1
|
Lima J, Panayi MC, Sharp T, McHugh SB, Bannerman DM. More and Less Fear in Serotonin Transporter Knockout Mice. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70016. [PMID: 39917838 PMCID: PMC11803413 DOI: 10.1111/gbb.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Recent theories suggest that reduced serotonin transporter (5-HTT) function, which increases serotonin (5-HT) levels at the synapse, enhances neural plasticity and affects sensitivity to environmental cues. This may promote learning about emotionally relevant events. However, the boundaries that define such emotional learning remain to be established. This was investigated using 5-HTT knockout (5-HTTKO) mice which provide a model of long-term elevated 5-HT transmission and are associated with increased anxiety. Compared to wild-type controls, 5-HTTKO mice were faster to discriminate between an auditory cue that predicted footshock (CS+) and a cue predicting no footshock (CS-). Notably, this enhanced discrimination performance was driven not by faster learning that the CS+ predicted footshock, but rather by faster learning that the CS- cue signals the absence of footshock and thus provides temporary relief from fear/anxiety. Similarly, 5-HTTKO mice were also faster to reduce their fear of the CS+ cue during subsequent extinction. These findings are consistent with facilitated inhibitory learning that predicts the absence of potential threats in 5-HTTKO mice. However, 5-HTTKO mice also exhibited increased generalisation of fear learning about ambiguous aversive cues in a novel context, different from the training context. Thus, 5-HTTKO mice can exhibit both more and less fear compared to wild-type controls. Taken together, our results support the idea that loss of 5-HTT function, and corresponding increases in synaptic 5-HT availability, may facilitate learning by priming of aversive memories. This both facilitates inhibitory learning for fear memories but also enhances generalisation of fear.
Collapse
Affiliation(s)
- João Lima
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear MedicineCopenhagen University Hospital—Amager and HvidovreCopenhagenDenmark
| | - Marios C. Panayi
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| | - Trevor Sharp
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Stephen B. McHugh
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Medical Research Council Brain Network Dynamics UnitOxfordUK
| | | |
Collapse
|
2
|
Schipper P, Brivio P, de Leest D, Madder L, Asrar B, Rebuglio F, Verheij MMM, Kozicz T, Riva MA, Calabrese F, Henckens MJAG, Homberg JR. Impaired Fear Extinction Recall in Serotonin Transporter Knockout Rats Is Transiently Alleviated during Adolescence. Brain Sci 2019; 9:brainsci9050118. [PMID: 31121975 PMCID: PMC6562656 DOI: 10.3390/brainsci9050118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022] Open
Abstract
Adolescence is a developmental phase characterized by emotional turmoil and coincides with the emergence of affective disorders. Inherited serotonin transporter (5-HTT) downregulation in humans increases sensitivity to these disorders. To reveal whether and how 5-HTT gene variance affects fear-driven behavior in adolescence, we tested wildtype and serotonin transporter knockout (5-HTT-/-) rats of preadolescent, adolescent, and adult age for cued fear extinction and extinction recall. To analyze neural circuit function, we quantified inhibitory synaptic contacts and, through RT-PCR, the expression of c-Fos, brain-derived neurotrophic factor (BDNF), and NDMA receptor subunits, in the medial prefrontal cortex (mPFC) and amygdala. Remarkably, the impaired recall of conditioned fear that characterizes preadolescent and adult 5-HTT-/- rats was transiently normalized during adolescence. This did not relate to altered inhibitory neurotransmission, since mPFC inhibitory immunoreactivity was reduced in 5-HTT-/- rats across all ages and unaffected in the amygdala. Rather, since mPFC (but not amygdala) c-Fos expression and NMDA receptor subunit 1 expression were reduced in 5-HTT-/- rats during adolescence, and since PFC c-Fos correlated negatively with fear extinction recall, the temporary normalization of fear extinction during adolescence could relate to altered plasticity in the developing mPFC.
Collapse
Affiliation(s)
- Pieter Schipper
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, 20133 Milan, Italy.
| | - David de Leest
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Leonie Madder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Beenish Asrar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Federica Rebuglio
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayp Clinic, Rochester, MN 55905, USA.
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, 20133 Milan, Italy.
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, 20133 Milan, Italy.
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Karel P, Almacellas‐Barbanoj A, Prijn J, Kaag A, Reneman L, Verheij MM, Homberg JR. Appetitive to aversive counter-conditioning as intervention to reduce reinstatement of reward-seeking behavior: the role of the serotonin transporter. Addict Biol 2019; 24:344-354. [PMID: 29292566 DOI: 10.1111/adb.12596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
Counter-conditioning can be a valid strategy to reduce reinstatement of reward-seeking behavior. However, this has not been tested in laboratory animals with extended cocaine-taking backgrounds nor is it well understood, which individual differences may contribute to its effects. Here, we set out to investigate the influence of serotonin transporter (5-HTT) genotype on the effectiveness of counter-conditioning after extended access to cocaine self-administration. To this end, 5-HTT+/+ and 5-HTT-/- rats underwent a touch screen-based approach to test if reward-induced reinstatement of responding to a previously counter-conditioned cue is reduced, compared with a non-counter-conditioned cue, in a within-subject manner. We observed an overall extinction deficit of cocaine-seeking behavior in 5-HTT-/- rats and a resistance to punishment during the counter-conditioning session. Furthermore, we observed a significant decrease in reinstatement to cocaine and sucrose associated cues after counter-conditioning but only in 5-HTT+/+ rats. In short, we conclude that the paradigm we used was able to produce effects of counter-conditioning of sucrose seeking behavior in line with what is described in literature, and we demonstrate that it can be effective even after long-term exposure to cocaine, in a genotype-dependent manner.
Collapse
Affiliation(s)
- Peter Karel
- Department of Cognitive Neuroscience, Centre for NeuroscienceDonders Institute for Brain, Cognition and Behaviour The Netherlands
| | - Amanda Almacellas‐Barbanoj
- Department of Cognitive Neuroscience, Centre for NeuroscienceDonders Institute for Brain, Cognition and Behaviour The Netherlands
| | - Jeffrey Prijn
- Department of Cognitive Neuroscience, Centre for NeuroscienceDonders Institute for Brain, Cognition and Behaviour The Netherlands
| | - Anne‐Marije Kaag
- Addiction, Development, and Psychopathology (ADAPT) lab, Department of PsychologyUniversity of Amsterdam The Netherlands
- Department of Psychiatry, Academic Medical CenterUniversity of Amsterdam The Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Academic Medical CenterUniversity of Amsterdam The Netherlands
- Amsterdam Brain and CognitionUniversity of Amsterdam The Netherlands
| | - Michel M.M. Verheij
- Department of Cognitive Neuroscience, Centre for NeuroscienceDonders Institute for Brain, Cognition and Behaviour The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Centre for NeuroscienceDonders Institute for Brain, Cognition and Behaviour The Netherlands
| |
Collapse
|
4
|
Enhanced discriminative aversive learning and amygdala responsivity in 5-HT transporter mutant mice. Transl Psychiatry 2019; 9:139. [PMID: 30996249 PMCID: PMC6470159 DOI: 10.1038/s41398-019-0476-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
Genetic variation in the human serotonin transporter (5-HTT) has been linked to altered fear learning but the data are inconsistent and the mechanism is unclear. The present study investigated conditioned aversive learning in 5-HTT knockout (KO) mice while simultaneously recording neural network activity (theta oscillations) and hemodynamic responses (tissue oxygen delivery) from the amygdala, a brain region necessary for forming fearful memories. Conditioned aversive learning was measured using a discrimination learning task in which one auditory cue was paired with foot-shock, whereas a second auditory cue was not. Compared with wild-type mice, 5-HTTKO mice exhibited faster discrimination learning. This effect was associated with stronger theta frequency oscillations and greater hemodynamic changes in the amygdala in response to both the emotionally relevant cues and the unconditioned foot-shock stimulus. Furthermore, hemodynamic responses to the unconditioned stimulus predicted behavioral discrimination performance the following day. Acute pharmacological 5-HTT blockade in wild-type mice produced a similar effect, to the extent that administration of citalopram during the fear conditioning sessions enhanced fear memory recall. Collectively, our data argue that loss of 5-HTT function enhances amygdala responsivity to aversive events and facilitates learning for emotionally relevant cues.
Collapse
|
5
|
Kroes MCW, Henckens MJAG, Homberg JR. How serotonin transporter gene variance affects defensive behaviours along the threat imminence continuum. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Greven CU, Lionetti F, Booth C, Aron EN, Fox E, Schendan HE, Pluess M, Bruining H, Acevedo B, Bijttebier P, Homberg J. Sensory Processing Sensitivity in the context of Environmental Sensitivity: A critical review and development of research agenda. Neurosci Biobehav Rev 2019; 98:287-305. [DOI: 10.1016/j.neubiorev.2019.01.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
|
7
|
da Silva Lantyer A, Calcini N, Bijlsma A, Kole K, Emmelkamp M, Peeters M, Scheenen WJJ, Zeldenrust F, Celikel T. A databank for intracellular electrophysiological mapping of the adult somatosensory cortex. Gigascience 2018; 7:5232232. [PMID: 30521020 PMCID: PMC6302958 DOI: 10.1093/gigascience/giy147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/18/2018] [Indexed: 02/04/2023] Open
Abstract
Background Neurons in the supragranular layers of the somatosensory cortex integrate sensory (bottom-up) and cognitive/perceptual (top-down) information as they orchestrate communication across cortical columns. It has been inferred, based on intracellular recordings from juvenile animals, that supragranular neurons are electrically mature by the fourth postnatal week. However, the dynamics of the neuronal integration in adulthood is largely unknown. Electrophysiological characterization of the active properties of these neurons throughout adulthood will help to address the biophysical and computational principles of the neuronal integration. Findings Here, we provide a database of whole-cell intracellular recordings from 315 neurons located in the supragranular layers (L2/3) of the primary somatosensory cortex in adult mice (9–45 weeks old) from both sexes (females, N = 195; males, N = 120). Data include 361 somatic current-clamp (CC) and 476 voltage-clamp (VC) experiments, recorded using a step-and-hold protocol (CC, N = 257; VC, N = 46), frozen noise injections (CC, N = 104) and triangular voltage sweeps (VC, 10 (N = 132), 50 (N = 146) and 100 ms (N = 152)), from regular spiking (N = 169) and fast-spiking neurons (N = 66). Conclusions The data can be used to systematically study the properties of somatic integration and the principles of action potential generation across sexes and across electrically characterized neuronal classes in adulthood. Understanding the principles of the somatic transformation of postsynaptic potentials into action potentials will shed light onto the computational principles of intracellular information transfer in single neurons and information processing in neuronal networks, helping to recreate neuronal functions in artificial systems.
Collapse
Affiliation(s)
- Angelica da Silva Lantyer
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Niccolò Calcini
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Ate Bijlsma
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Melanie Emmelkamp
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Manon Peeters
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Wim J J Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Fleur Zeldenrust
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| |
Collapse
|
8
|
Azarfar A, Zhang Y, Alishbayli A, Miceli S, Kepser L, van der Wielen D, van de Moosdijk M, Homberg J, Schubert D, Proville R, Celikel T. An open-source high-speed infrared videography database to study the principles of active sensing in freely navigating rodents. Gigascience 2018; 7:5168870. [PMID: 30418576 PMCID: PMC6283211 DOI: 10.1093/gigascience/giy134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/21/2018] [Indexed: 11/12/2022] Open
Abstract
Background Active sensing is crucial for navigation. It is characterized by self-generated motor action controlling the accessibility and processing of sensory information. In rodents, active sensing is commonly studied in the whisker system. As rats and mice modulate their whisking contextually, they employ frequency and amplitude modulation. Understanding the development, mechanisms, and plasticity of adaptive motor control will require precise behavioral measurements of whisker position. Findings Advances in high-speed videography and analytical methods now permit collection and systematic analysis of large datasets. Here, we provide 6,642 videos as freely moving juvenile (third to fourth postnatal week) and adult rodents explore a stationary object on the gap-crossing task. The dataset includes sensory exploration with single- or multi-whiskers in wild-type animals, serotonin transporter knockout rats, rats received pharmacological intervention targeting serotonergic signaling. The dataset includes varying background illumination conditions and signal-to-noise ratios (SNRs), ranging from homogenous/high contrast to non-homogenous/low contrast. A subset of videos has been whisker and nose tracked and are provided as reference for image processing algorithms. Conclusions The recorded behavioral data can be directly used to study development of sensorimotor computation, top-down mechanisms that control sensory navigation and whisker position, and cross-species comparison of active sensing. It could also help to address contextual modulation of active sensing during touch-induced whisking in head-fixed vs freely behaving animals. Finally, it provides the necessary data for machine learning approaches for automated analysis of sensory and motion parameters across a wide variety of signal-to-noise ratios with accompanying human observer-determined ground-truth.
Collapse
Affiliation(s)
- Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Yiping Zhang
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Artoghrul Alishbayli
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Stéphanie Miceli
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical School, Kapittelweg 29, Nijmegen, 6525 EN The Netherlands
| | - Lara Kepser
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical School, Kapittelweg 29, Nijmegen, 6525 EN The Netherlands
| | - Daan van der Wielen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Mike van de Moosdijk
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical School, Kapittelweg 29, Nijmegen, 6525 EN The Netherlands
| | - Dirk Schubert
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical School, Kapittelweg 29, Nijmegen, 6525 EN The Netherlands
| | - Rémi Proville
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| |
Collapse
|
9
|
Shan L, Guo HY, van den Heuvel CNAM, van Heerikhuize J, Homberg JR. Impaired fear extinction in serotonin transporter knockout rats is associated with increased 5-hydroxymethylcytosine in the amygdala. CNS Neurosci Ther 2018; 24:810-819. [PMID: 29427306 PMCID: PMC6120487 DOI: 10.1111/cns.12822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Aims One potential risk factor for posttraumatic stress disorder (PTSD) involves the low activity (short; s) allelic variant of the serotonin transporter‐linked polymorphic region (5‐HTTLPR), possibly due to reduced prefrontal control over the amygdala. Evidence shows that DNA methylation/demethylation is crucial for fear extinction in these brain areas and is associated with neuronal activation marker c‐Fos expression. We hypothesized that impaired fear extinction in serotonin transporter knockout (5‐HTT−/−) rats is related to changes in DNA (de) methylation and c‐Fos expression in the prefrontal cortex (PFC) and/or amygdala. Methods 5‐HTT−/− and 5‐HTT+/+ rats were subjected to fear extinction. 2 hours after the extinction session, the overall levels of DNA methylation (5‐mC), demethylation (5‐hmC), and c‐Fos in fear extinction and nonfear extinction rats were measured by immunohistochemistry. Results 5‐HTT−/− rats displayed decreased fear extinction. This was associated with reduced c‐Fos activity in the infralimbic PFC. In the central nucleus of the amygdala, c‐Fos immunoreactivity was increased in the fear extinction group compared to the no‐fear extinction group, regardless of genotype. 5‐hmC levels were unaltered in the PFC, but reduced in the amygdala of nonextinction 5‐HTT−/− rats compared to nonextinction wild‐type rats, which caught up to wild‐type levels during fear extinction. 5‐mC levels were stable in central amygdala in both wild‐type and 5‐HTT−/− extinction rats. Finally, c‐Fos and 5‐mC levels were correlated with the prelimbic PFC, but not amygdala. Conclusions In the amygdala, DNA demethylation, independent from c‐Fos activation, may contribute to individual differences in risk for PTSD, as conferred by the 5‐HTTLPR s‐allele.
Collapse
Affiliation(s)
- Ling Shan
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hang-Yuan Guo
- Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Corina N A M van den Heuvel
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joop van Heerikhuize
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Karel P, Calabrese F, Riva M, Brivio P, Van der Veen B, Reneman L, Verheij M, Homberg J. d-Cycloserine enhanced extinction of cocaine-induced conditioned place preference is attenuated in serotonin transporter knockout rats. Addict Biol 2018; 23:120-129. [PMID: 27957784 DOI: 10.1111/adb.12483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 11/15/2016] [Indexed: 12/01/2022]
Abstract
d-Cycloserine (DCS), a partial NMDA receptor agonist, has been proposed as a cognitive enhancer to facilitate the extinction of drug-related memories. However, it is unknown whether there are individual differences in the efficacy of DCS. Here, we set out to investigate the influence of serotonin transporter (5-HTT) genotype on DCS treatment outcome and the underlying neural mechanism. To that end, we first determined the mRNA levels of several NMDA receptor subunits and observed a reduction in NR1/NR2C receptors in the ventromedial prefrontal cortex and nucleus accumbens of 5-HTT-/- compared with 5-HTT+/+ rats. Based on this finding, we hypothesized a lower sensitivity to DCS in the 5-HTT-/- rats. To test this, rats were trained in a cocaine-induced conditioned place preference (CPP) paradigm. A significant extinction of CPP was observed in 5-HTT+/+ rats receiving 1 mg/kg i.v. DCS, while a similar effect was found in the 5-HTT-/- rats only after 5 mg/kg. Following CPP, we tested if DCS were able to reduce FosB/∆FosB protein expression, a molecular switch for cocaine-seeking behaviour. We observed an overall lower number of FosB/∆FosB positive cells in 5-HTT-/- ventromedial prefrontal cortex and amygdala and an overall effect of DCS treatment on the number of positive cells in the nucleus accumbens. In conclusion, in this study, we show that the dosing of DCS to facilitate the extinction of cocaine-seeking behaviour is, at least partially, determined by 5-HTT genotype.
Collapse
Affiliation(s)
- Peter Karel
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour; Radboudumc; The Netherlands
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences; Universita'degli Studi di Milano; Italy
| | - Marco Riva
- Department of Pharmacological and Biomolecular Sciences; Universita'degli Studi di Milano; Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences; Universita'degli Studi di Milano; Italy
| | - Bas Van der Veen
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour; Radboudumc; The Netherlands
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Center; University of Amsterdam; The Netherlands
| | - Michel Verheij
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour; Radboudumc; The Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour; Radboudumc; The Netherlands
| |
Collapse
|
11
|
Schipper P, Henckens MJAG, Borghans B, Hiemstra M, Kozicz T, Homberg JR. Prior fear conditioning does not impede enhanced active avoidance in serotonin transporter knockout rats. Behav Brain Res 2017; 326:77-86. [PMID: 28286283 DOI: 10.1016/j.bbr.2017.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Stressors can be actively or passively coped with, and adequate adaption of the coping response to environmental conditions can reduce their potential deleterious effects. One major factor influencing stress coping behaviour is serotonin transporter (5-HTT) availability. Abolishment of 5-HTT is known to impair fear extinction but facilitates acquisition of signalled active avoidance (AA), a behavioural task in which an animal learns to avoid an aversive stimulus that is predicted by a cue. Flexibility in adapting coping behaviour to the nature of the stressor shapes resilience to stress-related disorders. Therefore, we investigated the relation between 5-HTT expression and ability to adapt a learned coping response to changing environmental conditions. To this end, we first established and consolidated a cue-conditioned passive fear response in 5-HTT-/- and wildtype rats. Next, we used the conditioned stimulus (CS) to signal oncoming shocks during signalled AA training in 5-HTT-/- and wildtype rats to study their capability to acquire an active coping response to the CS following fear conditioning. Finally, we investigated the behavioural response to the CS in a novel environment and measured freezing, exploration and self-grooming, behaviours reflective of stress coping strategy. We found that fear conditioned and sham conditioned 5-HTT-/- animals acquired the signalled AA response faster than wildtypes, while prior conditioning briefly delayed AA learning similarly in both genotypes. Subsequent exposure to the CS in the novel context reduced freezing and increased locomotion in 5-HTT-/- compared to wildtype rats. This indicates that improved AA performance in 5-HTT-/- rats resulted in a weaker residual passive fear response to the CS in a novel context. Fear conditioning prior to AA training did not affect freezing upon re-encountering the CS, although it did reduce locomotion in 5-HTT-/- rats. We conclude that independent of 5-HTT signalling, prior fear conditioning does not greatly impair the acquisition of subsequent active coping behaviour when the situation allows for it. Abolishment of 5-HTT results in a more active coping style in case of novelty-induced fear and upon CS encounter in a novel context after AA learning.
Collapse
Affiliation(s)
- Pieter Schipper
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands; Anatomy Department, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 109), 6525 EZ Nijmegen, The Netherlands
| | - Bart Borghans
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands
| | - Marlies Hiemstra
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands
| | - Tamas Kozicz
- Anatomy Department, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 109), 6525 EZ Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Miceli S, Nadif Kasri N, Joosten J, Huang C, Kepser L, Proville R, Selten MM, van Eijs F, Azarfar A, Homberg JR, Celikel T, Schubert D. Reduced Inhibition within Layer IV of Sert Knockout Rat Barrel Cortex is Associated with Faster Sensory Integration. Cereb Cortex 2017; 27:933-949. [PMID: 28158484 PMCID: PMC5390402 DOI: 10.1093/cercor/bhx016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/07/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Neural activity is essential for the maturation of sensory systems. In the rodent primary somatosensory cortex (S1), high extracellular serotonin (5-HT) levels during development impair neural transmission between the thalamus and cortical input layer IV (LIV). Rodent models of impaired 5-HT transporter (SERT) function show disruption in their topological organization of S1 and in the expression of activity-regulated genes essential for inhibitory cortical network formation. It remains unclear how such alterations affect the sensory information processing within cortical LIV. Using serotonin transporter knockout (Sert-/-) rats, we demonstrate that high extracellular serotonin levels are associated with impaired feedforward inhibition (FFI), fewer perisomatic inhibitory synapses, a depolarized GABA reversal potential and reduced expression of KCC2 transporters in juvenile animals. At the neural population level, reduced FFI increases the excitatory drive originating from LIV, facilitating evoked representations in the supragranular layers II/III. The behavioral consequence of these changes in network excitability is faster integration of the sensory information during whisker-based tactile navigation, as Sert-/- rats require fewer whisker contacts with tactile targets and perform object localization with faster reaction times. These results highlight the association of serotonergic homeostasis with formation and excitability of sensory cortical networks, and consequently with sensory perception.
Collapse
Affiliation(s)
- Stéphanie Miceli
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Neural Networks, Center of Advanced European Studies and Research (caesar), Max Planck Society, Germany
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joep Joosten
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Chao Huang
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lara Kepser
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rémi Proville
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Martijn M. Selten
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Fenneke van Eijs
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Sensory processing sensitivity and serotonin gene variance: Insights into mechanisms shaping environmental sensitivity. Neurosci Biobehav Rev 2016; 71:472-483. [PMID: 27697602 DOI: 10.1016/j.neubiorev.2016.09.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
Abstract
Current research supports the notion that the apparently innate trait Sensory Processing Sensitivity (SPS) may act as a modulator of development as function of the environment. Interestingly, the common serotonin transporter linked polymorphic region (5-HTTLPR) does the same. While neural mechanisms underlying SPS are largely unknown, those associated with the 5-HTTLPR have been extensively investigated. We perform a comparative analysis of research findings on sensory processing facets associated with the trait and polymorphism to: 1. detect shared phenotypes and frame a hypothesis towards neural mechanisms underlying SPS; 2. increase the understanding of 5-HTTLPR-associated behavioral patterns. Trait and polymorphism are both associated with differential susceptibility to environmental stimuli; additionally, both involve 1. having stronger emotional reactions, 2. processing of sensory information more deeply, 3. being more aware of environmental subtleties, and 4. being easily overstimulated. We discuss neural mechanisms and environmental conditions that may underlie these four facets. Besides urging the actual assessment of the link between the two, the conclusions of our analyses may guide and focus future research strategies.
Collapse
|
14
|
Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neurosci Biobehav Rev 2016; 68:504-529. [PMID: 27328783 DOI: 10.1016/j.neubiorev.2016.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Rodent defense behavior assays have been widely used as preclinical models of anxiety to study possibly therapeutic anxiety-reducing interventions. However, some proposed anxiety-modulating factors - genes, drugs and stressors - have had discordant effects across different studies. To reconcile the effect sizes of purported anxiety factors, we conducted systematic review and meta-analyses of the literature on ten anxiety-linked interventions, as examined in the elevated plus maze, open field and light-dark box assays. Diazepam, 5-HT1A receptor gene knockout and overexpression, SERT gene knockout and overexpression, pain, restraint, social isolation, corticotropin-releasing hormone and Crhr1 were selected for review. Eight interventions had statistically significant effects on rodent anxiety, while Htr1a overexpression and Crh knockout did not. Evidence for publication bias was found in the diazepam, Htt knockout, and social isolation literatures. The Htr1a and Crhr1 results indicate a disconnect between preclinical science and clinical research. Furthermore, the meta-analytic data confirmed that genetic SERT anxiety effects were paradoxical in the context of the clinical use of SERT inhibitors to reduce anxiety.
Collapse
|
15
|
Evidence of functional brain reorganization on the basis of blood flow changes in the CAG140 knock-in mouse model of Huntington’s disease. Neuroreport 2016; 27:632-9. [DOI: 10.1097/wnr.0000000000000587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Borghans B, Homberg JR. Animal models for posttraumatic stress disorder: An overview of what is used in research. World J Psychiatry 2015; 5:387-396. [PMID: 26740930 PMCID: PMC4694552 DOI: 10.5498/wjp.v5.i4.387] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a common anxiety disorder characterised by its persistence of symptoms after a traumatic experience. Although some patients can be cured, many do not benefit enough from the psychological therapies or medication strategies used. Many researchers use animal models to learn more about the disorder and several models are available. The most-used physical stressor models are single-prolonged stress, restraint stress, foot shock, stress-enhanced fear learning, and underwater trauma. Common social stressors are housing instability, social instability, early-life stress, and social defeat. Psychological models are not as diverse and rely on controlled exposure to the test animal’s natural predator. While validation of these models has been resolved with replicated symptoms using analogous stressors, translating new findings to human patients remains essential for their impact on the field. Choosing a model to experiment with can be challenging; this overview of what is possible with individual models may aid in making a decision.
Collapse
|
17
|
Åhs F, Frick A, Furmark T, Fredrikson M. Human serotonin transporter availability predicts fear conditioning. Int J Psychophysiol 2015; 98:515-9. [DOI: 10.1016/j.ijpsycho.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 11/29/2022]
|
18
|
Barthas F, Sellmeijer J, Hugel S, Waltisperger E, Barrot M, Yalcin I. The anterior cingulate cortex is a critical hub for pain-induced depression. Biol Psychiatry 2015; 77:236-245. [PMID: 25433903 DOI: 10.1016/j.biopsych.2014.08.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Besides chronic stress, chronic pain is a prevalent determinant for depression. Changes induced in specific brain regions by sustained pain may alter the processing of affective information, thus resulting in anxiodepressive disorders. Here, we compared the role of the anterior cingulate cortex (ACC) and the posterior insular cortex in the anxiodepressive, sensory, and affective aspects of chronic pain. METHODS Neuropathic pain was induced by cuffing the right sciatic nerve of C57BL/6J mice. Lesions were performed by local injection of ibotenic acid and chronic activation of the ACC by optogenetic stimulation. Anxiodepressive-related behaviors were evaluated through the novelty suppressed feeding, marble burying, splash, and forced swimming tests. Mechanical thresholds were determined using von Frey filaments, and the relief of spontaneous pain was determined by using place conditioning. RESULTS The ACC lesion prevented the anxiodepressive consequences of chronic pain without affecting the sensory mechanical allodynia. Conversely, the tonic or spontaneous pain and the anxiodepressive consequences of pain remained present after posterior insular cortex lesion, even though the mechanical allodynia was suppressed. Furthermore, optogenetic stimulation of the ACC was sufficient to induce anxiety and depressive-like behaviors in naïve animals. CONCLUSIONS Our results show that, at cortical level, the sensory component of chronic pain remains functionally segregated from its affective and anxiodepressive components. Spontaneous tonic pain and evoked allodynia can be experimentally dissociated. Furthermore, the ACC appears as a critical hub for mood disorders, including for the anxiodepressive consequences of chronic pain, and thus constitutes an important target for divulging the underlying mechanism.
Collapse
Affiliation(s)
- Florent Barthas
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique; Université de Strasbourg, Strasbourg, France
| | - Jim Sellmeijer
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique; Université de Strasbourg, Strasbourg, France
| | - Sylvain Hugel
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique
| | - Elisabeth Waltisperger
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique.
| |
Collapse
|
19
|
Holschneider DP, Wang Z, Pang RD. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study. Front Neuroinform 2014; 8:61. [PMID: 24966831 PMCID: PMC4052632 DOI: 10.3389/fninf.2014.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/24/2014] [Indexed: 12/29/2022] Open
Abstract
Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas–findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture.
Collapse
Affiliation(s)
- Daniel P Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California Los Angeles, CA, USA ; Departments of Neurology, Cell and Neurobiology, Biomedical Engineering, University of Southern California Los Angeles, CA, USA
| | - Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California Los Angeles, CA, USA
| | - Raina D Pang
- Department of Psychiatry and Behavioral Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
20
|
van den Bos R, Davies W, Dellu-Hagedorn F, Goudriaan AE, Granon S, Homberg J, Rivalan M, Swendsen J, Adriani W. Cross-species approaches to pathological gambling: a review targeting sex differences, adolescent vulnerability and ecological validity of research tools. Neurosci Biobehav Rev 2013; 37:2454-71. [PMID: 23867802 DOI: 10.1016/j.neubiorev.2013.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Decision-making plays a pivotal role in daily life as impairments in processes underlying decision-making often lead to an inability to make profitable long-term decisions. As a case in point, pathological gamblers continue gambling despite the fact that this disrupts their personal, professional or financial life. The prevalence of pathological gambling will likely increase in the coming years due to expanding possibilities of on-line gambling through the Internet and increasing liberal attitudes towards gambling. It therefore represents a growing concern for society. Both human and animal studies rapidly advance our knowledge on brain-behaviour processes relevant for understanding normal and pathological gambling behaviour. Here, we review in humans and animals three features of pathological gambling which hitherto have received relatively little attention: (1) sex differences in (the development of) pathological gambling, (2) adolescence as a (putative) sensitive period for (developing) pathological gambling and (3) avenues for improving ecological validity of research tools. Based on these issues we also discuss how research in humans and animals may be brought in line to maximize translational research opportunities.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands; Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kinast K, Peeters D, Kolk SM, Schubert D, Homberg JR. Genetic and pharmacological manipulations of the serotonergic system in early life: neurodevelopmental underpinnings of autism-related behavior. Front Cell Neurosci 2013; 7:72. [PMID: 23781172 PMCID: PMC3679613 DOI: 10.3389/fncel.2013.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/30/2013] [Indexed: 12/28/2022] Open
Abstract
Serotonin, in its function as neurotransmitter, is well-known for its role in depression, autism and other neuropsychiatric disorders, however, less known as a neurodevelopmental factor. The serotonergic system is one of the earliest to develop during embryogenesis and early changes in serotonin levels can have large consequences for the correct development of specific brain areas. The regulation and functioning of serotonin is influenced by genetic risk factors, such as the serotonin transporter polymorphism in humans. This polymorphism is associated with anxiety-related symptoms, changes in social behavior, and cortical gray and white matter changes also seen in patients suffering from autism spectrum disorders (ASD). The human polymorphism can be mimicked by the knockout of the serotonin transporter in rodents, which are as a model system therefore vital to explore the precise neurobiological mechanisms. Moreover, there are pharmacological challenges influencing serotonin in early life, like prenatal/neonatal exposure to selective serotonin reuptake inhibitors (SSRI) in depressed pregnant women. There is accumulating evidence that this dysregulation of serotonin during critical phases of brain development can lead to ASD-related symptoms in children, and reduced social behavior and increased anxiety in rodents. Furthermore, prenatal valproic acid (VPA) exposure, a mood stabilizing drug which is also thought to interfere with serotonin levels, has the potency to induce ASD-like symptoms and to affect the development of the serotonergic system. Here, we review and compare the neurodevelopmental and behavioral consequences of serotonin transporter gene variation, and prenatal SSRI and VPA exposure in the context of ASD.
Collapse
Affiliation(s)
- Karsten Kinast
- Behavioural Neurogenetics, Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
22
|
Miceli S, Negwer M, van Eijs F, Kalkhoven C, van Lierop I, Homberg J, Schubert D. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV. Front Cell Neurosci 2013; 7:88. [PMID: 23761736 PMCID: PMC3675331 DOI: 10.3389/fncel.2013.00088] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/22/2013] [Indexed: 02/01/2023] Open
Abstract
Homeostatic regulation of serotonin (5-HT) concentration is critical for “normal” topographical organization and development of thalamocortical (TC) afferent circuits. Down-regulation of the serotonin transporter (SERT) and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1). Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT−/−) rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i) the TC projections of the ventroposteromedial thalamic nucleus toward S1, (ii) the general barrel-field pattern, and (iii) the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 [spiny stellate (SpSt) and pyramidal cells]. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections toward the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT−/− rats. In layer IV, both excitatory SpSt and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV SpSt cells gave rise to a prominent projection toward the infragranular layer Vb. Our findings point to a structural and functional reorganization of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel cortex.
Collapse
Affiliation(s)
- Stéphanie Miceli
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
van der Marel K, Homberg JR, Otte WM, Dijkhuizen RM. Functional and structural neural network characterization of serotonin transporter knockout rats. PLoS One 2013; 8:e57780. [PMID: 23451267 PMCID: PMC3581479 DOI: 10.1371/journal.pone.0057780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 01/29/2013] [Indexed: 12/20/2022] Open
Abstract
Brain serotonin homeostasis is crucially maintained by the serotonin transporter (5-HTT), and its down-regulation has been linked to increased vulnerability for anxiety- and depression-related behavior. Studies in 5-HTT knockout (5-HTT-/-) rodents have associated inherited reduced functional expression of 5-HTT with increased sensitivity to adverse as well as rewarding environmental stimuli, and in particular cocaine hyperresponsivity. 5-HTT down-regulation may affect normal neuronal wiring of implicated corticolimbic cerebral structures. To further our understanding of its contribution to potential alterations in basal functional and structural properties of neural network configurations, we applied resting-state functional MRI (fMRI), pharmacological MRI of cocaine-induced activation, and diffusion tensor imaging (DTI) in 5-HTT-/- rats and wild-type controls (5-HTT+/+). We found that baseline functional connectivity values and cocaine-induced neural activity within the corticolimbic network was not significantly altered in 5-HTT-/- versus 5-HTT+/+ rats. Similarly, DTI revealed mostly intact white matter structural integrity, except for a reduced fractional anisotropy in the genu of the corpus callosum of 5-HTT-/- rats. At the macroscopic level, analyses of complex graphs constructed from either functional connectivity values or structural DTI-based tractography results revealed that key properties of brain network organization were essentially similar between 5-HTT+/+ and 5-HTT-/- rats. The individual tests for differences between 5-HTT+/+ and 5-HTT-/- rats were capable of detecting significant effects ranging from 5.8% (fractional anisotropy) to 26.1% (pharmacological MRI) and 29.3% (functional connectivity). Tentatively, lower fractional anisotropy in the genu of the corpus callosum could indicate a reduced capacity for information integration across hemispheres in 5-HTT-/- rats. Overall, the comparison of 5-HTT-/- and wild-type rats suggests mostly limited effects of 5-HTT genotype on MRI-based measures of brain morphology and function.
Collapse
Affiliation(s)
- Kajo van der Marel
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Nonkes LJP, Homberg JR. Perseverative instrumental and Pavlovian responding to conditioned stimuli in serotonin transporter knockout rats. Neurobiol Learn Mem 2012; 100:48-55. [PMID: 23261854 DOI: 10.1016/j.nlm.2012.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023]
Abstract
Environmental stimuli can influence behavior via the process of Pavlovian conditioning. Recent genetic research suggests that some individuals are more sensitive to environmental stimuli for behavioral guidance than others. One important mediator of this effect is serotonin transporter (5-HTT) genetic variance, which increases sensitivity to Pavlovian conditioned stimuli through changes in the build-up of corticolimbic circuits. As these stimuli can have reinforcing effects on instrumental responding, we here investigated their effects on instrumental behavior in 5-HTT knockout rats and their wild-type counterparts by means of the signal attenuation paradigm. In this paradigm animals acquired a Pavlovian association between a stimulus and food reward, and subsequently they had to lever press in order to gain access to this food reward-associated stimulus. Thereafter, half of the animals underwent extinction training during which extinction of the primary Pavlovian association was induced via non-reinforced stimulus presentations, whereas the other half did not receive this training. During a final test session all animals were tested for instrumental responding for the non-reinforced Pavlovian conditioned stimulus, as well as instrumental and Pavlovian responding to the stimulus after an initial lever-press. No genotype differences were observed during the training and extinction sessions. However, during the test session 5-HTT knockout rats that had not received prior extinction training displayed excessive instrumental responding. This was specifically observed during presentation of the stimulus (induced by the first lever press) and was accompanied by an increased number of feeder visits after termination of the stimulus presentation. An additionally performed c-Fos immunohistochemistry study revealed that the behaviors in these animals were associated with abnormal c-Fos immunoreactivity in the orbitofrontal cortex and basolateral amygdala, regions important for the acquisition and maintenance of Pavlovian conditioned stimuli. These findings complement earlier findings showing that 5-HTT knockout animals' behavior is heavily influenced by environmental stimuli and indicate that this extends to the instrumental domain.
Collapse
Affiliation(s)
- Lourens J P Nonkes
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, The Netherlands
| | | |
Collapse
|
25
|
Homberg JR, van den Hove DL. The serotonin transporter gene and functional and pathological adaptation to environmental variation across the life span. Prog Neurobiol 2012; 99:117-27. [DOI: 10.1016/j.pneurobio.2012.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 11/24/2022]
|
26
|
Homberg JR. Serotonergic modulation of conditioned fear. SCIENTIFICA 2012; 2012:821549. [PMID: 24278743 PMCID: PMC3820492 DOI: 10.6064/2012/821549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 06/02/2023]
Abstract
Conditioned fear plays a key role in anxiety disorders as well as depression and other neuropsychiatric conditions. Understanding how neuromodulators drive the associated learning and memory processes, including memory consolidation, retrieval/expression, and extinction (recall), is essential in the understanding of (individual differences in vulnerability to) these disorders and their treatment. The human and rodent studies I review here together reveal, amongst others, that acute selective serotonin reuptake inhibitor (SSRI) treatment facilitates fear conditioning, reduces contextual fear, and increases cued fear, chronic SSRI treatment reduces both contextual and cued fear, 5-HT1A receptors inhibit the acquisition and expression of contextual fear, 5-HT2A receptors facilitates the consolidation of cued and contextual fear, inactivation of 5-HT2C receptors facilitate the retrieval of cued fear memory, the 5-HT3 receptor mediates contextual fear, genetically induced increases in serotonin levels are associated with increased fear conditioning, impaired cued fear extinction, or impaired extinction recall, and that genetically induced 5-HT depletion increases fear conditioning and contextual fear. Several explanations are presented to reconcile seemingly paradoxical relationships between serotonin levels and conditioned fear.
Collapse
Affiliation(s)
- Judith R. Homberg
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Geert Grooteplein 21, Route 126, 6525 EZ Nijmegen, The Netherlands
| |
Collapse
|
27
|
Pang RD, Holschneider DP, Miller JD. Circadian rhythmicity in serotonin transporter knockout mice. Life Sci 2012; 91:365-368. [PMID: 22884802 DOI: 10.1016/j.lfs.2012.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/25/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
AIMS Serotonin transporter knockout (5-HTT KO) mice exhibit elevated basal extracellular serotonin, increased depressive-like behaviors and increased rapid eye movement sleep. Because abnormalities of circadian rhythms are associated with mood disorders, we tested the hypothesis that 5-HTT KO mice would have altered circadian rhythmicity. MAIN METHODS Homecage locomotor activity was recorded in wild-type (WT) and KO mice under a standard 12:12 light-dark cycle. After 4weeks of recording, mice received a one-hour light pulse at circadian time (CT) 14 and then were kept under constant darkness for 3weeks. KEY FINDINGS There were no significant differences in amplitude, period, acrophase or total home cage locomotor activity between WT and KO mice during the 12:12 light-dark cycle or during constant darkness. The mean phase delay to a CT 14 light pulse was significantly attenuated in KO compared to WT mice. SIGNIFICANCE Acute increases in serotonin have been reported to attenuate photic phase shifts. The current study demonstrates that this effect is maintained in the face of a lifelong absence of 5-HTT.
Collapse
Affiliation(s)
- Raina D Pang
- Graduate Program in Neuroscience, University of Southern California, United States.
| | - Daniel P Holschneider
- Graduate Program in Neuroscience, University of Southern California, United States; Department of Psychiatry and Behavioral Science, University of Southern California, United States; Department of Neurology, University of Southern California, United States; Department of Biomedical Engineering, University of Southern California, United States; Department of Cell and Neurobiology, University of Southern California, United States
| | - Joseph D Miller
- Department of Cell and Neurobiology, University of Southern California, United States
| |
Collapse
|
28
|
Nonkes LJP, van de Vondervoort IIGM, de Leeuw MJC, Wijlaars LP, Maes JHR, Homberg JR. Serotonin transporter knockout rats show improved strategy set-shifting and reduced latent inhibition. Learn Mem 2012; 19:190-3. [PMID: 22505721 DOI: 10.1101/lm.025908.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT(-/-)) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting (EDSS), heavily depends on the medial prefrontal cortex. This region shows functional changes in 5-HTT(-/-) rodents as well. Here we subjected 5-HTT(-/-) rats and their wild-type counterparts to an EDSS paradigm and a supplementary latent inhibition task. Results indicate that 5-HTT(-/-) rats also show improved EDSS, and indicate that reduced latent inhibition may contribute as an underlying mechanism.
Collapse
Affiliation(s)
- Lourens J P Nonkes
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, 6525 EZ, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
The stress-coping (mis)match hypothesis for nature×nurture interactions. Brain Res 2012; 1432:114-21. [DOI: 10.1016/j.brainres.2011.11.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 01/18/2023]
|