.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ruping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Hui Wu
- Department of Medical Oncology, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Changqi Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
17
|
Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Differential roles of cyclooxygenase-2-related signaling in regulating hypothalamic neuronal activity under various acute stresses. J Vet Med Sci 2013; 76:219-27. [PMID: 24141321 PMCID: PMC3982819 DOI: 10.1292/jvms.13-0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously suggested that activation of the hypothalamic-pituitary-adrenal (HPA) axis is dependent on cyclooxygenase (COX)-2-related signaling under infectious and restraint stresses, but less dependent on it under hypoglycemic stress. In the present study, we evaluated the neuronal activity in the brain to elucidate the possible mechanisms underlying a stress-specific relevance between COX-2-related signaling and activation of the HPA axis under infectious (lipopolysaccharide, LPS), hypoglycemic (2-deoxy-D-glucose, 2DG) and restraint (1 hr) stress conditions. The number of c-Fos-immunoreactive (IR) cells in several brain regions including the paraventricular nucleus (PVN) and supraoptic nucleus (SON) was increased at 120 min after application of all stress stimuli. The number of c-Fos-IR cells at 30 min was increased only by 2DG in the SON, but not in the PVN. In the PVN, a selective COX-2 inhibitor (NS-398) did not affect the number of c-Fos-IR cells at any time points. On the other hand, in the SON, NS-398 increased c-Fos-IR cells at 30 min after LPS and restraint stresses, but not after 2DG injection. These results suggest that, among the brain regions responding to acute stresses, the PVN and SON are commonly activated under three acute stresses. In addition, it is also suggested that COX-2-related signaling decreases neuronal activity in the SON under infectious and restraint, but not hypoglycemic, stresses, which may be involved in the suppression of the HPA axis.
Collapse
Affiliation(s)
- Yanbo Ma
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
18
|
Krogh J, Gøtze JP, Jørgensen MB, Kristensen LØ, Kistorp C, Nordentoft M. Copeptin during rest and exercise in major depression. J Affect Disord 2013; 151:284-90. [PMID: 23856279 DOI: 10.1016/j.jad.2013.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND High vasopressin levels and a correlation between vasopressin and cortisol has been observed in patients with depression. The aim was to assess copeptin, the c-terminal of provasopressin, and the association between cortisol, adrenocorticotropic hormone (ACTH) and copeptin in patients with depression. Secondly, to examine the copeptin response to acute exercise and aerobic training. METHODS Copeptin, ACTH, and cortisol were measured in 111 patients with depression and 57 controls at rest. Copeptin was also measured during exercise. The depressed patients were subsequently randomized to an aerobic training intervention or an exercise control intervention. RESULTS The plasma level of copeptin in depressed subjects was 5.14 pg/ml (IQR 3.4-8.4) and 4.82 pg/ml (IQR 2.8-7.5) in healthy controls (p=.66). The association between copeptin and cortisol was.02 (95% CI -.44 to.48; p=.93) and the association between copeptin and ACTH was -.06 (95% CI -.17 to.05; p=.27). All associations were independent of depression status (p=.15). Aerobic exercise training did not influence copeptin levels at rest (p=.09) or the response to acute exercise (p=.574). Copeptin decreased at rest in response to aerobic training in participants with high compliance to the exercise intervention (p=.04). LIMITATIONS We did not measure plasma osmolality, which is a possible confounder in this study. CONCLUSIONS Copeptin levels are not elevated or associated to ACTH or cortisol in depressed patients. Aerobic exercise training decreased copeptin levels in high attenders only. This study does not support a role of copeptin or vasopressin in depression.
Collapse
Affiliation(s)
- Jesper Krogh
- Mental Health Centre Copenhagen, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
19
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in hippocampus as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 257:129-39. [PMID: 24095878 DOI: 10.1016/j.bbr.2013.09.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023]
Abstract
To identify genes involved in the development/expression of anxiety/fear, we analyzed the gene expression profile in the hippocampus of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock is a unique genetic resource for the fine mapping of quantitative trait loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety, fearfulness or other complex traits. We selected high- and low-anxious NIH-HS rats according to the number of avoidance responses they performed in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety/fearfulness tests, i.e. the elevated zero-maze and a "novel-cage activity" test. Three weeks after behavioral testing, the hippocampus was dissected and prepared for the microarray study. There appeared 29 down-regulated and 37 up-regulated SNC-related genes (fold-change>|2.19|, FDR<0.05) in the "Low-anxious" vs. the "High-anxious" group. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, nine relevant genes (Avpr1b, Accn3, Cd74, Ltb, Nrg2, Oprdl1, Slc10a4, Slc5a7 and RT1-EC12), tested for validation through qRT-PCR, have either neuroendocrinological or neuroinmunological/inflammation-related functions, or have been related with the hippocampal cholinergic system, while some of them have also been involved in the modulation of anxiety or stress-related (neurobiological and behavioral) responses (i.e. Avpr1b, Oprdl1). The present work confirms the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis or mechanisms involved in anxiety and/or fear, and suggest that some MHC-(neuroinmunological/inflammation)-related pathways, as well as the cholinergic system within the hippocampus, may play a role in shaping individual differences in trait anxiety.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in amygdala as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 252:422-31. [PMID: 23777796 DOI: 10.1016/j.bbr.2013.05.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
To identify genes involved in anxiety/fear traits, we analyzed the gene expression profile in the amygdala of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock has revealed to be a unique genetic resource for the fine mapping of Quantitative Trait Loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety-(or other)-related traits. We selected high- and low-anxious NIH-HS rats differing in their number of avoidances in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety tests (e.g., elevated zero-maze). Three weeks after behavioural testing, the amygdala was dissected and prepared for the microarray study. There appeared 6 significantly down-regulated and 28 up-regulated genes (fold-change >|2|, FDR<0.05) between the low- and high-anxious groups, with central nervous system-related functions. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, six relevant genes were examined with qRT-PCR, four of which (Ucn3, Tacr3, H2-M9 and Arr3) were validated. Remarkably, some of them are characterized by sharing known functions related with hormonal HPA-axis responses to (and/or modulation of) stress, anxiety or fear, and putative involvement in related neurobehavioural functions. The results confirm the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis of anxiety and fear, while suggesting the involvement of some neuropeptide/neuroendocrine pathways on the development of differential anxiety profiles.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ataka K, Nagaishi K, Asakawa A, Inui A, Fujimiya M. Alteration of antral and proximal colonic motility induced by chronic psychological stress involves central urocortin 3 and vasopressin in rats. Am J Physiol Gastrointest Liver Physiol 2012; 303:G519-28. [PMID: 22651925 DOI: 10.1152/ajpgi.00390.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Because of the difficulties in developing suitable animal models, the pathogenesis of stress-induced functional gastrointestinal disorders is not well known. Here we applied the communication box technique to induce psychological stress in rats and then examined their gastrointestinal motility. We measured upper and lower gastrointestinal motility induced by acute and chronic psychological stress and examined the mRNA expression of various neuropeptides in the hypothalamus. Chronic psychological stress disrupted the fasted motility in the antrum and accelerated motility in the proximal colon. mRNA expression of AVP, oxytocin, and urocortin 3 was increased by chronic psychological stress. Intracerebroventricular (ICV) injection of urocortin 3 disrupted the fasted motility in the antrum, while ICV injection of Ucn3 antiserum prevented alteration in antral motility induced by chronic psychological stress. ICV injection of AVP accelerated colonic motility, while ICV injection of SSR 149415, a selective AVP V1b receptor antagonist, prevented alteration in proximal colonic motility induced by chronic psychological stress. Oxytocin and its receptor antagonist L 371257 had no effect on colonic motility in either the normal or chronic psychological stress model. These results suggest that chronic psychological stress induced by the communication box technique might disrupt fasted motility in the antrum via urocortin 3 pathways and accelerates proximal colonic motility via the AVP V1b receptor in the brain.
Collapse
Affiliation(s)
- Koji Ataka
- Department of Anatomy, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
22
|
Lopes-Azevedo S, Scopinho AA, Busnardo C, Aguiar Corrêa FM. Cardiovascular effects of the microinjection of L-proline into the third ventricle or the paraventricular nucleus of the hypothalamus in unanesthetized rats. J Neurosci Res 2012; 90:2183-92. [PMID: 22740501 DOI: 10.1002/jnr.23097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 11/09/2022]
Abstract
We investigated the cardiovascular effects of the microinjection of L-proline (L-Pro) into the third ventricle (3V) and its peripheral mechanisms. Different doses of L-Pro into the 3V caused dose-related pressor and bradycardiac responses. The pressor response to L-Pro injected into the 3V was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), thus excluding any significant involvement of the sympathetic nervous system. Because the response to the microinjection of L-Pro into the 3V was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH(2) )(5) (Me)AVP (50μg/kg), it is suggested that these cardiovascular responses are mediated by a vasopressin release. The pressor response to the microinjection of L-Pro into the 3V was found to be mediated by circulating vasopressin, so, given that the paraventricular nucleus of the hypothalamus (PVN) is readily accessible from the 3V, we investigated whether the PVN could be a site of action for the L-Pro microinjected in the 3V. The microinjection of L-Pro (0.033 μmoles/0.1 μl) into the PVN caused cardiovascular responses similar to those of injection of the 3V and were also shown to be mediated by vasopressin release. In conclusion, these results show that the microinjection of L-Pro into the 3V causes pressor and bradycardiac responses that could involve stimulation of the magnocellular cells of the PVN and release of vasopressin into the systemic circulation. Also, because the microinjection of L-Pro into the PVN caused a pressor response, this is the first evidence of cardiovascular effects caused by its injection in a supramedullary structure.
Collapse
Affiliation(s)
- Silvana Lopes-Azevedo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
23
|
Busnardo C, Crestani CC, Resstel LBM, Tavares RF, Antunes-Rodrigues J, Corrêa FMA. Ionotropic glutamate receptors in hypothalamic paraventricular and supraoptic nuclei mediate vasopressin and oxytocin release in unanesthetized rats. Endocrinology 2012; 153:2323-31. [PMID: 22396452 PMCID: PMC3339645 DOI: 10.1210/en.2011-2079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of l-glutamate (l-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. l-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-d-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to l-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. l-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the l-glu microinjection increased plasma levels of the hormones. The l-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT.
Collapse
Affiliation(s)
- Cristiane Busnardo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Synaptic activity in magnocellular neurosecretory neurones is influenced by the retrograde (i.e. somatodendritic) release of vasopressin, oxytocin and cannabinoids (CBs). For oxytocin neurones, oxytocin exerts constitutive effects on pre-synaptic activity through its ability to release CBs post-synaptically. In the present study, we examined evoked inhibitory post-synaptic currents (eIPSCs) and spontaneous inhibitory post-synaptic currents (sIPSCs) in identified vasopressin (VP) neurones in coronal slices from virgin rats to determine: (i) the extent to which CBs may also tonically modulate VP synaptic activity; and (ii) to determine whether depolarisation-induced suppression of inhibition was present in VP neurones, and if so, whether it was mediated by VP or CBs. The CB1 antagonists AM251 (1 μm) and SR14171 (1 μm) consistently increased the frequency of sIPSCs in VP neurones without affecting their amplitude, suggesting a tonic CB presence. This effect on frequency was independent of action potential activity, and blocked by chelating intracellular calcium with 10 mm ethylene glycol tetraacetic acid (EGTA). AM251 also increased the amplitude of eIPSCs and decreased the paired-pulse ratio (PPR) in VP neurones-effects that were completely blocked with even low (1 mm EGTA) internal calcium chelation. Bouts of evoked firing of VP neurones consistently suppressed sIPSCs but had no effect on eIPSCs or the PPR. This depolarisation-induced suppression of IPSCs was reduced by AM251, and was totally blocked by 10 μm of the mixed vasopressin/oxytocin antagonist, Manning compound. We then tested the effect of vasopressin on IPSCs at the same time as blocking CB1 receptors. Vasopressin (10-100 nm) inhibited sIPSC frequency but had no effect on sIPSC or eIPSC amplitudes, or on the PPR, in the presence of AM251. Taken together, these results suggest a tonic, pre-synaptic inhibitory modulation of IPSCs in VP neurones by CBs that is largely dependent on post-synaptic calcium, and an inhibitory effect of VP on IPSCs that is independent of CB release.
Collapse
Affiliation(s)
- L Wang
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|