1
|
Venigalla S, Straub J, Idigo O, Rinderle C, Stephens JM, Newman JJ. MED12 Regulates Human Adipose-Derived Stem Cell Adipogenesis and Mediator Kinase Subunit Expression in Murine Adipose Depots. Stem Cells Dev 2022; 31:119-131. [PMID: 35018809 PMCID: PMC9206493 DOI: 10.1089/scd.2021.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mediator kinase module plays a critical role in the regulation of transcription during metabolic processes. Here we demonstrate that in human adipose-derived stem cells (hASCs), kinase module subunits have distinct mRNA and protein expression profiles during different stages of adipogenesis. In addition, siRNA-mediated loss of MED12 results in decreased adipogenesis as evident through decreased lipid accumulation and decreased expression of PPARγ, a master regulator of adipogenesis. Moreover, the decrease in adipogenesis and reduced PPARγ expression are observed only during the early stages of MED12 knockdown. At later stages, knockdown of MED12 did not have any significant effects on adipogenesis or PPARγ expression. We also observed that MED12 was present in a protein complex with PPARγ and C/EBPα during all stages of adipogenesis in hASCs. In 3T3-L1 preadipocytes and adipocytes, MED12 is present in protein complexes with PPARγ1, C/EBPα, and STAT5A. CDK8, another member of the kinase module, was only found to interact with C/EBPα. We found that the expression of all kinase module subunits decreased in inguinal, gonadal, and retroperitoneal white adipose tissue (WAT) depots in the fed state after an overnight fast, whereas the expression of kinase module subunits remained consistent in mesenteric WAT (mWAT) and brown adipose tissue. These data demonstrate that the kinase module undergoes physiologic regulation during fasting and feeding in specific mouse adipose tissue depots, and that MED12 likely plays a specific role in initiating and maintaining adipogenesis.
Collapse
Affiliation(s)
- Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Onyekachi Idigo
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Caroline Rinderle
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | | | - Jamie J. Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA.,Address correspondence to: Dr. Jamie J. Newman, School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
2
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
3
|
Wang Z, Wang P, Li Y, Peng H, Zhu Y, Mohandas N, Liu J. Interplay between cofactors and transcription factors in hematopoiesis and hematological malignancies. Signal Transduct Target Ther 2021; 6:24. [PMID: 33468999 PMCID: PMC7815747 DOI: 10.1038/s41392-020-00422-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.
Collapse
Affiliation(s)
- Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| | - Pan Wang
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Yanan Li
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
4
|
Yao Y, Yang J, Qin Q, Tang C, Li Z, Chen L, Li K, Ren C, Chen L, Rao S. Functional annotation of genetic associations by transcriptome-wide association analysis provides insights into neutrophil development regulation. Commun Biol 2020; 3:790. [PMID: 33340029 PMCID: PMC7749173 DOI: 10.1038/s42003-020-01527-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/22/2020] [Indexed: 12/26/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple genomic loci linked to blood cell traits, however understanding the biological relevance of these genetic loci has proven to be challenging. Here, we performed a transcriptome-wide association study (TWAS) integrating gene expression and splice junction usage in neutrophils (N = 196) with a neutrophil count GWAS (N = 173,480 individuals). We identified a total of 174 TWAS-significant genes enriched in target genes of master transcription factors governing neutrophil specification. Knockout of a TWAS candidate at chromosome 5q13.2, TAF9, in CD34+ hematopoietic and progenitor cells (HSPCs) using CRISPR/Cas9 technology showed a significant effect on neutrophil production in vitro. In addition, we identified 89 unique genes significant only for splice junction usage, thus emphasizing the importance of alternative splicing beyond gene expression underlying granulopoiesis. Our results highlight the advantages of TWAS, followed by gene editing, to determine the functions of GWAS loci implicated in hematopoiesis.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Medicine, West China Second Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.,School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Yang
- Department of Dermatology, University of Californian San Francisco, San Francisco, CA, 94110, USA
| | - Qian Qin
- Molecular Pathology Unit, Center for Cancer Research, Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chao Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Medicine, West China Second Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhidan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Medicine, West China Second Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Medicine, West China Second Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Kailong Li
- Children's Medical Center Research Institute, Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Medicine, West China Second Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.
| | - Shuquan Rao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Borikar S, Trowbridge JJ. The Mediator of Hematopoietic Stem Cell Homeostasis. Cell Stem Cell 2017; 19:677-678. [PMID: 27912086 DOI: 10.1016/j.stem.2016.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanisms establishing and maintaining promoter-enhancer interactions in hematopoietic stem cells (HSCs) to maintain stem cell identity are not fully understood. In this issue of Cell Stem Cell, Aranda-Orgilles et al. (2016) describe a role for a member of the Mediator complex in maintaining HSC-specific enhancers and hematopoietic homeostasis.
Collapse
Affiliation(s)
- Sneha Borikar
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
6
|
A GCSFR/CSF3R zebrafish mutant models the persistent basal neutrophil deficiency of severe congenital neutropenia. Sci Rep 2017; 7:44455. [PMID: 28281657 PMCID: PMC5345067 DOI: 10.1038/srep44455] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/08/2017] [Indexed: 01/17/2023] Open
Abstract
Granulocyte colony-stimulating factor (GCSF) and its receptor (GCSFR), also known as CSF3 and CSF3R, are required to maintain normal neutrophil numbers during basal and emergency granulopoiesis in humans, mice and zebrafish. Previous studies identified two zebrafish CSF3 ligands and a single CSF3 receptor. Transient antisense morpholino oligonucleotide knockdown of both these ligands and receptor reduces neutrophil numbers in zebrafish embryos, a technique widely used to evaluate neutrophil contributions to models of infection, inflammation and regeneration. We created an allelic series of zebrafish csf3r mutants by CRISPR/Cas9 mutagenesis targeting csf3r exon 2. Biallelic csf3r mutant embryos are viable and have normal early survival, despite a substantial reduction of their neutrophil population size, and normal macrophage abundance. Heterozygotes have a haploinsufficiency phenotype with an intermediate reduction in neutrophil numbers. csf3r mutants are viable as adults, with a 50% reduction in tissue neutrophil density and a substantial reduction in the number of myeloid cells in the kidney marrow. These csf3r mutants are a new animal model of human CSF3R-dependent congenital neutropenia. Furthermore, they will be valuable for studying the impact of neutrophil loss in the context of other zebrafish disease models by providing a genetically stable, persistent, reproducible neutrophil deficiency state throughout life.
Collapse
|
7
|
Boyer TG. There will be blood: hematopoiesis control by mediator subunit MED12. Stem Cell Investig 2017; 4:4. [PMID: 28217706 DOI: 10.21037/sci.2016.12.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas G Boyer
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Keightley MC, Nilsson SK, Lieschke GJ. MED12 in hematopoietic stem cells-cell specific function despite ubiquitous expression. Stem Cell Investig 2017; 4:3. [PMID: 28217705 DOI: 10.21037/sci.2016.12.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Susan K Nilsson
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia;; CSIRO Manufacturing, Clayton, Victoria 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Aranda-Orgilles B, Saldaña-Meyer R, Wang E, Trompouki E, Fassl A, Lau S, Mullenders J, Rocha PP, Raviram R, Guillamot M, Sánchez-Díaz M, Wang K, Kayembe C, Zhang N, Amoasii L, Choudhuri A, Skok JA, Schober M, Reinberg D, Sicinski P, Schrewe H, Tsirigos A, Zon LI, Aifantis I. MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis. Cell Stem Cell 2016; 19:784-799. [PMID: 27570068 DOI: 10.1016/j.stem.2016.08.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/25/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Hematopoietic-specific transcription factors require coactivators to communicate with the general transcription machinery and establish transcriptional programs that maintain hematopoietic stem cell (HSC) self-renewal, promote differentiation, and prevent malignant transformation. Mediator is a large coactivator complex that bridges enhancer-localized transcription factors with promoters, but little is known about Mediator function in adult stem cell self-renewal and differentiation. We show that MED12, a member of the Mediator kinase module, is an essential regulator of HSC homeostasis, as in vivo deletion of Med12 causes rapid bone marrow aplasia leading to acute lethality. Deleting other members of the Mediator kinase module does not affect HSC function, suggesting kinase-independent roles of MED12. MED12 deletion destabilizes P300 binding at lineage-specific enhancers, resulting in H3K27Ac depletion, enhancer de-activation, and consequent loss of HSC stemness signatures. As MED12 mutations have been described recently in blood malignancies, alterations in MED12-dependent enhancer regulation may control both physiological and malignant hematopoiesis.
Collapse
Affiliation(s)
- Beatriz Aranda-Orgilles
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Ricardo Saldaña-Meyer
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Eric Wang
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie Lau
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jasper Mullenders
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Pedro P Rocha
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Ramya Raviram
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - María Guillamot
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - María Sánchez-Díaz
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Clarisse Kayembe
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Nan Zhang
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Leonela Amoasii
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Avik Choudhuri
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jane A Skok
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Markus Schober
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Aristotelis Tsirigos
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Center for Health Informatics and Bioinformatics, NYU School of Medicine, New York, NY 10016, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Iannis Aifantis
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
10
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
11
|
A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol 2014; 35:789-804. [PMID: 25512612 DOI: 10.1128/mcb.00971-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ten-eleven translocation 2 gene (TET2) encodes a member of the TET family of DNA methylcytosine oxidases that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) to initiate the demethylation of DNA within genomic CpG islands. Somatic loss-of-function mutations of TET2 are frequently observed in human myelodysplastic syndrome (MDS), which is a clonal malignancy characterized by dysplastic changes of developing blood cell progenitors, leading to ineffective hematopoiesis. We used genome-editing technology to disrupt the zebrafish Tet2 catalytic domain. tet2(m/m) (homozygous for the mutation) zebrafish exhibited normal embryonic and larval hematopoiesis but developed progressive clonal myelodysplasia as they aged, culminating in myelodysplastic syndromes (MDS) at 24 months of age, with dysplasia of myeloid progenitor cells and anemia with abnormal circulating erythrocytes. The resultant tet2(m/m) mutant zebrafish lines show decreased levels of 5hmC in hematopoietic cells of the kidney marrow but not in other cell types, most likely reflecting the ability of other Tet family members to provide this enzymatic activity in nonhematopoietic tissues but not in hematopoietic cells. tet2(m/m) zebrafish are viable and fertile, providing an ideal model to dissect altered pathways in hematopoietic cells and, for small-molecule screens in embryos, to identify compounds with specific activity against tet2 mutant cells.
Collapse
|
12
|
Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 2014; 56:92-106. [DOI: 10.1016/j.biocel.2014.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
|
13
|
Carroll KJ, North TE. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp Hematol 2014; 42:684-96. [PMID: 24816275 PMCID: PMC4461861 DOI: 10.1016/j.exphem.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023]
Abstract
Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor, and effector cell emergence, expansion, and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell types can be identified and characterized. Further, myriad transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of blood stem and progenitor cell biology during development, in response to infection or injury, or in the setting of hematologic malignancy continues to deepen, zebrafish will remain essential for exploring the spatiotemporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease.
Collapse
Affiliation(s)
- Kelli J Carroll
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
14
|
Kuuluvainen E, Hakala H, Havula E, Sahal Estimé M, Rämet M, Hietakangas V, Mäkelä TP. Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila. J Biol Chem 2014; 289:16252-61. [PMID: 24778181 DOI: 10.1074/jbc.m113.541904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity.
Collapse
Affiliation(s)
- Emilia Kuuluvainen
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Heini Hakala
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Essi Havula
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki, the Department of Biosciences, University of Helsinki, P. O. Box 65, 00014 Helsinki
| | - Michelle Sahal Estimé
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Mika Rämet
- the Institute of Biomedical Technology, and BioMediTech, University of Tampere, 33014 Tampere, the Department of Pediatrics, Tampere University Hospital, 22521 Tampere, the Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, 90014 Oulu, and the Department of Children and Adolescents, Oulu University Hospital, 90029 Oulu, Finland
| | - Ville Hietakangas
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki, the Department of Biosciences, University of Helsinki, P. O. Box 65, 00014 Helsinki
| | - Tomi P Mäkelä
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki,
| |
Collapse
|
15
|
Wu SY, de Borsetti NH, Bain EJ, Bulow CR, Gamse JT. Mediator subunit 12 coordinates intrinsic and extrinsic control of epithalamic development. Dev Biol 2014; 385:13-22. [DOI: 10.1016/j.ydbio.2013.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/01/2013] [Accepted: 10/23/2013] [Indexed: 12/22/2022]
|
16
|
Jing CB, Chen Y, Dong M, Peng XL, Jia XE, Gao L, Ma K, Deng M, Liu TX, Zon LI, Zhu J, Zhou Y, Zhou Y. Phospholipase C gamma-1 is required for granulocyte maturation in zebrafish. Dev Biol 2012; 374:24-31. [PMID: 23220656 DOI: 10.1016/j.ydbio.2012.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
The regulation of hematopoiesis is generally evolutionarily conserved from zebrafish to mammals, including hematopoietic stem cell formation and blood cell lineage differentiation. In zebrafish, primitive granulocytes originate at two distinct regions, the anterior lateral plate mesoderm (A-LPM) and the intermediate cell mass (ICM). Few studies in the zebrafish have examined genes specifically required for the granulocytic lineage. In this study, we identified the responsible gene for a zebrafish mutant that has relatively normal hematopoiesis, except decreased expression of the granulocyte-specific gene mpx. Positional cloning revealed that phospholipase C gamma-1 (plcg1) was mutated. Deficiency of plcg1 function specifically affected development of granulocytes, especially the maturation process. These results suggested that plcg1 functioned specifically in zebrafish ICM granulopoiesis for the first time. Our studies suggest that specific pathways regulate the differentiation of the hematopoietic lineages.
Collapse
Affiliation(s)
- Chang-Bin Jing
- Key Laboratory of Stem Cell Biology, Laboratory of Development and Diseases, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kämpjärvi K, Mäkinen N, Kilpivaara O, Arola J, Heinonen HR, Böhm J, Abdel-Wahab O, Lehtonen HJ, Pelttari LM, Mehine M, Schrewe H, Nevanlinna H, Levine RL, Hokland P, Böhling T, Mecklin JP, Bützow R, Aaltonen LA, Vahteristo P. Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer 2012; 107:1761-5. [PMID: 23132392 PMCID: PMC3493861 DOI: 10.1038/bjc.2012.428] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Mediator complex participates in transcriptional regulation by connecting regulatory DNA sequences to the RNA polymerase II initiation complex. Recently, we discovered through exome sequencing that as many as 70% of uterine leiomyomas harbour specific mutations in exon 2 of mediator complex subunit 12 (MED12). In this work, we examined the role of MED12 exon 2 mutations in other tumour types. Methods: The frequency of MED12 exon 2 mutations was analysed in altogether 1158 tumours by direct sequencing. The tumour spectrum included mesenchymal tumours (extrauterine leiomyomas, endometrial polyps, lipomas, uterine leiomyosarcomas, other sarcomas, gastro-intestinal stromal tumours), hormone-dependent tumours (breast and ovarian cancers), haematological malignancies (acute myeloid leukaemias, acute lymphoid leukaemias, myeloproliferative neoplasms), and tumours associated with abnormal Wnt-signalling (colorectal cancers (CRC)). Results: Five somatic alterations were observed: three in uterine leiomyosarcomas (3/41, 7% Gly44Ser, Ala38_Leu39ins7, Glu35_Leu36delinsVal), and two in CRC (2/392, 0.5% Gly44Cys, Ala67Val). Conclusion: Somatic MED12 exon 2 mutations were observed in uterine leiomyosarcomas, suggesting that a subgroup of these malignant tumours may develop from a leiomyoma precursor. Mutations in CRC samples indicate that MED12 may, albeit rarely, contribute to CRC tumorigenesis.
Collapse
Affiliation(s)
- K Kämpjärvi
- Department of Medical Genetics, Genome-Scale Biology Research Program, University of Helsinki, PO Box 63, Helsinki FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Novel insights into the genetic controls of primitive and definitive hematopoiesis from zebrafish models. Adv Hematol 2012; 2012:830703. [PMID: 22888355 PMCID: PMC3410305 DOI: 10.1155/2012/830703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/20/2012] [Accepted: 06/08/2012] [Indexed: 11/17/2022] Open
Abstract
Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis.
Collapse
|