1
|
The Efficiency of Stem Cells (SCs) Differentiation into Functional Hepatocytes for Treating Liver Disorders: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4868048. [PMID: 36685673 PMCID: PMC9851781 DOI: 10.1155/2023/4868048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Stem cells provided new opportunity to treat various diseases, including liver disorders. Stem cells are unspecialized cells, stimulating influential research interest be indebted to their multipotent self-renewal capacity and differentiation characteristics into several specialized cell types. Many factors contribute to their differentiation into different cell types such as insulin producing cells, osteoblast, and hepatocytes. Accordingly, wide range methods and materials have been used to transform stem cells into hepatocytes, but effectiveness of differentiation is different and depends on several factors such as cell-to-cell adhesion, cell-to-cell contact, and cell biological change. Search was done in PubMed, Scopus, and WOS to evaluate results of studies about stem cells differentiation for higher efficacy. Among more than 28000 papers, 51 studies were considered eligible for more evaluations. Results indicated that most studies were performed on mesenchymal stem cells compared with other types. Acute liver failure was the most investigated liver disorder, and tissue engineering was the most investigated differentiation methods. Also, functional parameters were the most evaluated parameters in assessing differentiation efficacy. We summarize recent advances in increasing efficiency of stem cells differentiation using varied materials, since promising results of this review, further studies are needed to assess efficiency and safety of these cells transplantation in some liver disease treatment.
Collapse
|
2
|
Sakurai T, Saruta M. Positioning and Usefulness of Biomarkers in Inflammatory Bowel Disease. Digestion 2023; 104:30-41. [PMID: 36404714 PMCID: PMC9843547 DOI: 10.1159/000527846] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mucosal healing (MH) was proposed to be an ideal treatment goal for patients with inflammatory bowel disease (IBD). Instead of endoscopy to confirm MH, biomarkers are frequently used and have become an indispensable modality for the clinical examination of patients with IBD. SUMMARY Common biomarkers of IBD include C-reactive protein (CRP), erythrocyte sedimentation rate, antineutrophil cytoplasmic antibodies, anti-Saccharomyces cerevisiae antibodies, leucine-rich α2 glycoprotein, fecal calprotectin (FCP), and the fecal immunochemical test. Biomarkers play five major roles in the management of IBD: (1) diagnosing and distinguishing between IBD and non-IBD or ulcerative colitis and Crohn's disease; (2) predicting treatment response, especially before administrating biologics; (3) monitoring and grasping endoscopic or histological disease activity; (4) replacing endoscopy for diagnosing MH, including endoscopic and histological remission; and (5) predicting recurrence before disease activity appears through symptoms. Many reports have demonstrated the usefulness of CRP and FCP for those five roles; however, they have limitations for diagnosing MH or predicting treatment response. In general, FCP has better ability in those positions than CRP; additionally, leucine-rich α2 glycoprotein can diagnose endoscopic disease activity better than CRP. The novel biomarker, prostaglandin E-major urinary metabolite, and anti-αvβ6 antibody are expected to be noninvasive and reliable biomarkers; however, more evidence is required for future studies. Oncostatin M and microRNA are also prospects, in addition to other familiar and novel biomarkers. KEY MESSAGES Each biomarker has a useful feature; therefore, we should consider their features and use appropriate biomarkers for the five roles to enable noninvasive and smooth management of IBD.
Collapse
|
3
|
Zárybnický T, Matoušková P, Skálová L, Boušová I. The Hepatotoxicity of Alantolactone and Germacrone: Their Influence on Cholesterol and Lipid Metabolism in Differentiated HepaRG Cells. Nutrients 2020; 12:nu12061720. [PMID: 32521813 PMCID: PMC7353089 DOI: 10.3390/nu12061720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
The sesquiterpenes alantolactone (ATL) and germacrone (GER) are potential anticancer agents of natural origin. Their toxicity and biological activity have been evaluated using the differentiated HepaRG (dHepaRG) cells, a hepatocyte-like model. The half-maximal inhibitory concentrations of cell viability after 24-h treatment of dHepaRG cells are approximately 60 µM for ATL and 250 µM for GER. However, both sesquiterpenes induce reactive oxygen species (ROS) formation in non-toxic concentrations and significantly dysregulate the mRNA expression of several functional markers of mature hepatocytes. They similarly decrease the protein level of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and their transcription target, intercellular adhesion molecule 1 (ICAM-1). Based on the results of a BATMAN-TCM analysis, the effects of sesquiterpenes on cholesterol and lipid metabolism were studied. Sesquiterpene-mediated dysregulation of both cholesterol and lipid metabolism was observed, during which these compounds influenced the protein expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and sterol regulatory element-binding protein 2 (SREBP-2), as well as the mRNA expression of HMGCR, CYP19A1, PLIN2, FASN, SCD, ACACB, and GPAM genes. In conclusion, the two sesquiterpenes caused ROS induction at non-toxic concentrations and alterations in cholesterol and lipid metabolism at slightly toxic and toxic concentrations, suggesting a risk of liver damage if administered to humans.
Collapse
|
4
|
Yancu D, Vaillancourt C, Sanderson JT. Evaluating the effects on steroidogenesis of estragole and trans-anethole in a feto-placental co-culture model. Mol Cell Endocrinol 2019; 498:110583. [PMID: 31536780 DOI: 10.1016/j.mce.2019.110583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 01/11/2023]
Abstract
In this study, we determined whether estragole and its isomer trans-anethole interfered with feto-placental steroidogenesis in a human co-culture model composed of fetal-like adrenocortical (H295R) and placental trophoblast-like (BeWo) cells. Estragole and trans-anethole are considered the biologically active compounds within basil and fennel seed essential oils, respectively. After a 24 h exposure of the co-culture to 2.5, 5.2 and 25 μM estragole or trans-anethole, hormone concentrations of estradiol, estrone, dehydroepiandrosterone, androstenedione, progesterone and estriol were significantly increased. Using RT-qPCR, estragole and trans-anethole were shown to significantly alter the expression of several key steroidogenic enzymes, such as those involved in cholesterol transport and steroid hormone biosynthesis, including StAR, CYP11A1, HSD3B1/2, SULT2A1, and HSD17B1, -4, and -5. Furthermore, we provided mechanistic insight into the ability of estragole and trans-anethole to stimulate promoter-specific expression of CYP19 through activation of the PKA pathway in H295R cells and the PKC pathway in BeWo cells, in both cases associated with increased cAMP levels. Moreover, we show new evidence suggesting a role for progesterone in regulating steroid hormone biosynthesis through regulation of the StAR gene.
Collapse
Affiliation(s)
- Debbie Yancu
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada
| | - J Thomas Sanderson
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
5
|
Essential oils disrupt steroidogenesis in a feto-placental co-culture model. Reprod Toxicol 2019; 90:33-43. [PMID: 31425786 DOI: 10.1016/j.reprotox.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023]
Abstract
We determined whether 5 common essential oils (basil, fennel seed, orange, black pepper and sage) interfered with feto-placental steroidogenesis in a co-culture model composed of fetal-like adrenocortical (H295R) and placental trophoblast-like (BeWo) cells. After a 24 h exposure, only basil and fennel seed oil significantly increased hormone concentrations of estradiol, estrone, dehydroepiandrosterone (DHEA), androstenedione, progesterone, and estriol. Basil and fennel seed oil were shown to significantly alter the expression of steroidogenic enzymes involved in cholesterol transport and steroid hormone biosynthesis, including StAR, CYP11A1, 3β-HSD1/2, SULT2A1, and HSD17β1, -4, and -5. Also, basil and fennel seed oil stimulated placental-specific promoter I.1 and pII-derived CYP19 mRNA in BeWo and H295R cells, respectively, as well as, increased CYP19 enzyme activity. Our results indicate that further study is necessary to determine the potential risks of using basil and fennel seed oils during pregnancy considering their potential to disrupt steroidogenic enzyme activity and expression in vitro.
Collapse
|
6
|
Nakai S, Shibata I, Shitamichi T, Yamaguchi H, Takagi N, Inoue T, Nakagawa T, Kiyokawa J, Wakabayashi S, Miyoshi T, Higashi E, Ishida S, Shiraki N, Kume S. Collagen vitrigel promotes hepatocytic differentiation of induced pluripotent stem cells into functional hepatocyte-like cells. Biol Open 2019; 8:bio.042192. [PMID: 31182631 PMCID: PMC6679405 DOI: 10.1242/bio.042192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Differentiation of stem cells to hepatocytes provides an unlimited supply of human hepatocytes and therefore has been vigorously studied. However, to date, the stem cell-derived hepatocytes were suggested to be of immature features. To obtain matured hepatocytes from stem cells, we tested the effect of culturing human-induced pluripotent stem (hiPS) cell-derived endoderm cells on collagen vitrigel membrane and compared with our previous reported nanofiber matrix. We cultured hiPS cell-derived endoderm cells on a collagen vitrigel membrane and examined the expression profiles, and tested the activity of metabolic enzymes. Gene expression profile analysis of hepatocytic differentiation markers revealed that upon culture on collagen vitrigel membrane, immature markers of AFP decreased, with a concomitant increase in the expression of mature hepatocyte transcription factors and mature hepatocyte markers such as ALB, ASGR1. Mature markers involved in liver functions, such as transporters, cytochrome P450 enzymes and phase II metabolic enzymes were also upregulated. We observed the upregulation of the liver markers for at least 2 weeks. Gene array profiling analysis revealed that hiPS cell-derived hepatocyte-like cells (hiPS-hep) resemble those of the primary hepatocytes. Functions of the CYP enzyme activities were tested in multi-institution and all revealed high CYP1A, CYP2C19, CYP2D6, CYP3A activity, which could be maintained for at least 2 weeks in culture. Taken together, the present approach identified that collagen vitrigel membrane provides a suitable environment for the generation of hepatocytes from hiPS cells that resemble many characteristics of primary human hepatocytes. Summary: We found that collagen vitrigel membrane used as scaffold potentiates differentiation of human induced pluripotent stem cells to differentiate into mature hepatocyte-like cells that exhibit mature functions of the hepatocytes.
Collapse
Affiliation(s)
- Shun Nakai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ima Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takahiro Shitamichi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyuki Yamaguchi
- Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., 21 Suzukawa, Isehara, Kanagawa 259-1146, Japan
| | - Nobuyuki Takagi
- Technology and Development Division, Kanto Chemical Co., Inc., 2-1, Nihonbashi Muromachi 2-chome, Chuo-ku, Tokyo 103-0022, Japan
| | - Tomoaki Inoue
- Research Division, Chugai Pharmaceutical Co. Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Toshito Nakagawa
- Research Division, Chugai Pharmaceutical Co. Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Jumpei Kiyokawa
- Research Division, Chugai Pharmaceutical Co. Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Satoshi Wakabayashi
- Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-cho, Saitama-shi, Saitama 330-8530, Japan
| | - Tomoya Miyoshi
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Eriko Higashi
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomati, Kawasaki 210-9501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
7
|
Jafarpour Z, Soleimani M, Hosseinkhani S, M. H. MH, Yaghmaei P, Mobarra N, Geramizadeh B. Efficient Production of Hepatocyte-like Cells from Human-induced Pluripotent Stem Cells by Optimizing Growth Factors. Int J Organ Transplant Med 2018; 9:77-87. [PMID: 30834092 PMCID: PMC6390985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND Generating hepatocytes with complete liver functions is still a challenge and developing more functional hepatocytes is needed. OBJECTIVE To compare various differentiation factors and protocols and introducing a preferable protocol to differentiate human-induced pluripotent stem cells (hiPSCs) into hepatocyte-like cells (HLCs). METHODS After 3 days of the endoderm differentiation of hiPSCs, the cells were incubated with 5 hepatocyte differentiation culture media, protocols (P), for 14 days-P1: hepatocyte growth factor and fibroblast growth factor-4 (FGF-4) for the first week and oncostatin-M and dexamethasone for the second week; P2: similar to P1 but FGF4 was used in both the first and second weeks; P3: similar to P1 but FGF-4 was not used; P4: similar to P1 but FGF-4 and dexamethasone were not used; and P5: similar to P1 but FGF-4 and oncostatin-M were not used. After 17 days, characterization was done by qRT-PCR, immunofluorescence and ELISA. RESULTS The mRNA expression levels of hepatocyte markers (albumin, cytokeratin-18, tyrosine aminotransferase, hepatocyte nuclear factor-4α, cytochrome-P450 7A1) increased significantly (p<0.05) in the differentiated cells by 5 different protocols. Furthermore, significant protein expression and secretion of albumin were detected in the differentiated cells by 5 different protocols. In P3, the differentiated cells had the highest exhibit of hepatocyte characteristics and in P4 they had the lowest. Moreover, in P1 and P2 similar results were observed. CONCLUSION Since P3 gave us the best results among all protocols, we recommend it as an efficient protocol to differentiate the functional HLCs from hiPSCs, which can improve cell therapies.
Collapse
Affiliation(s)
- Z. Jafarpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M. Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - S. Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - M. H. M. H.
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - P. Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - N. Mobarra
- Metabolic Disorders Research Center, Department of Biochemistry, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - B. Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Bita Geramizadeh, MD, Professor of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Tel: +98-71-3647-3954, Fax: +98-71-3647-3954, E-mail:
| |
Collapse
|
8
|
The use of a unique co-culture model of fetoplacental steroidogenesis as a screening tool for endocrine disruptors: The effects of neonicotinoids on aromatase activity and hormone production. Toxicol Appl Pharmacol 2017; 332:15-24. [DOI: 10.1016/j.taap.2017.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/20/2017] [Accepted: 07/23/2017] [Indexed: 11/21/2022]
|
9
|
Qu S, Yan L, Fang B, Ye S, Li P, Ge S, Wu J, Qu D, Song H. Generation of enhanced definitive endoderm from human embryonic stem cells under an albumin/insulin-free and chemically defined condition. Life Sci 2017; 175:37-46. [DOI: 10.1016/j.lfs.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/12/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022]
|
10
|
Yamazoe T, Shiraki N, Kume S. Hepatic Differentiation from Murine and Human iPS Cells Using Nanofiber Scaffolds. Methods Mol Biol 2016; 1357:475-83. [PMID: 25410288 DOI: 10.1007/7651_2014_138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The induced pluripotent stem (iPS) cells of murine and human are capable to differentiate into any cell type of the body through recapitulating normal development, similarly as the embryonic stem (ES) cells. Lines of evidence support that both ES cells and iPS cells are induced to differentiate in vitro by sequential treatment of humoral cues such as growth factors and chemicals, combined with the use of certain microenvironments including extracellular matrices and scaffolds.Here, we describe the procedure to potentiate hepatic lineage cells differentiation from murine and human iPS cells, using growth factor cocktails and nanofiber scaffolds. Nanofiber scaffolds have a three-dimensional surface mimicking the fine structures of the basement membrane in vivo, allow the iPS cells to differentiate into the definitive endoderm and mature hepatocyte-like cells more efficiently than the two-dimensional conventional culture plates.
Collapse
Affiliation(s)
- Taiji Yamazoe
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Nobuaki Shiraki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shoen Kume
- Program for Leading Graduate Schools "HIGO (Health life science; Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
11
|
Kanninen LK, Harjumäki R, Peltoniemi P, Bogacheva MS, Salmi T, Porola P, Niklander J, Smutný T, Urtti A, Yliperttula ML, Lou YR. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. Biomaterials 2016; 103:86-100. [DOI: 10.1016/j.biomaterials.2016.06.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
|
12
|
Zhu G, Wang D, Li S, Yang X, Cao Y, Wang Y, Niu H. Acute effect of lactic acid on tumor-endothelial cell metabolic coupling in the tumor microenvironment. Oncol Lett 2016; 12:3478-3484. [PMID: 27900024 DOI: 10.3892/ol.2016.5047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/16/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to systematically analyze alterations in the expression of mitochondrial-associated proteins in human bladder cancer T24 cells co-cultured with tumor-associated human umbilical vein endothelial cells (HUVECs), and to investigate the characteristics of bladder cancer cell energy metabolism. The present study used the following techniques: A co-culture system of T24 cells and HUVECs was constructed using a microfluidic chip as a 3D co-culture system; the concentration of lactic acid in the medium of the cells was determined using an automatic microplate reader; a qualitative analysis of mitochondria-associated protein expression was performed by immunofluorescent staining; and a quantitative analysis of mitochondrial-associated protein expression was conducted using western blotting. The present results revealed that between the control groups (monoculture of T24 cells or HUVECs), the mitochondrial-associated protein fluorescence intensity was increased in the HUVECs compared with the T24 cells. The fluorescence intensity of mitochondrial-associated proteins in the HUVEC control group was increased compared with the HUVECs in the experimental co-culture group. In the T24 cells, the protein fluorescence intensity was increased in the experimental co-culture group compared with the control group. In addition, the expression of mitochondria-associated proteins was increased in HUVECs compared with T24 cells in the control groups, while T24 cells in the experimental co-culture group had an increased expression compared with HUVECs in the experimental group (P<0.05). For T24 cells, the expression of mitochondrial-associated proteins was increased in the experimental group compared with the control group, and contrasting results were observed for the HUVECs (P<0.05). Determination of lactic acid concentration demonstrated that lactic acid concentration was highest in the experimental co-culture group, followed by the T24 control group and the HUVEC control group. In conclusion, the present study demonstrated that energy metabolism of the bladder tumor cells does not parallel the 'Warburg effect', since even under sufficient oxygen conditions the tumor cells still undergo glycolysis. Additionally, bladder tumor cells have an efficient oxidative phosphorylation process, wherein tumor cells promote glycolysis in adjacent interstitial cells, thereby causing increased formation of nutritional precursors. These high-energy metabolites are transferred to adjacent tumor cells in a specified direction and enter the Krebs Cycle. Ultimately, oxidative phosphorylation increases, and sufficient ATP is produced.
Collapse
Affiliation(s)
- Guanqun Zhu
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, Shandong 266003, P.R. China
| | - Degui Wang
- Department of Anatomy, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shenqian Li
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, Shandong 266003, P.R. China
| | - Xuecheng Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, Shandong 266003, P.R. China
| | - Yanwei Cao
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, Shandong 266003, P.R. China
| | - Yonghua Wang
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, Shandong 266003, P.R. China
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
13
|
Bi H, Ming L, Cheng R, Luo H, Zhang Y, Jin Y. Liver extracellular matrix promotes BM-MSCs hepatic differentiation and reversal of liver fibrosis through activation of integrin pathway. J Tissue Eng Regen Med 2016; 11:2685-2698. [DOI: 10.1002/term.2161] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Huanjing Bi
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; School of Stomatology, the Fourth Military Medical University; Xi'an Shaanxi China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi China
| | - Leiguo Ming
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; School of Stomatology, the Fourth Military Medical University; Xi'an Shaanxi China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi China
| | - Ruiping Cheng
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; School of Stomatology, the Fourth Military Medical University; Xi'an Shaanxi China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi China
| | - Hailang Luo
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; School of Stomatology, the Fourth Military Medical University; Xi'an Shaanxi China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi China
| | - Yongjie Zhang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; School of Stomatology, the Fourth Military Medical University; Xi'an Shaanxi China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi China
- State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; School of Stomatology, the Fourth Military Medical University; Xi'an Shaanxi China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi China
- State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
| |
Collapse
|
14
|
Tasnim F, Toh YC, Qu Y, Li H, Phan D, Narmada BC, Ananthanarayanan A, Mittal N, Meng RQ, Yu H. Functionally Enhanced Human Stem Cell Derived Hepatocytes in Galactosylated Cellulosic Sponges for Hepatotoxicity Testing. Mol Pharm 2016; 13:1947-57. [DOI: 10.1021/acs.molpharmaceut.6b00119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Yi-Chin Toh
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Yinghua Qu
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Derek Phan
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Balakrishnan C. Narmada
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Abhishek Ananthanarayanan
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Nikhil Mittal
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Ryan Q Meng
- Preclinical Development and Safety, Asia Pacific, Janssen Research & Development, 999 South Pudong Road, Shanghai, 200120, China
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology,
#04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- Department
of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9-03-03, 2 Medical Drive, Singapore 117597, Singapore
- NUS Graduate
School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, #05-01, 28 Medical Drive, Singapore 117576, Singapore
- Mechanobiology
Institute, T-Laboratories, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore
- Singapore-MIT Alliance for Research and Technology, 3 Science Drive 2, S16-05-08, Singapore 117543, Singapore
| |
Collapse
|
15
|
Malta DFB, Reticker-Flynn NE, da Silva CL, Cabral JMS, Fleming HE, Zaret KS, Bhatia SN, Underhill GH. Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater 2016; 34:30-40. [PMID: 26883775 DOI: 10.1016/j.actbio.2016.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
During tissue development, stem and progenitor cells are faced with fate decisions coordinated by microenvironmental cues. Although insights have been gained from in vitro and in vivo studies, the role of the microenvironment remains poorly understood due to the inability to systematically explore combinations of stimuli at a large scale. To overcome such restrictions, we implemented an extracellular matrix (ECM) array platform that facilitates the study of 741 distinct combinations of 38 different ECM components in a systematic, unbiased and high-throughput manner. Using embryonic stem cells as a model system, we derived definitive endoderm progenitors and applied them to the array platform to study the influence of ECM, including the interactions of ECM with growth factor signaling, on the specification of definitive endoderm cells towards the liver and pancreas fates. We identified ECM combinations that influence endoderm fate decisions towards these lineages, and demonstrated the utility of this platform for studying ECM-mediated modifications to signal activation during liver specification. In particular, defined combinations of fibronectin and laminin isoforms, as well as combinations of distinct collagen subtypes, were shown to influence SMAD pathway activation and the degree of hepatic differentiation. Overall, our systematic high-throughput approach suggests that ECM components of the microenvironment have modulatory effects on endoderm differentiation, including effects on lineage fate choice and cell adhesion and survival during the differentiation process. This platform represents a robust tool for analyzing effects of ECM composition towards the continued improvement of stem cell differentiation protocols and further elucidation of tissue development processes. STATEMENT OF SIGNIFICANCE Cellular microarrays can provide the capability to perform high-throughput investigations into the role of microenvironmental signals in a variety of cell functions. This study demonstrates the utility of a high-throughput cellular microarray approach for analyzing the effects of extracellular matrix (ECM) in liver and pancreas differentiation of endoderm progenitor cells. Despite an appreciation that ECM is likely involved in these processes, the influence of ECM, particularly combinations of matrix proteins, had not been systematically explored. In addition to the identification of relevant ECM compositions, this study illustrates the capability of the cellular microarray platform to be integrated with a diverse range of cell fate measurements, which could be broadly applied towards the investigation of cell fate regulation in other tissue development and disease contexts.
Collapse
Affiliation(s)
- D F Braga Malta
- Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | | | - C L da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - J M S Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - H E Fleming
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K S Zaret
- University of Pennsylvania, Philadelphia, PA, United States
| | - S N Bhatia
- Massachusetts Institute of Technology, Cambridge, MA, United States; The Howard Hughes Medical Institute, Cambridge, MA, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 021392, United States; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - G H Underhill
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
16
|
Enhanced Ex Vivo Expansion of Human Hematopoietic Progenitors on Native and Spin Coated Acellular Matrices Prepared from Bone Marrow Stromal Cells. Stem Cells Int 2016; 2016:7231567. [PMID: 26981135 PMCID: PMC4769778 DOI: 10.1155/2016/7231567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/13/2015] [Accepted: 01/05/2016] [Indexed: 12/04/2022] Open
Abstract
The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion.
Collapse
|
17
|
Hhex Is Necessary for the Hepatic Differentiation of Mouse ES Cells and Acts via Vegf Signaling. PLoS One 2016; 11:e0146806. [PMID: 26784346 PMCID: PMC4718667 DOI: 10.1371/journal.pone.0146806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Elucidating the molecular mechanisms involved in the differentiation of stem cells to hepatic cells is critical for both understanding normal developmental processes as well as for optimizing the generation of functional hepatic cells for therapy. We performed in vitro differentiation of mouse embryonic stem cells (mESCs) with a null mutation in the homeobox gene Hhex and show that Hhex-/- mESCs fail to differentiate from definitive endoderm (Sox17+/Foxa2+) to hepatic endoderm (Alb+/Dlk+). In addition, hepatic culture elicited a >7-fold increase in Vegfa mRNA expression in Hhex-/- cells compared to Hhex+/+ cells. Furthermore, we identified VEGFR2+/ALB+/CD34- in early Hhex+/+ hepatic cultures. These cells were absent in Hhex-/- cultures. Finally, through manipulation of Hhex and Vegfa expression, gain and loss of expression experiments revealed that Hhex shares an inverse relationship with the activity of the Vegf signaling pathway in supporting hepatic differentiation. In summary, our results suggest that Hhex represses Vegf signaling during hepatic differentiation of mouse ESCs allowing for cell-type autonomous regulation of Vegfr2 activity independent of endothelial cells.
Collapse
|
18
|
Araki T, Iwazaki N, Ishiguro N, Sakamoto A, Nagata K, Ohbuchi M, Moriguchi H, Motoi M, Shinkyo R, Homma T, Sakamoto S, Iwase Y, Ise R, Nakanishi Y, Uto M, Inoue T. Requirements for human iPS cell-derived hepatocytes as an alternative to primary human hepatocytes for assessing absorption, distribution, metabolism, excretion and toxicity of pharmaceuticals. ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tetsuro Araki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation
| | - Norihiko Iwazaki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corporation
| | - Naoki Ishiguro
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Non-Clinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd
| | - Atsushi Sakamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Non-Clinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd
| | - Keisuke Nagata
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Safety Research Laboratories, Astellas Pharma Inc
| | - Masato Ohbuchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Hiroyuki Moriguchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Makiko Motoi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co., Ltd
| | - Raku Shinkyo
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co., Ltd
| | - Toshiki Homma
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Kissei Pharmaceutical Co., Ltd
| | - Sakae Sakamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Kissei Pharmaceutical Co., Ltd
| | - Yumiko Iwase
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Mitsubishi Tanabe Pharma Corporation
| | - Ryota Ise
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Shin Nippon Biomedical Laboratories, Ltd
| | - Yasuharu Nakanishi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | - Masahiro Uto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | - Tomoaki Inoue
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Safety Assessment Department, Research Division, Chugai Pharmaceutical Co., Ltd
| |
Collapse
|
19
|
Wang H, Luo X, Leighton J. Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. BIOCHEMISTRY INSIGHTS 2015; 8:15-21. [PMID: 26462244 PMCID: PMC4589090 DOI: 10.4137/bci.s30377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
Embryonic stem cells (ESCs) are pluripotent cells with great therapeutic potentials. The in vitro differentiation of ESC was designed by recapitulating embryogenesis. Significant progress has been made to improve the in vitro differentiation protocols by toning soluble maintenance factors. However, more robust methods for lineage-specific differentiation and maturation are still under development. Considering the complexity of in vivo embryogenesis environment, extracellular matrix (ECM) cues should be considered besides growth factor cues. ECM proteins bind to cells and act as ligands of integrin receptors on cell surfaces. Here, we summarize the role of the ECM and integrins in the formation of three germ layer progenies. Various ECM–integrin interactions were found, facilitating differentiation toward definitive endoderm, hepatocyte-like cells, pancreatic beta cells, early mesodermal progenitors, cardiomyocytes, neuroectoderm lineages, and epidermal cells, such as keratinocytes and melanocytes. In the future, ECM combinations for the optimal ESC differentiation environment will require substantial study.
Collapse
Affiliation(s)
- Han Wang
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xie Luo
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jake Leighton
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
20
|
Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells. PLoS One 2015; 10:e0138346. [PMID: 26378917 PMCID: PMC4574950 DOI: 10.1371/journal.pone.0138346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/29/2015] [Indexed: 11/19/2022] Open
Abstract
Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145 kDa—accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.
Collapse
|
21
|
Xu XD, Shao SX, Cao YW, Yang XC, Shi HQ, Wang YL, Xue SY, Wang XS, Niu HT. The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip. Int J Clin Exp Med 2015; 8:12327-12336. [PMID: 26550142 PMCID: PMC4612827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES This study aimed to systematically analyze changes in mitochondrial-related protein expression in bladder cancer cells and tumor-associated fibroblasts and to investigate the characteristics of bladder cancer cell energy metabolism. METHODS In this study, we utilized the following techniques to achieve the objectives: (1) a co-culture system of bladder tumor cells and fibroblasts was built using a microfluidic chip as a three-dimensional culture system; (2) the concentration of lactic acid in the medium from the different groups was determined using an automatic micro-plate reader; (3) a qualitative analysis of mitochondria-related protein expression was performed by immunofluorescent staining; and (4) a quantitative analysis of mitochondrial-associated protein expression was conducted via Western blot. SPSS software was utilized to analyze the data. RESULTS (1) Determination of lactic acid concentration: The lactic acid concentration was determined to be highest in the experimental group, followed by the T24 cell control group and then the fibroblast control group. (2) Qualitative results: In the control group, the mitochondrial-related protein fluorescence intensity was higher in the fibroblasts compared with the cancer cells, and the fluorescence intensity of the fibroblasts was reduced compared with the experimental group. The mitochondrial-related protein fluorescence intensity of the cancer cells was higher in the experimental group compared with the control group, and the opposite results were obtained with the fibroblasts. (3) Quantitative results: The expression of mitochondria-related proteins was higher in fibroblasts compared with cancer cells in the control group, and the opposite results were obtained in the experimental group (P<0.05). The expression of mitochondria-related proteins was increased in cancer cells in the experimental group compared with the control group; the opposite results were observed for the fibroblasts (P<0.05). CONCLUSIONS The energy metabolism of bladder tumor cells does not parallel the "Warburg effect" because even under sufficient oxygen conditions, cancer cells still undergo glycolysis. Bladder cancer cells also have an efficient oxidative phosphorylation process wherein cancer cells promote glycolysis in adjacent interstitial cells, thereby causing increased formation of nutritional precursors. These high-energy metabolites are transferred to adjacent tumor cells in a specified direction and enter the Krebs Cycle. Ultimately, oxidative phosphorylation increases, and sufficient ATP is produced.
Collapse
Affiliation(s)
- Xiao-Dong Xu
- Department of Urology, The Affiliated Hospital of Qingdao University, The Key Laboratory of UrologyQingdao, China
| | - Shi-Xiu Shao
- Department of Urology, The Affiliated Hospital of Qingdao University, The Key Laboratory of UrologyQingdao, China
| | - Yan-Wei Cao
- Department of Urology, The Affiliated Hospital of Qingdao University, The Key Laboratory of UrologyQingdao, China
| | - Xue-Cheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, The Key Laboratory of UrologyQingdao, China
| | - Hao-Qing Shi
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - You-Lin Wang
- Department of Urology, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Sen-Yao Xue
- Department of Urology, The Affiliated Hospital of Qingdao University, The Key Laboratory of UrologyQingdao, China
| | - Xin-Sheng Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, The Key Laboratory of UrologyQingdao, China
| | - Hai-Tao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, The Key Laboratory of UrologyQingdao, China
| |
Collapse
|
22
|
Tasnim F, Phan D, Toh YC, Yu H. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Biomaterials 2015; 70:115-25. [PMID: 26310107 DOI: 10.1016/j.biomaterials.2015.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/01/2015] [Indexed: 12/20/2022]
Abstract
Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Derek Phan
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Yi-Chin Toh
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9-03-03, 2 Medical Drive, Singapore 117597, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117576, Singapore; Mechanobiology Institute, T-Labs, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore; Singapore-MIT Alliance for Research and Technology, 3 Science Drive 2, S16-05-08, Singapore 117543, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Hu C, Li L. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell 2015; 6:562-74. [PMID: 26088193 PMCID: PMC4506286 DOI: 10.1007/s13238-015-0180-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023] Open
Abstract
Various liver diseases result in terminal hepatic failure, and liver transplantation, cell transplantation and artificial liver support systems are emerging as effective therapies for severe hepatic disease. However, all of these treatments are limited by organ or cell resources, so developing a sufficient number of functional hepatocytes for liver regeneration is a priority. Liver regeneration is a complex process regulated by growth factors (GFs), cytokines, transcription factors (TFs), hormones, oxidative stress products, metabolic networks, and microRNA. It is well-known that the function of isolated primary hepatocytes is hard to maintain; when cultured in vitro, these cells readily undergo dedifferentiation, causing them to lose hepatocyte function. For this reason, most studies focus on inducing stem cells, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), hepatic progenitor cells (HPCs), and mesenchymal stem cells (MSCs), to differentiate into hepatocyte-like cells (HLCs) in vitro. In this review, we mainly focus on the nature of the liver regeneration process and discuss how to maintain and enhance in vitro hepatic function of isolated primary hepatocytes or stem cell-derived HLCs for liver regeneration. In this way, hepatocytes or HLCs may be applied for clinical use for the treatment of terminal liver diseases and may prolong the survival time of patients in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, China
| | | |
Collapse
|
24
|
Zhu XB, Li ZX, Gu XX, Lei Z, Zhang J, Li HT, Zhou MM. Trichostatin A combined with cytokines induces differentiation of embryonic stem cells into hepatocytes. Shijie Huaren Xiaohua Zazhi 2015; 23:1278-1284. [DOI: 10.11569/wcjd.v23.i8.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To present a novel 3-step procedure to efficiently direct the differentiation of mouse embryonic stem cells (ESCs) into hepatocytes.
METHODS: Mouse ESCs were first induced to differentiate into definitive endoderm cells by three days of activin A treatment. Next, definitive endoderm cells were induced to efficiently differentiate to hepatocytes in the presence of acid fibroblast growth factor (aFGF) and trichostatin A (TSA) in the culture medium for 5 d.
RESULTS: After 10 d of further in vitro maturation, the morphological and phenotypic markers of hepatocytes were characterized using light microscopy, immunofluorescence and RT-PCR. Furthermore, these cells were tested for the functions associated with mature hepatocytes including glycogen storage, indocyanine green uptake and release, and the rate of hepatic differentiation was determined by counting the albumin-positive cells, which showed that the rate of hepatic differentiation was 57.38%.
CONCLUSION: The method presented in this study provides a new resource for hepatocyte transplantation.
Collapse
|
25
|
Tsuyama T, Shiraki N, Kume S. Definitive Endoderm Differentiation of Human Embryonic Stem Cells Combined with Selective Elimination of Undifferentiated Cells by Methionine Deprivation. Methods Mol Biol 2015; 1307:205-12. [PMID: 25822724 DOI: 10.1007/7651_2015_224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human embryonic stem cells (ESCs) show a characteristic feature in that they are highly dependent on methionine metabolism. Undifferentiated human ESCs cannot survive under the condition that methionine is deprived from culture medium. We describe here a procedure for definitive endoderm differentiation from human ESCs, in which human ESCs are subject to 10 days (d) differentiation combined with methionine deprivation between differentiation day (d) 8 to d10. Methionine deprivation results in elimination of undifferentiated cells from the culture with no significant loss of definitive endoderm cells, as compared to those cultured under complete condition throughout the whole culture period.
Collapse
Affiliation(s)
- Tomonori Tsuyama
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | | | | |
Collapse
|
26
|
Skowron K, Tomsia M, Czekaj P. An experimental approach to the generation of human embryonic stem cells equivalents. Mol Biotechnol 2014; 56:12-37. [PMID: 24146427 DOI: 10.1007/s12033-013-9702-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, particular attention has been paid to the human embryonic stem cells (hESC) in the context of their potential application in regenerative medicine; however, ethical concerns prevent their clinical application. Induction of pluripotency in somatic cells seems to be a good alternative for hESC recruitment regarding its potential use in tissue regeneration, disease modeling, and drug screening. Since Yamanaka's team in 2006 restored pluripotent state of somatic cells for the first time, a significant progress has been made in the area of induced pluripotent stem cells (iPSC) generation. Here, we review the current state of knowledge in the issue of techniques applied to establish iPSC. Somatic cell nuclear transfer, cell fusion, cell extracts reprogramming, and techniques of direct reprogramming are described. Retroviral and lentiviral transduction are depicted as ways of cell reprogramming with the use of integrating vectors. Contrary to them, adenoviruses, plasmids, single multiprotein expression vectors, and PiggyBac transposition systems are examples of non-integrative vectors used in iPSC generation protocols. Furthermore, reprogramming with the delivery of specific proteins, miRNA or small chemical compounds are presented. Finally, the changes occurring during the reprogramming process are described. It is concluded that subject to some limitations iPSC could become equivalents for hESC in regenerative medicine.
Collapse
Affiliation(s)
- Katarzyna Skowron
- Students Scientific Society, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
27
|
Krueger W, Boelsterli UA, Rasmussen TP. Stem Cell Strategies to Evaluate Idiosyncratic Drug-induced Liver Injury. J Clin Transl Hepatol 2014; 2:143-52. [PMID: 26355943 PMCID: PMC4521249 DOI: 10.14218/jcth.2014.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/07/2014] [Indexed: 12/14/2022] Open
Abstract
The host-dependent nature of idiosyncratic drug-induced liver injury (iDILI) suggests that rare genetic polymorphisms may contribute to the disease. Indeed, a few mutations in key genes have already been identified using conventional human genetics approaches. Over 50 commonly used drugs can precipitate iDILI, making this a substantial medical problem. Only recently have human induced pluripotent stem cells been used as a research tool to discover novel iDILI genes and to study the mechanisms of iDILI in vitro. Here we review the current state of stem cell use in the investigation of iDILI, with a special focus on genetics. In addition, the concerns and difficulties associated with genetics and animal model research are discussed. We then present the features of patient-specific pluripotent stem cells (which may be derived from iDILI patients themselves), and explain why these cells may be of great utility. A variety of recent approaches to produce hepatocyte-like cells from pluripotent cells and the associated advantages and limitations of such cells are discussed. Future directions for the use of stem cell science to investigate iDILI include novel ways to identify new iDILI genes, a consideration of epigenetic impacts on iDILI, and the development of new and improved strategies for the production of hepatocytes from human pluripotent cells.
Collapse
Affiliation(s)
- Winfried Krueger
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Urs A. Boelsterli
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Theodore P. Rasmussen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- University of Connecticut Stem Cell Institute, Storrs/Farmington, CT, USA
- Correspondence to: Theodore P. Rasmussen, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, U-3092, Storrs, CT 06269, USA. Tel: +86-486-8339, Fax: +86-486-5792. E-mail:
| |
Collapse
|
28
|
Kume S. [Signals guiding differentiation of pluripotent stem cells into pancreatic beta cells]. Nihon Yakurigaku Zasshi 2014; 144:8-12. [PMID: 25007805 DOI: 10.1254/fpj.144.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 2014; 19:780-94. [PMID: 24746804 DOI: 10.1016/j.cmet.2014.03.017] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/09/2014] [Accepted: 03/11/2014] [Indexed: 12/26/2022]
Abstract
Mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are in a high-flux metabolic state, with a high dependence on threonine catabolism. However, little is known regarding amino acid metabolism in human ESCs/iPSCs. We show that human ESCs/iPSCs require high amounts of methionine (Met) and express high levels of enzymes involved in Met metabolism. Met deprivation results in a rapid decrease in intracellular S-adenosylmethionine (SAM), triggering the activation of p53-p38 signaling, reducing NANOG expression, and poising human iPSC/ESCs for differentiation, follow by potentiated differentiation into all three germ layers. However, when exposed to prolonged Met deprivation, the cells undergo apoptosis. We also show that human ESCs/iPSCs have regulatory systems to maintain constant intracellular Met and SAM levels. Our findings show that SAM is a key regulator for maintaining undifferentiated pluripotent stem cells and regulating their differentiation.
Collapse
|
30
|
Generation of familial amyloidotic polyneuropathy-specific induced pluripotent stem cells. Stem Cell Res 2014; 12:574-83. [DOI: 10.1016/j.scr.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 12/13/2013] [Accepted: 01/15/2014] [Indexed: 01/02/2023] Open
|
31
|
Kuai XL, Shao N, Lu H, Xiao SD, Zheng Q. Differentiation of nonhuman primate embryonic stem cells into hepatocyte-like cells. J Dig Dis 2014; 15:27-34. [PMID: 24112234 DOI: 10.1111/1751-2980.12103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate whether cells derived from rhesus monkey embryonic stem cells (ESC) had hepatocyte characteristics after the differentiation. METHODS Rhesus monkey ESC were induced towards hepatocyte-like cells via a four-step differentiation process: the formation of embryoid bodies (EB), EB in activin A and insulin-transferrin-selenium medium for 4 days, in fibroblast growth factor (FGF)-4 and bone morphogenetic protein-2 (BMP2) medium for 8 days, in hepatocyte culture medium containing hepatocyte growth factor for 3 days and then with oncostatin M and dexamethasone for another 5 days. Expression of albumin (ALB), glucose-6-phosphatase, α-fetoprotein (AFP) and α-1 antitrypsin (α1-AT) at the mRNA level in differentiated cells were detected by reverse transcription-polymerase chain reaction. The expression of hepatocyte markers AFP, ALB, hepatocyte nuclear factor 4 (HNF4), cytokeratin 8 (CK8), CK19 and cell proliferation marker, Ki67, in the differentiated cells were determined by immunocytochemistry. The ultrastructure of the differentiated cells was examined by electron microscopy. Indocyanine green (ICG) uptake was also explored. RESULTS After induction, some differentiated cells were binucleate, which is typical of hepatocytes. Hepatocyte-specific genes ALB, glucose-6-phosphatase, AFP and α1-AT were expressed in the differentiated cells. The differentiated cells expressed hepatocyte markers AFP, ALB, HNF4, CK8 and CK19 at the protein level. The cells also expressed cell proliferation marker Ki67. Under electron microscopy, the ultrastructures of hepatocyte-like cells, such as mitochondrion and catalase-containing peroxisomes, were observed in the differentiated cells. ICG uptake test was positive in differentiated cells. CONCLUSIONS With cytokine induction, rhesus monkey ESC differentiated into cells displaying morphological features, gene expression patterns and metabolic activities characteristic of hepatocytes.
Collapse
Affiliation(s)
- Xiao Ling Kuai
- Department of Gastroenterology, Affiliated Hospital of Nantong University, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
32
|
Yamazoe T, Shiraki N, Toyoda M, Kiyokawa N, Okita H, Miyagawa Y, Akutsu H, Umezawa A, Sasaki Y, Kume K, Kume S. A synthetic nanofibrillar matrix promotes in vitro hepatic differentiation of embryonic stem cells and induced pluripotent stem cells. J Cell Sci 2013; 126:5391-9. [PMID: 24101719 DOI: 10.1242/jcs.129767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem (ES) cells recapitulate normal developmental processes and serve as an attractive source for routine access to a large number of cells for research and therapies. We previously reported that ES cells cultured on M15 cells, or a synthesized basement membrane (sBM) substratum, efficiently differentiated into an endodermal fate and subsequently adopted fates of various digestive organs, such as the pancreas and liver. Here, we established a novel hepatic differentiation procedure using the synthetic nanofiber (sNF) as a cell culture scaffold. We first compared endoderm induction and hepatic differentiation between murine ES cells grown on sNF and several other substrata. The functional assays for hepatocytes reveal that the ES cells grown on sNF were directed into hepatic differentiation. To clarify the mechanisms for the promotion of ES cell differentiation in the sNF system, we focused on the function of Rac1, which is a Rho family member protein known to regulate the actin cytoskeleton. We observed the activation of Rac1 in undifferentiated and differentiated ES cells cultured on sNF plates, but not in those cultured on normal plastic plates. We also show that inhibition of Rac1 blocked the potentiating effects of sNF on endoderm and hepatic differentiation throughout the whole differentiation stages. Taken together, our results suggest that morphological changes result in cellular differentiation controlled by Rac1 activation, and that motility is not only the consequence, but is also able to trigger differentiation. In conclusion, we believe that sNF is a promising material that might contribute to tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Taiji Yamazoe
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Iwashita H, Shiraki N, Sakano D, Ikegami T, Shiga M, Kume K, Kume S. Secreted cerberus1 as a marker for quantification of definitive endoderm differentiation of the pluripotent stem cells. PLoS One 2013; 8:e64291. [PMID: 23717584 PMCID: PMC3661443 DOI: 10.1371/journal.pone.0064291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/11/2013] [Indexed: 12/20/2022] Open
Abstract
To date, CXCR4 and E-cadherin double-positive cells detected by flow cytometry have been used to identify the differentiation of embryonic stem (ES) cells or induced pluripotent stem (iPS) cells into definitive endoderm (DE) lineages. Quantification of DE differentiation from ES/iPS cells by using flow cytometry is a multi-step procedure including dissociation of the cells, antibody reaction, and flow cytometry analysis. To establish a quick assay method for quantification of ES/iPS cell differentiation into the DE without dissociating the cells, we examined whether secreted Cerberus1 (Cer1) protein could be used as a marker. Cer1 is a secreted protein expressed first in the anterior visceral endoderm and then in the DE. The amount of Cer1 secreted correlated with the proportion of CXCR4+/E-Cadherin+ cells that differentiated from mouse ES cells. In addition, we found that human iPS cell-derived DE also expressed the secreted CER1 and that the expression level correlated with the proportion of SOX17+/FOXA2+ cells present. Taken together, these results show that Cer1 (or CER1) serves as a good marker for quantification of DE differentiation of mouse and human ES/iPS cells.
Collapse
Affiliation(s)
- Hidefumi Iwashita
- Dojindo Laboratories, Kumamoto Techno Research Park, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Umeda K, Suzuki K, Yamazoe T, Shiraki N, Higuchi Y, Tokieda K, Kume K, Mitani K, Kume S. Albumin gene targeting in human embryonic stem cells and induced pluripotent stem cells with helper-dependent adenoviral vector to monitor hepatic differentiation. Stem Cell Res 2013; 10:179-94. [PMID: 23276698 DOI: 10.1016/j.scr.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 11/09/2012] [Indexed: 01/16/2023] Open
Abstract
Although progresses in developing differentiation procedures have been achieved, it remains challenging to generate hES/iPS cell-derived mature hepatocytes. We performed knock-in of a monomeric Kusabira orange (mKO1) cassette in the albumin (ALB) gene, in human embryonic stem (hES) cells and induced pluripotent stem (hiPS) cells, with the use of the helper-dependent adenovirus vector (HDAdV). Upon induction into the hepatic lineages, these knock-in hES/iPS cells differentiated into cells that displayed several known hepatic functions. The mKO1 knock-in (ALB/mKo1) hES/hiPS cells were used to visualize hepatic differentiation in vitro. mKO1 reporter expression recapitulated endogenous ALB transcriptional activity. ALB/mKo1 [Hi] population isolated by flow cytometry was confirmed to be enriched with ALB mRNA. Expression profile analyses revealed that characteristic hepatocyte genes and genes related to drug metabolism and many aspects of liver function were highly enriched in the ALB/mKo1 [Hi] population. Our data demonstrate that ALB/mKo1 knock-in hES/iPS cells are valuable resources for monitoring in vitro hepatic differentiation, isolation and analyses of hES and hiPS cells-derived hepatic cells that actively transcribing ALB. These knock-in hES/iPS cell lines could provide further insights into the mechanism of hepatic differentiation and molecular signatures of the hepatic cells derived from hES/iPS cells.
Collapse
Affiliation(s)
- Kahoko Umeda
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
TOMIZAWA MINORU, SHINOZAKI FUMINOBU, SUGIYAMA TAKAO, YAMAMOTO SHIGENORI, SUEISHI MAKOTO, YOSHIDA TAKANOBU. Single-step protocol for the differentiation of human-induced pluripotent stem cells into hepatic progenitor-like cells. Biomed Rep 2013; 1:18-22. [PMID: 24648886 PMCID: PMC3956730 DOI: 10.3892/br.2012.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/31/2012] [Indexed: 11/05/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are ideal sources of hepatocyte for transplantation into patients experiencing hepatic failure. Growth and transcription factors were analyzed to design a single-step protocol for the differentiation of iPS cells into hepatocytes. The expression of transcription factors was analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and compared among iPS cells, as well as fetal and adult liver cells. iPS cells were cultured with growth factors and RT-PCR was performed to analyze the expression of transcription factors. iPS cells were introduced with transcription factors, cultured with growth factors and subjected to real-time quantitative PCR. Indocyanine green (ICG) was added to the medium as a hepatocyte marker. Sox17, GATA4, GATA6, FoxA2, HEX, HNF4α and C/EBPα were expressed in fetal and adult liver cells, but not in iPS cells. Sox17, GATA6 and HNF4α were expressed after exposure a combination of oncostatin M, epidermal growth factor, retinoic acid, dexamethasone and ITS (OERDITS). When iPS cells were introduced with FoxA2, GATA4, HEX and C/EBPα and cultured with OERDITS for 8 days, the cells expressed α-fetoprotein, δ-like (Dlk)-1 and γ-glutamyl transpeptidase (GTP), and ICG uptake was observed. Exposure to FoxA2, GATA4, HEX and C/EBPα and culturing with OERDITS supplementation potentially serves as a single-step inducer for the differentiation of iPS cells into hepatic progenitor-like cells within 8 days.
Collapse
Affiliation(s)
| | | | | | | | | | - TAKANOBU YOSHIDA
- Internal Medicine, National Hospital Organization Shimoshizu Hospital, Yotsukaido, Chiba 284-0003,
Japan
| |
Collapse
|
36
|
3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 2012; 34:1781-9. [PMID: 23228427 DOI: 10.1016/j.biomaterials.2012.11.029] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/20/2012] [Indexed: 01/15/2023]
Abstract
Although it is expected that hepatocyte-like cells differentiated from human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells will be utilized in drug toxicity testing, the actual applicability of hepatocyte-like cells in this context has not been well examined so far. To generate mature hepatocyte-like cells that would be applicable for drug toxicity testing, we established a hepatocyte differentiation method that employs not only stage-specific transient overexpression of hepatocyte-related transcription factors but also a three-dimensional spheroid culture system using a Nanopillar Plate. We succeeded in establishing protocol that could generate more matured hepatocyte-like cells than our previous protocol. In addition, our hepatocyte-like cells could sensitively predict drug-induced hepatotoxicity, including reactive metabolite-mediated toxicity. In conclusion, our hepatocyte-like cells differentiated from human ES cells or iPS cells have potential to be applied in drug toxicity testing.
Collapse
|
37
|
Spenlé C, Simon-Assmann P, Orend G, Miner JH. Laminin α5 guides tissue patterning and organogenesis. Cell Adh Migr 2012; 7:90-100. [PMID: 23076210 PMCID: PMC3544791 DOI: 10.4161/cam.22236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Laminins (LM) are extracellular matrix molecules that contribute to and are required for the formation of basement membranes. They participate in the modulation of epithelial/mesenchymal interactions and are implicated in organogenesis and maintenance of organ homeostasis. Among the LM molecules, the LM α5 chain (LMα5) is one of the most widely distributed LM in the developing and mature organism. Its presence in some basement membranes during embryogenesis is absolutely required for maintenance of basement membrane integrity and thus for proper organogenesis. LMα5 also regulates the expression of genes important for major biological processes, in part by repressing or activating signaling pathways, depending upon the physiological context.
Collapse
|
38
|
Erdmann G, Volz C, Boutros M. Systematic approaches to dissect biological processes in stem cells by image-based screening. Biotechnol J 2012; 7:768-78. [DOI: 10.1002/biot.201200117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Tiwari A, Tursky ML, Mushahary D, Wasnik S, Collier FM, Suma K, Kirkland MA, Pande G. Ex vivo expansion of haematopoietic stem/progenitor cells from human umbilical cord blood on acellular scaffolds prepared from MS-5 stromal cell line. J Tissue Eng Regen Med 2012; 7:871-83. [PMID: 22511368 DOI: 10.1002/term.1479] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/18/2011] [Accepted: 01/16/2012] [Indexed: 12/13/2022]
Abstract
Lineage-specific expansion of haematopoietic stem/progenitor cells (HSPCs) from human umbilical cord blood (UCB) is desirable because of their several applications in translational medicine, e.g. treatment of cancer, bone marrow failure and immunodeficiencies. The current methods for HSPC expansion use either cellular feeder layers and/or soluble growth factors and selected matrix components coated on different surfaces. The use of cell-free extracellular matrices from bone marrow cells for this purpose has not previously been reported. We have prepared insoluble, cell-free matrices from a murine bone marrow stromal cell line (MS-5) grown under four different conditions, i.e. in presence or absence of osteogenic medium, each incubated under 5% and 20% O₂ tensions. These acellular matrices were used as biological scaffolds for the lineage-specific expansion of magnetically sorted CD34⁺ cells and the results were evaluated by flow cytometry and colony-forming assays. We could get up to 80-fold expansion of some HSPCs on one of the matrices and our results indicated that oxygen tension played a significant role in determining the expansion capacity of the matrices. A comparative proteomic analysis of the matrices indicated differential expression of proteins, such as aldehyde dehydrogenase and gelsolin, which have previously been identified as playing a role in HSPC maintenance and expansion. Our approach may be of value in identifying factors relevant to tissue engineering-based ex vivo HSPC expansion, and it may also provide insights into the constitution of the niche in which these cells reside in the bone marrow.
Collapse
Affiliation(s)
- Abhilasha Tiwari
- CSIR Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India; Deakin University, Waurn Ponds, Geelong, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Meng Q, Haque A, Hexig B, Akaike T. The differentiation and isolation of mouse embryonic stem cells toward hepatocytes using galactose-carrying substrata. Biomaterials 2012; 33:1414-27. [DOI: 10.1016/j.biomaterials.2011.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 11/07/2011] [Indexed: 01/14/2023]
|
41
|
Vasanthan KS, Subramanian A, Krishnan UM, Sethuraman S. Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering. Biotechnol Adv 2012; 30:742-52. [PMID: 22265845 DOI: 10.1016/j.biotechadv.2012.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/28/2011] [Accepted: 01/05/2012] [Indexed: 12/18/2022]
Abstract
Current liver transplantation strategies face severe shortcomings owing to scarcity of donors, immunogenicity, prohibitive costs and poor survival rates. Due to the lengthy list of patients requiring transplant, high mortality rates are observed during the endless waiting period. Tissue engineering could be an alternative strategy to regenerate the damaged liver and improve the survival and quality of life of the patient. The development of an ideal scaffold for liver tissue engineering depends on the nature of the scaffold, its architecture and the presence of growth factors and recognition motifs. Biomimetic scaffolds can simulate the native extracellular matrix for the culture of hepatocytes to enable them to exhibit their functionality both in vitro and in vivo. This review highlights the physiology and pathophysiology of liver, the current treatment strategies, use of various scaffolds, incorporation of adhesion motifs, growth factors and stem cells that can stabilize and maintain hepatocyte cultures for a long period.
Collapse
|