1
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
2
|
Zhou L, Simonian AL. CRISPR/Cas Technology: The Unique Synthetic Biology Genome-Editing Tool Shifting the Paradigm in Viral Diagnostics, Defense, and Therapeutics. Annu Rev Biomed Eng 2024; 26:247-272. [PMID: 38346278 DOI: 10.1146/annurev-bioeng-081723-013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The emergence of the COVID-19 pandemic has starkly exposed our significantly limited ability to promptly identify and respond to emergent biological threats. Consequently, there is an urgent need to advance biotechnological methods for addressing both known and unforeseen biological hazards. Recently, the CRISPR/Cas system has revolutionized genetic engineering, enabling precise and efficient synthetic biology applications. Therefore, this review aims to provide a comprehensive introduction to the fundamental principles underlying the CRISPR/Cas system and assess the advantages and limitations of various CRISPR/Cas-based techniques applicable to the detection of, defense against, and treatment of viral infections. These techniques include viral diagnostics, the development of antiviral vaccines, B cell engineering for antibody production, viral activation/interference, and epigenetic modifications. Furthermore, this review delves into the challenges and bioethical considerations associated with use of the CRISPR/Cas system. With the continuous evolution of technology, the CRISPR/Cas system holds considerable promise for addressing both existing and unforeseen biological threats.
Collapse
Affiliation(s)
- Lang Zhou
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| | - Aleksandr L Simonian
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
3
|
Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, Andrusewicz W, Cecerska-Heryć E, Samochowiec A, Misiak B, Sagan L, Samochowiec J. Greater methylation of the IL-6 promoter region is associated with decreased integrity of the corpus callosum in schizophrenia. J Psychiatr Res 2024; 175:108-117. [PMID: 38728913 DOI: 10.1016/j.jpsychires.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Schizophrenia is associated with chronic subclinical inflammation and decreased integrity of the corpus callosum (CC). Our previous study showed associations between peripheral IL-6 levels and the integrity of the CC. Epigenetic studies show associations between methylation of the genes related to immunological processes and integrity of the CC. AIM To investigate correlations between methylation status of IL-6 promotor and peripheral IL-6 levels and the integrity of the CC in schizophrenia. MATERIAL AND METHODS The participants were 29 chronic schizophrenia patients (SCH) and 29 controls. Decreased integrity of the CC was understood as increased mean diffusivity (MD) and/or decreased fractional anisotropy (FA) in diffusion tensor imaging. Peripheral IL-6 concentrations were measured in serum samples and IL-6 promoter methylation status of 6 CpG sites was analyzed in peripheral leukocytes by pyrosequencing. RESULTS Moderate positive correlations were found between CpG1 methylation and the MD of proximal regions of the CC (CCR1-CCR3) and between CpGmean and MD of CCR1 in SCH. Weaker positive correlations were found for CpGmean with CCR2 and CCR3 and negative correlations were found for CpG1 and FA of CCR3 in SCH. Multivariate regression showed that methylation of CpG1, type of antipsychotic treatment, and their interaction were significant independent predictors of MD of CCR1 in SCH. Methylation of CpG2 was negatively correlated with serum IL-6 in SCH. CONCLUSIONS The methylation level of the IL-6 promotor region in peripheral leukocytes is associated with the integrity of the CC in schizophrenia and this association may depend on the type of antipsychotic treatment. Further studies are necessary to explain the mechanisms of the observed associations.
Collapse
Affiliation(s)
- Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland.
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| | | | | | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | | | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | | | | | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University in Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| |
Collapse
|
4
|
MacLennan SA, Marra MA. Oncogenic Viruses and the Epigenome: How Viruses Hijack Epigenetic Mechanisms to Drive Cancer. Int J Mol Sci 2023; 24:ijms24119543. [PMID: 37298494 DOI: 10.3390/ijms24119543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Signe A MacLennan
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
5
|
Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, Pagniez P, Lupo J, Signor L, Müller CW, Morand P, Sattler M, Hammerschmidt W, Petosa C. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res 2021; 50:490-511. [PMID: 34893887 PMCID: PMC8754650 DOI: 10.1093/nar/gkab1183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.
Collapse
Affiliation(s)
- Florent Bernaudat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Johannes Günther
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Mizar F Oliva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Priscilla Pagniez
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Patrice Morand
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
6
|
Ruiz-Pablos M, Paiva B, Montero-Mateo R, Garcia N, Zabaleta A. Epstein-Barr Virus and the Origin of Myalgic Encephalomyelitis or Chronic Fatigue Syndrome. Front Immunol 2021; 12:656797. [PMID: 34867935 PMCID: PMC8634673 DOI: 10.3389/fimmu.2021.656797] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) affects approximately 1% of the general population. It is a chronic, disabling, multi-system disease for which there is no effective treatment. This is probably related to the limited knowledge about its origin. Here, we summarized the current knowledge about the pathogenesis of ME/CFS and revisit the immunopathobiology of Epstein-Barr virus (EBV) infection. Given the similarities between EBV-associated autoimmune diseases and cancer in terms of poor T cell surveillance of cells with EBV latency, expanded EBV-infected cells in peripheral blood and increased antibodies against EBV, we hypothesize that there could be a common etiology generated by cells with EBV latency that escape immune surveillance. Albeit inconclusive, multiple studies in patients with ME/CFS have suggested an altered cellular immunity and augmented Th2 response that could result from mechanisms of evasion to some pathogens such as EBV, which has been identified as a risk factor in a subset of ME/CFS patients. Namely, cells with latency may evade the immune system in individuals with genetic predisposition to develop ME/CFS and in consequence, there could be poor CD4 T cell immunity to mitogens and other specific antigens, as it has been described in some individuals. Ultimately, we hypothesize that within ME/CFS there is a subgroup of patients with DRB1 and DQB1 alleles that could confer greater susceptibility to EBV, where immune evasion mechanisms generated by cells with latency induce immunodeficiency. Accordingly, we propose new endeavors to investigate if anti-EBV therapies could be effective in selected ME/CFS patients.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Medica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | | | - Nicolas Garcia
- Clinica Universidad de Navarra, Centro de Investigación Medica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Medica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
7
|
Lee SH, Choi SJ, Choi W, Cho S, Cho M, Kim DS, Kang BW, Kim JG, Lee YM, Cho H, Kang H. Cisplatin Resistance in Epstein-Barr-Virus-Associated Gastric Carcinoma Acquired through ATM Methylation. Cancers (Basel) 2021; 13:cancers13174252. [PMID: 34503060 PMCID: PMC8428228 DOI: 10.3390/cancers13174252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gastric cancer (GC) is the fifth-leading type of cancer and the third –leading cause of death from cancer. Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is recently accountable for 10% of all the GC worldwide. Platinum drugs such as cisplatin and oxaliplatin are the first-line choice in GC chemotherapy. The widespread use of cisplatin leads to make tumor cells develop single or multiple drug resistance via various mechanisms. DNA hypermethylation on tumor suppressor genes is one of causes leading to drug resistances. 5-Azacytidine (5-AZA) is a chemical analogue of cytidine and inhibits DNA methyltransferase, resulting in DNA hypomethylation. Our main objective was to identify synergistic effect of two important GC drugs whose mechanisms may be in complementary cooperation. We found that cisplatin enhances its anticancer activity with 5-AZA through DNA demethylation in EBVaGC. Identifying this synergistic effect of two important GC drugs can be useful to treat EBVaGC which shows resistance to platinum-based chemotherapy. Abstract Epstein–Barr-virus-associated gastric carcinoma (EBVaGC), first reported in 1992, currently accounts for 10% of all gastric carcinoma worldwide. EBVaGC has unique DNA hypermethylation phenotypes that allow for higher proportions of DNA methylation than any other gastric cancer. CpG islands in the gene promoter region are one of the major regions in which DNA methylation controls gene transcription. Despite cisplatin-based chemotherapy being one of the standard treatment regimens for advanced gastric cancer, including EBVaGC, cisplatin alone or in combination with 5-fluorouracil has been limited by its less potent anticancer activity and the occurrence of cisplatin resistance. Accordingly, the current study evaluated the anticancer activities of a combination of cisplatin and 5-Azacytidine (5-AZA) against EBVaGC. Our findings showed that cisplatin upregulated the DNMT3A gene, whereas shRNA-targeted removal of DNMT3A mRNA contributed to cisplatin-mediated EBV lytic reactivation. Moreover, the removal of DNMT3A mRNA upregulated the ATM gene through DNA demethylation on the ATM promoter. Furthermore, CRISPR/Cas9-targeted removal of the ATM gene resulted in significantly reduced cell susceptibility and EBV lytic reactivation by a combination of cisplatin and DNMT3A inhibitor 5-AZA. Finally, 5-AZA exhibited a synergistic effect with cisplatin in anti-EBV and anti-EBVaGC activities by increasing drug susceptibility and EBV lytic reactivation. The aforementioned results suggest that cisplatin combined with DNA methylation inhibitors could be a novel therapeutic approach for EBVaGC.
Collapse
Affiliation(s)
- Sun Hee Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Su Jin Choi
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Wonhyeok Choi
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Subin Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Miyeon Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Byung Woog Kang
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - Jong Gwang Kim
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| |
Collapse
|
8
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
9
|
Buschle A, Mrozek-Gorska P, Cernilogar FM, Ettinger A, Pich D, Krebs S, Mocanu B, Blum H, Schotta G, Straub T, Hammerschmidt W. Epstein-Barr virus inactivates the transcriptome and disrupts the chromatin architecture of its host cell in the first phase of lytic reactivation. Nucleic Acids Res 2021; 49:3217-3241. [PMID: 33675667 PMCID: PMC8034645 DOI: 10.1093/nar/gkab099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a herpes virus also termed HHV 4 and the first identified human tumor virus, establishes a stable, long-term latent infection in human B cells, its preferred host. Upon induction of EBV's lytic phase, the latently infected cells turn into a virus factory, a process that is governed by EBV. In the lytic, productive phase, all herpes viruses ensure the efficient induction of all lytic viral genes to produce progeny, but certain of these genes also repress the ensuing antiviral responses of the virally infected host cells, regulate their apoptotic death or control the cellular transcriptome. We now find that EBV causes previously unknown massive and global alterations in the chromatin of its host cell upon induction of the viral lytic phase and prior to the onset of viral DNA replication. The viral initiator protein of the lytic cycle, BZLF1, binds to >105 binding sites with different sequence motifs in cellular chromatin in a concentration dependent manner implementing a binary molar switch probably to prevent noise-induced erroneous induction of EBV's lytic phase. Concomitant with DNA binding of BZLF1, silent chromatin opens locally as shown by ATAC-seq experiments, while previously wide-open cellular chromatin becomes inaccessible on a global scale within hours. While viral transcripts increase drastically, the induction of the lytic phase results in a massive reduction of cellular transcripts and a loss of chromatin-chromatin interactions of cellular promoters with their distal regulatory elements as shown in Capture-C experiments. Our data document that EBV's lytic cycle induces discrete early processes that disrupt the architecture of host cellular chromatin and repress the cellular epigenome and transcriptome likely supporting the efficient de novo synthesis of this herpes virus.
Collapse
Affiliation(s)
- Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21 D-81377 Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Bianca Mocanu
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| |
Collapse
|
10
|
Role of DNA Methylation and CpG Sites in the Viral Telomerase RNA Promoter during Gallid Herpesvirus 2 Pathogenesis. J Virol 2020; 94:JVI.01488-20. [PMID: 32967954 PMCID: PMC7654267 DOI: 10.1128/jvi.01488-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies demonstrated that telomerase RNAs possess functions that promote tumor development independent of the telomerase complex. vTR is a herpesvirus-encoded telomerase RNA subunit that plays a crucial role in virus-induced tumorigenesis and is expressed by a robust viral promoter that is highly regulated by the c-Myc oncoprotein binding to the E-boxes. Here, we demonstrated that the DNA methylation patterns in the functional c-Myc response elements of the vTR promoter change upon reactivation from latency, and that demethylation strongly increases telomerase activity in virus-infected cells. Moreover, the introduction of mutation in the CpG dinucleotides of the c-Myc binding sites resulted in decreased vTR expression and complete abrogation of tumor formation. Our study provides further confirmation of the involvement of specific DNA methylation patterns in the regulation of vTR expression and vTR importance for virus-induced tumorigenesis. Gallid herpesvirus type 2 (GaHV-2) is an oncogenic alphaherpesvirus that induces malignant T-cell lymphoma in chicken. GaHV-2 encodes a viral telomerase RNA subunit (vTR) that plays a crucial role in virus-induced tumorigenesis, enhances telomerase activity, and possesses functions independent of the telomerase complex. vTR is driven by a robust viral promoter, highly expressed in virus-infected cells, and regulated by two c-Myc response elements (c-Myc REs). The regulatory mechanisms involved in controlling vTR and other genes during viral replication and latency remain poorly understood but are crucial to understanding this oncogenic herpesvirus. Therefore, we investigated DNA methylation patterns of CpG dinucleotides found in the vTR promoter and measured the impact of methylation on telomerase activity. We demonstrated that telomerase activity was considerably increased following viral reactivation. Furthermore, CpG sites within c-Myc REs showed specific changes in methylation after in vitro reactivation and in infected animals over time. Promoter reporter assays indicated that one of the c-Myc REs is involved in regulating vTR transcription, and that methylation strongly influenced vTR promoter activity. To study the importance of the CpG sites found in c-Myc REs in virus-induced tumorigenesis, we generated recombinant virus containing mutations in CpG sites of c-Myc REs together with the revertant virus by two-step Red-mediated mutagenesis. Introduced mutations in the vTR promoter did not affect the replication properties of the recombinant viruses in vitro. In contrast, replication of the mutant virus in infected chickens was severely impaired, and tumor formation completely abrogated. Our data provides an in-depth characterization of c-Myc oncoprotein REs and the involvement of DNA methylation in transcriptional regulation of vTR. IMPORTANCE Previous studies demonstrated that telomerase RNAs possess functions that promote tumor development independent of the telomerase complex. vTR is a herpesvirus-encoded telomerase RNA subunit that plays a crucial role in virus-induced tumorigenesis and is expressed by a robust viral promoter that is highly regulated by the c-Myc oncoprotein binding to the E-boxes. Here, we demonstrated that the DNA methylation patterns in the functional c-Myc response elements of the vTR promoter change upon reactivation from latency, and that demethylation strongly increases telomerase activity in virus-infected cells. Moreover, the introduction of mutation in the CpG dinucleotides of the c-Myc binding sites resulted in decreased vTR expression and complete abrogation of tumor formation. Our study provides further confirmation of the involvement of specific DNA methylation patterns in the regulation of vTR expression and vTR importance for virus-induced tumorigenesis.
Collapse
|
11
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
12
|
A Noncanonical Basic Motif of Epstein-Barr Virus ZEBRA Protein Facilitates Recognition of Methylated DNA, High-Affinity DNA Binding, and Lytic Activation. J Virol 2019; 93:JVI.00724-19. [PMID: 31068430 DOI: 10.1128/jvi.00724-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/04/2023] Open
Abstract
The pathogenesis of Epstein-Barr virus (EBV) infection, including development of lymphomas and carcinomas, is dependent on the ability of the virus to transit from latency to the lytic phase. This conversion, and ultimately disease development, depends on the molecular switch protein, ZEBRA, a viral bZIP transcription factor that initiates transcription from promoters of viral lytic genes. By binding to the origin of viral replication, ZEBRA is also an essential replication protein. Here, we identified a novel DNA-binding motif of ZEBRA, N terminal to the canonical bZIP domain. This RRTRK motif is important for high-affinity binding to DNA and is essential for recognizing the methylation state of viral promoters. Mutations in this motif lead to deficiencies in DNA binding, recognition of DNA methylation, lytic cycle DNA replication, and viral late gene expression. This work advances our understanding of ZEBRA-dependent activation of the viral lytic cascade.IMPORTANCE The binding of ZEBRA to methylated and unmethylated viral DNA triggers activation of the EBV lytic cycle, leading to viral replication and, in some patients, cancer development. Our work thoroughly examines how ZEBRA uses a previously unrecognized basic motif to bind nonmethylated and methylated DNA targets, leading to viral lytic activation. Our findings show that two different positively charged motifs, including the canonical BZIP domain and a newly identified RRTRK motif, contribute to the mechanism of DNA recognition by a viral AP-1 protein. This work contributes to the assessment of ZEBRA as a potential therapeutic target for antiviral and oncolytic treatments.
Collapse
|
13
|
Schaeffner M, Mrozek-Gorska P, Buschle A, Woellmer A, Tagawa T, Cernilogar FM, Schotta G, Krietenstein N, Lieleg C, Korber P, Hammerschmidt W. BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Sci Alliance 2019; 2:e201800108. [PMID: 30926617 PMCID: PMC6441497 DOI: 10.26508/lsa.201800108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
A hallmark of EBV infections is its latent phase, when all viral lytic genes are repressed. Repression results from a high nucleosome occupancy and epigenetic silencing by cellular factors such as the Polycomb repressive complex 2 (PRC2) and DNA methyltransferases that, respectively, introduce repressive histone marks and DNA methylation. The viral transcription factor BZLF1 acts as a molecular switch to induce transition from the latent to the lytic or productive phase of EBV's life cycle. It is unknown how BZLF1 can bind to the epigenetically silenced viral DNA and whether it directly reactivates the viral genome through chromatin remodeling. We addressed these fundamental questions and found that BZLF1 binds to nucleosomal DNA motifs both in vivo and in vitro. BZLF1 co-precipitates with cellular chromatin remodeler ATPases, and the knock-down of one of them, INO80, impaired lytic reactivation and virus synthesis. In Assay for Transposase-Accessible Chromatin-seq experiments, non-accessible chromatin opens up locally when BZLF1 binds to its cognate sequence motifs in viral DNA. We conclude that BZLF1 reactivates the EBV genome by directly binding to silenced chromatin and recruiting cellular chromatin-remodeling enzymes, which implement a permissive state for lytic viral transcription. BZLF1 shares this mode of action with a limited number of cellular pioneer factors, which are instrumental in transcriptional activation, differentiation, and reprogramming in all eukaryotic cells.
Collapse
Affiliation(s)
- Marisa Schaeffner
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Anne Woellmer
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Filippo M Cernilogar
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
| | - Gunnar Schotta
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Nils Krietenstein
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
| | - Corinna Lieleg
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
| | - Philipp Korber
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
14
|
Chen LW, Hung CH, Wang SS, Yen JB, Liu AC, Hung YH, Chang PJ. Expression and regulation of the BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus. Virus Res 2018; 256:76-89. [PMID: 30096410 DOI: 10.1016/j.virusres.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/24/2022]
Abstract
The BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus (EBV) are located close together in the viral genome, which encode glycoprotein L, uracil-DNA glycosylase and a tegument protein, respectively. Here, we demonstrate that the BKRF2 gene behaves as a true-late lytic gene, whereas the BKRF3 and BKRF4 genes belong to the early lytic gene family. Our results further reveal that both BKRF3 and BKRF4 promoters are new synergistic targets of Zta and Rta, two EBV latent-to-lytic switch transactivators. Multiple Rta- and Zta-responsive elements within the BKRF3 and BKRF4 promoters were identified and characterized experimentally. Importantly, we show that DNA methylation is absolutely required for activation of the BKRF4 promoter by Zta alone or in combination with Rta. Moreover, we find that sodium butyrate, an inducing agent of EBV reactivation, is capable of activating the BKRF4 promoter through a mechanism independent of Zta and Rta. Overall, our studies highlight the complexity of transcriptional regulation of lytic genes within the BKRF2-BKRF3-BKRF4 gene locus.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Ju-Bei Yen
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Pediatrics, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ann-Chi Liu
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Ya-Hui Hung
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
15
|
Ray S, Tillo D, Assad N, Ufot A, Deppmann C, Durell SR, Porollo A, Vinson C. Replacing C189 in the bZIP domain of Zta with S, T, V, or A changes DNA binding specificity to four types of double-stranded DNA. Biochem Biophys Res Commun 2018; 501:905-912. [PMID: 29772230 DOI: 10.1016/j.bbrc.2018.05.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 11/15/2022]
Abstract
Zta is a bZIP transcription factor (TF) in the Epstein-Barr virus that binds unmethylated and methylated DNA sequences. Substitution of cysteine 189 of Zta to serine (Zta(C189S)) results in a virus that is unable to execute the lytic cycle, which was attributed to a change in binding to methylated DNA sequences. To learn more about the role of this position in defining sequence-specific DNA binding, we mutated cysteine 189 to four other amino acids, producing Zta(C189S), Zta(C189T), Zta(C189A), and Zta(C189V) mutants. Zta and mutants were used in protein binding microarray (PBM) experiments to evaluate sequence-specific DNA binding to four types of double-stranded DNA (dsDNA): 1) with cytosine in both strands (DNA(C|C)), 2) with 5-methylcytosine (5mC) in one strand and cytosine in the second strand (DNA(5mC|C)), 3) with 5-hydroxymethylcytosine (5hmC) in one strand and cytosine in the second strand (DNA(5hmC|C)), and 4) with both cytosines in all CG dinucleotides containing 5mC (DNA(5mCG)). Zta(C189S) and Zta(C189T) bound the TRE (AP-1) motif (TGAG/CTCA) more strongly than wild-type Zta, while binding to other sequences, including the C/EBP half site GCAA was reduced. Binding of Zta(C189S) and Zta(C189T) to DNA containing modified cytosines (DNA(5mC|C), DNA(5hmC|C), and DNA(5mCG)) was reduced compared to Zta. Zta(C189A) and Zta(C189V) had higher non-specific binding to all four types of DNA. Our data suggests that position C189 in Zta impacts sequence-specific binding to DNA containing modified and unmodified cytosine.
Collapse
Affiliation(s)
- Sreejana Ray
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Desiree Tillo
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nima Assad
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aniekanabasi Ufot
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Almohammed R, Osborn K, Ramasubramanyan S, Perez-Fernandez IBN, Godfrey A, Mancini EJ, Sinclair AJ. Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta. J Gen Virol 2018; 99:805-817. [PMID: 29580369 PMCID: PMC6096924 DOI: 10.1099/jgv.0.001056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gamma herpes virus Epstein–Barr virus (EBV) exploits multiple routes to evade the cellular immune response. During the EBV lytic replication cycle, viral proteins are expressed that provide excellent targets for recognition by cytotoxic T cells. This is countered by the viral BNLF2a gene. In B cells during latency, where BNLF2a is not expressed, we show that its regulatory region is embedded in repressive chromatin. The expression of BNLF2a mirrors the expression of a viral lytic cycle transcriptional regulator, Zta (BZLF1, EB1, ZEBRA), in B cells and we propose that Zta plays a role in up-regulating BNLF2a. In cells undergoing EBV lytic replication, we identified two distinct regions of interaction of Zta with the chromatin-associated BNLF2a promoter. We identify five potential Zta-response elements (ZREs) in the promoter that are highly conserved between virus isolates. Zta binds to these elements in vitro and activates the expression of the BNLF2a promoter in both epithelial and B cells. We also found redundancy amongst the ZREs. The EBV genome undergoes a biphasic DNA methylation cycle during its infection cycle. One of the ZREs contains an integral CpG motif. We show that this can be DNA methylated during EBV latency and that both Zta binding and promoter activation are enhanced by its methylation. In summary, we find that the BNLF2a promoter is directly targeted by Zta and that DNA methylation within the proximal ZRE aids activation. The implications for regulation of this key viral gene during the reactivation of EBV from latency are discussed.
Collapse
Affiliation(s)
- Rajaei Almohammed
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Sharada Ramasubramanyan
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Alison J Sinclair
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
17
|
Tillo D, Ray S, Syed KS, Gaylor MR, He X, Wang J, Assad N, Durell SR, Porollo A, Weirauch MT, Vinson C. The Epstein-Barr Virus B-ZIP Protein Zta Recognizes Specific DNA Sequences Containing 5-Methylcytosine and 5-Hydroxymethylcytosine. Biochemistry 2017; 56:6200-6210. [PMID: 29072898 DOI: 10.1021/acs.biochem.7b00741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Epstein-Barr virus (EBV) B-ZIP transcription factor Zta binds to many DNA sequences containing methylated CG dinucleotides. Using protein binding microarrays (PBMs), we analyzed the sequence specific DNA binding of Zta to four kinds of double-stranded DNA (dsDNA): (1) DNA containing cytosine in both strands, (2) DNA with 5-methylcytosine (5mC) in one strand and cytosine in the second strand, (3) DNA with 5-hydroxymethylcytosine (5hmC) in one strand and cytosine in the second strand, and (4) DNA in which both cytosines in all CG dinucleotides contain 5mC. We compared these data to PBM data for three additional B-ZIP proteins (CREB1 and CEBPB homodimers and cJun|cFos heterodimers). With cytosine, Zta binds the TRE motif TGAC/GTCA as previously reported. With CG dinucleotides containing 5mC on both strands, many TRE motif variants containing a methylated CG dinucleotide at two positions in the motif, such as MGAGTCA and TGAGMGA (where M = 5mC), were preferentially bound. 5mC inhibits binding of Zta to both TRE motif half-sites GTCA and CTCA. Like the CREB1 homodimer, the Zta homodimer and the cJun|cFos heterodimer more strongly bind the C/EBP half-site tetranucleotide GCAA when it contains 5mC. Zta also binds dsDNA sequences containing 5hmC in one strand, although the effect is less dramatic than that observed for 5mC. Our results identify new DNA sequences that are well-bound by the viral B-ZIP protein Zta only when they contain 5mC or 5hmC, uncovering the potential for discovery of new viral and host regulatory programs controlled by EBV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio 45229, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio 45229, United States
| | | |
Collapse
|
18
|
Lupey-Green LN, Moquin SA, Martin KA, McDevitt SM, Hulse M, Caruso LB, Pomerantz RT, Miranda JL, Tempera I. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter. Virology 2017; 507:220-230. [PMID: 28456021 PMCID: PMC5521201 DOI: 10.1016/j.virol.2017.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022]
Abstract
The Epstein Barr virus (EBV) genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type, and in other herpesviruses, loss of CTCF binding at specific regions correlates with viral reactivation. Here, we demonstrate that binding of PARP1, an important cofactor of CTCF, at the BZLF1 lytic switch promoter restricts EBV reactivation. Knockdown of PARP1 in the Akata-EBV cell line significantly increases viral copy number and lytic protein expression. Interestingly, CTCF knockdown has no effect on viral reactivation, and CTCF binding across the EBV genome is largely unchanged following reactivation. Moreover, EBV reactivation attenuates PARP activity, and Zta expression alone is sufficient to decrease PARP activity. Here we demonstrate a restrictive function of PARP1 in EBV lytic reactivation.
Collapse
Affiliation(s)
- Lena N Lupey-Green
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Stephanie A Moquin
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla A Martin
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shane M McDevitt
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael Hulse
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Lisa B Caruso
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Richard T Pomerantz
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jj L Miranda
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Italo Tempera
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Li H, Liu S, Hu J, Luo X, Li N, M Bode A, Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016; 12:1309-1318. [PMID: 27877083 PMCID: PMC5118777 DOI: 10.7150/ijbs.16564] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV can establish two alternative modes of life cycle, known as latent or lytic and the switch from latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly in latency, a small number of lytically-infected cells promote carcinogenesis through the release of growth factors and oncogenic cytokines. This review focuses on the mechanisms by which EBV reactivation is controlled by cellular and viral factors, and discusses how EBV lytic infection contributes to human malignancies.
Collapse
Affiliation(s)
- Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| |
Collapse
|
20
|
Carraro JCC, Hermsdorff HHM, Mansego ML, Zulet MÁ, Milagro FI, Bressan J, Martínez JA. Higher Fruit Intake Is Related to TNF-α Hypomethylation and Better Glucose Tolerance in Healthy Subjects. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 9:95-105. [PMID: 27467584 DOI: 10.1159/000448101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM This study hypothesized an association between healthy dietary patterns, hypermethylation of the tumor necrosis factor-α (TNF-α) promoter and decreased risk of metabolic changes. METHODS Forty normal-weight young women were involved in this cross-sectional study. DNA was isolated from white blood cells, and CpG site methylation in TNF-α was analyzed by Sequenom EpiTyper. The quality of the diet was assessed by Healthy Eating Index (HEI-2005). RESULTS Contradicting our hypothesis, HEI-2005 score was negatively associated with CpG5 (r = -0.460, p = 0.003) and TNF-α total methylation (r = -0.355, p = 0.026). A higher intake of fruits was related to lower insulin, HOMA-IR, and TNF-α methylation. No other dietary pattern was related to TNF-α methylation. TNF-α total methylation correlated positively with systolic blood pressure (r = 0.323; p = 0.042) and CpG5 methylation with body mass index (r = 0.333, p = 0.036). Furthermore, fiber intake was negatively associated with the CpG5 (r = -0.324, p = 0.041) and TNF-α total methylation (r = -0.434, p = 0.005), whereas vitamin C intake was negatively associated with TNF-α total methylation (r = -0.411, p = 0.009). Intakes of apples and citrus fruits were negatively associated with TNF-α total methylation. CONCLUSION A healthy dietary pattern and higher fruit intake (particularly apples and citrus fruits) were related to better glucose tolerance in healthy subjects, which could be mediated by lower TNF-α methylation.
Collapse
|
21
|
Germi R, Guigue N, Lupo J, Semenova T, Grossi L, Vermeulen O, Epaulard O, de Fraipont F, Morand P. Methylation of Epstein-Barr virus Rta promoter in EBV primary infection, reactivation and lymphoproliferation. J Med Virol 2016; 88:1814-20. [PMID: 26990870 DOI: 10.1002/jmv.24524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/09/2022]
Abstract
During Epstein-Barr virus (EBV) latency, the EBV genome is largely silenced by methylation. This silencing is overturned during the switch to the lytic cycle. A key event is the production of the viral protein Zta which binds to three Zta-response elements (ZRE) from the Rta promoter (Rp), two of which (ZRE2 and ZRE3) include three CpG motifs methylated in the latent genome. The bisulphite pyrosequencing reaction was used to quantify the methylation of ZRE2, ZRE3a, and ZRE3b in EBV-positive cell lines and in ex vivo samples of EBV-related diseases, in order to assess whether the level of methylation in these ZREs could provide additional information to viral DNA load and serology in the characterization of EBV-associated diseases. In PBMC from two patients with infectious mononucleosis, over time Rp became increasingly methylated whereas EBV load decreased. In tonsil from patients with chronic tonsillitis, the methylation was less than in EBV-associated tumors, regardless of the viral load. This was even more striking when only the ZRE3a and ZRE3b were considered since some samples presented unbalanced profiles on ZRE2. EBV reactivation in cell culture showed that the reduction in the overall level of methylation was closely related to the production of unmethylated virions. Thus, an assessment of the level of methylation may help to better characterize EBV replication in PBMC and in biopsies with high EBV load, during infectious mononucleosis and EBV-associated cancers. J. Med. Virol. 88:1814-1820, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raphaële Germi
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Nicolas Guigue
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Touyana Semenova
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Laurence Grossi
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France
| | - Odile Vermeulen
- Department of Cancer Clinical Chemistry, Grenoble Alpes University Hospital, Grenoble, France
| | - Olivier Epaulard
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Infectious Diseases, Grenoble Alpes University Hospital, Grenoble, France
| | - Florence de Fraipont
- Department of Cancer Clinical Chemistry, Grenoble Alpes University Hospital, Grenoble, France
| | - Patrice Morand
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
22
|
Ma Y, Smith CE, Lai CQ, Irvin MR, Parnell LD, Lee YC, Pham LD, Aslibekyan S, Claas SA, Tsai MY, Borecki IB, Kabagambe EK, Ordovás JM, Absher DM, Arnett DK. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter. Mol Nutr Food Res 2016; 60:410-9. [PMID: 26518637 PMCID: PMC4844557 DOI: 10.1002/mnfr.201500436] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/11/2015] [Accepted: 10/21/2015] [Indexed: 01/04/2023]
Abstract
SCOPE Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. METHODS AND RESULTS Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10(-7) ). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. CONCLUSION Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs.
Collapse
Affiliation(s)
- Yiyi Ma
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Biomedical Genetics, Department of Medicine, Boston University, Boston, MA, USA
| | - Caren E. Smith
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laurence D. Parnell
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Yu-Chi Lee
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Lucia D. Pham
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven A. Claas
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - José M. Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Department of Epidemiology, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Alimentacion (IMDEA-FOOD), Madrid, Spain
| | - Devin M. Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Balan N, Osborn K, Sinclair AJ. Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding. J Gen Virol 2015; 97:725-732. [PMID: 26653871 DOI: 10.1099/jgv.0.000369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part, this is mediated through downregulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. This repression is achieved through a reduction in CIITA promoter activity, initiated by the EBV transcription and replication factor, Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence-specific elements in promoters, enhancers and the replication origin (ZREs), and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here, we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter.
Collapse
Affiliation(s)
- Nicolae Balan
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
24
|
5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proc Natl Acad Sci U S A 2015; 112:E7257-65. [PMID: 26663912 DOI: 10.1073/pnas.1513432112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection and cellular hypermethylation are hallmarks of undifferentiated nasopharyngeal carcinoma (NPC). However, EBV infection of normal oral epithelial cells is confined to differentiated cells and is lytic. Here we demonstrate that the EBV genome can become 5-hydroxymethylated and that this DNA modification affects EBV lytic reactivation. We show that global 5-hydroxymethylcytosine (5hmC)-modified DNA accumulates during normal epithelial-cell differentiation, whereas EBV+ NPCs have little if any 5hmC-modified DNA. Furthermore, we find that increasing cellular ten-eleven translocation (TET) activity [which converts methylated cytosine (5mC) to 5hmC] decreases methylation, and increases 5hmC modification, of lytic EBV promoters in EBV-infected cell lines containing highly methylated viral genomes. Conversely, inhibition of endogenous TET activity increases lytic EBV promoter methylation in an EBV-infected telomerase-immortalized normal oral keratinocyte (NOKs) cell line where lytic viral promoters are largely unmethylated. We demonstrate that these cytosine modifications differentially affect the ability of the two EBV immediate-early proteins, BZLF1 (Z) and BRLF1 (R), to induce the lytic form of viral infection. Although methylation of lytic EBV promoters increases Z-mediated and inhibits R-mediated lytic reactivation, 5hmC modification of lytic EBV promoters has the opposite effect. We also identify a specific CpG-containing Z-binding site on the BRLF1 promoter that must be methylated for Z-mediated viral reactivation and show that TET-mediated 5hmC modification of this site in NOKs prevents Z-mediated viral reactivation. Decreased 5-hydroxymethylation of cellular and viral genes may contribute to NPC formation.
Collapse
|
25
|
Nawaz I, Hu LF, Du ZM, Moumad K, Ignatyev I, Pavlova TV, Kashuba V, Almgren M, Zabarovsky ER, Ernberg I. Integrin α9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma. Oncotarget 2015; 6:31493-507. [PMID: 26372814 PMCID: PMC4741620 DOI: 10.18632/oncotarget.5154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) by promoter methylation can be an early event in the multi-step process of carcinogenesis. Human chromosome 3 contains clusters of TSGs involved in many cancer types including nasopharyngeal carcinoma (NPC), the most common cancer in Southern China. Among ten candidate TSGs identified in chromosome 3 using NotI microarray, ITGA9 and WNT7A could be validated. 5'-aza-2' deoxycytidine treatment restored the expression of ITGA9 and WNT7A in two NPC cell lines. Immunostaining showed strong expression of these genes in the membrane and cytoplasm of adjacent control nasopharyngeal epithelium cells, while they were weakly expressed in NPC tumor cells. The ITGA9 promoter showed marked differentially methylation between tumor and control tissue, whereas no differentially methylation could be detected for the WNT7A promoter. The expression level of ITGA9 in NPC tumors was downregulated 4.9-fold, compared to the expression in control. ITGA9 methylation was detected by methylation specific PCR (MSP) in 56% of EBV positive NPC-cases with 100% specificity. Taken together, this suggests that ITGA9 might be a TSG in NPC that is involved in tumor cell biology. The possibility of using ITGA9 methylation as a marker for early detection of NPC should further be explored.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zi-Ming Du
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Oncology in South China, and Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Khalid Moumad
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Oncovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ilya Ignatyev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana V. Pavlova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Almgren
- Department Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Stockholm, Sweden
| | - Eugene R. Zabarovsky
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical & Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Nawaz I, Moumad K, Martorelli D, Ennaji MM, Zhou X, Zhang Z, Dolcetti R, Khyatti M, Ernberg I, Hu LF. Detection of nasopharyngeal carcinoma in Morocco (North Africa) using a multiplex methylation-specific PCR biomarker assay. Clin Epigenetics 2015; 7:89. [PMID: 26300994 PMCID: PMC4546349 DOI: 10.1186/s13148-015-0119-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022] Open
Abstract
Background Silencing of tumor suppressor genes (TSGs) or activation of oncogenes by, e.g., aberrant promoter methylation, may be early events during carcinogenesis. The methylation status of such genes can be used for early detection of cancer. We are pursuing this approach in our efforts to develop markers for early detection and follow-up of nasopharyngeal carcinoma (NPC). We set out to develop this approach to allow identification of NPC from Morocco and then also compared with NPC samples from different geographical locations and different ethnicity with different NPC incidences, Epstein-Barr virus (EBV) prevalence, and environments. Results By multiplex methylation-specific PCR (MMSP), multiple relevant genes can be detected simultaneously, to achieve high sensitivity and specificity. The strong association of EBV with NPC is also very useful in such an approach. We have initially screened for 12 potential marker genes including EBV genes coding for EBV nuclear antigen 1 (EBNA1) and latent membrane protein-1 (LMP1) and ten potential TSGs obtained from previously published data. The resulting assay included EBNA1, LMP1, and three cellular TSGs: ITGA9, RASSF1A, and P16. We evaluated this assay on 64 NPC patient biopsies from Morocco, Italy, and China compared to deoxyribonucleic acid (DNA) from 20 nasopharyngeal control tissues. In the Moroccan NPC cohort (n = 44), prevalence of the EBNA1 gene showed the highest sensitivity (36/44; 82 %) with 94 % specificity. Out of eight (18 %) EBNA1 negative Moroccan samples, only three were positive for at least one methylated cellular gene. By detection of cellular marker genes, the sensitivity increased from 82 to 89 % (39/44). In the whole material of 64 biopsies from three geographical locations, at least any one marker (viral or cellular) could be detected in 91 % of biopsies with 90 % specificity. In a pilot evaluating assay performance on serum DNA from NPC and controls including samples from Italy (n = 11) and China (n = 5), at least any one marker from the MMSP assay could be detected in 88 %, but the specificity was only 50 %. Conclusions An MMSP assay has the potential for detection of NPC by screening in high-risk populations. Serum-derived DNA seems not as good as earlier published NPC swab DNA for screening purpose.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden.,Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Khalid Moumad
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Oncovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Debora Martorelli
- Cancer Bio-Immunotherapy Unit Centro di Riferimento Oncologico IRCCS - National Cancer Institute, Via Franco Gallini, 233081 Aviano, PN Italy
| | - Moulay Mustapha Ennaji
- University Hassan II, Faculty of Sciences and Techniques, Mohammedia - Casablanca, Laboratory of Virology, Microbiology and Quality/ETB, Mohammedia, , BP 146, 20650 Morocco
| | - Xiaoying Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden.,Department of Orolaryngology - Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Zhe Zhang
- Department of Orolaryngology - Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit Centro di Riferimento Oncologico IRCCS - National Cancer Institute, Via Franco Gallini, 233081 Aviano, PN Italy
| | - Meriem Khyatti
- Oncovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden
| |
Collapse
|
27
|
Ramasubramanyan S, Osborn K, Al-Mohammad R, Naranjo Perez-Fernandez IB, Zuo J, Balan N, Godfrey A, Patel H, Peters G, Rowe M, Jenner RG, Sinclair AJ. Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression. Nucleic Acids Res 2015; 43:3563-77. [PMID: 25779048 PMCID: PMC4402532 DOI: 10.1093/nar/gkv212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements.
Collapse
Affiliation(s)
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | - Jianmin Zuo
- School of Cancer Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Nicolae Balan
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Harshil Patel
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Gordon Peters
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Martin Rowe
- School of Cancer Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Richard G Jenner
- UCL Cancer Institute and MRC Centre for Medical Molecular Virology, Paul O'Gorman Building, University College London, London W1CE 6BT, UK
| | | |
Collapse
|
28
|
C/EBPβ (CEBPB) protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:583-9. [PMID: 25779641 DOI: 10.1016/j.bbagrm.2015.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/18/2015] [Accepted: 03/06/2015] [Indexed: 12/25/2022]
Abstract
During mammalian development, some methylated cytosines (5mC) in CG dinucleotides are iteratively oxidized by TET dioxygenases to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). The effect of these cytosine oxidative products on the sequence-specific DNA binding of transcription factors is being actively investigated. Here, we used the electrophoretic mobility shift assay (EMSA) to examine C/EBPα and C/EBPβ homodimers binding to all 25 chemical forms of a CG dinucleotide for two DNA sequences: the canonical C/EBP 8-mer TTGC|GCAA and the chimeric C/EBP|CRE 8-mer TTGC|GTCA. 5hmC in the CG dinucleotide in the C/EBP|CRE motif 8-mer TGAC|GCAA inhibits binding of C/EBPβ but not C/EBPα. Binding was increased by 5mC, 5fC and 5caC. Circular dichroism monitored thermal denaturations for C/EBPβ bound to the C/EBP|CRE motif confirmed the EMSA. The structural differences between C/EBPα and C/EBPβ that may account for the difference in binding 5hmC in the 8-mer TGAC|GCAA are explored.
Collapse
|
29
|
Genome-wide DNA methylation as an epigenetic consequence of Epstein-Barr virus infection of immortalized keratinocytes. J Virol 2014; 88:11442-58. [PMID: 25056883 DOI: 10.1128/jvi.00972-14] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The oral cavity is a persistent reservoir for Epstein-Barr virus (EBV) with lifelong infection of resident epithelial and B cells. Infection of these cell types results in distinct EBV gene expression patterns regulated by epigenetic modifications involving DNA methylation and chromatin structure. Regulation of EBV gene expression relies on viral manipulation of the host epigenetic machinery that may result in long-lasting host epigenetic reprogramming. To identify epigenetic events following EBV infection, a transient infection model was established to map epigenetic changes in telomerase-immortalized oral keratinocytes. EBV-infected oral keratinocytes exhibited a predominantly latent viral gene expression program with some lytic or abortive replication. Calcium and methylcellulose-induced differentiation was delayed in EBV-positive clones and in clones that lost EBV compared to uninfected controls, indicating a functional consequence of EBV epigenetic modifications. Analysis of global cellular DNA methylation identified over 13,000 differentially methylated CpG residues in cells exposed to EBV compared to uninfected controls, with CpG island hypermethylation observed at several cellular genes. Although the vast majority of the DNA methylation changes were silent, 65 cellular genes that acquired CpG methylation showed altered transcript levels. Genes with increased transcript levels frequently acquired DNA methylation within the gene body while those with decreased transcript levels acquired DNA methylation near the transcription start site. Treatment with the DNA methyltransferase inhibitor, decitabine, restored expression of some hypermethylated genes in EBV-infected and EBV-negative transiently infected clones. Overall, these observations suggested that EBV infection of keratinocytes leaves a lasting epigenetic imprint that can enhance the tumorigenic phenotype of infected cells. IMPORTANCE Here, we show that EBV infection of oral keratinocytes led to CpG island hypermethylation as an epigenetic scar of prior EBV infection that was retained after loss of the virus. Such EBV-induced epigenetic modification recapitulated the hypermethylated CpG island methylator phenotype (CIMP) observed in EBV-associated carcinomas. These epigenetic alterations not only impacted gene expression but also resulted in delayed calcium and methylcellulose-induced keratinocyte differentiation. Importantly, these epigenetic changes occurred in cells that were not as genetically unstable as carcinoma cells, indicating that EBV infection induced an epigenetic mutator phenotype. The impact of this work is that we have provided a mechanistic framework for how a tumor virus using the epigenetic machinery can act in a "hit-and-run" fashion, with retention of epigenetic alterations after loss of the virus. Unlike genetic alterations, these virally induced epigenetic changes can be reversed pharmacologically, providing therapeutic interventions to EBV-associated malignancies.
Collapse
|
30
|
Abstract
Progressive lung fibrosis in humans, typified by idiopathic pulmonary fibrosis (IPF), is a serious cause of morbidity and mortality in people. Similar diseases have been described in dogs, cats, and horses. The cause and pathogenesis of such diseases in all species is poorly understood. There is growing evidence in human medicine that IPF is a manifestation of abnormal wound repair in response to epithelial injury. Because viruses can contribute to epithelial injury, there is increasing interest in a possible role of viruses, particularly gammaherpesviruses, in the pathogenesis of pulmonary fibrosis. This review provides background information on progressive fibrosing lung disease in human and veterinary medicine and summarizes the evidence for an association between gammaherpesvirus infection and pulmonary fibrosis, especially Epstein-Barr virus in human pulmonary fibrosis, and equine herpesvirus 5 in equine multinodular pulmonary fibrosis. Data derived from experimental lung infection in mice with the gammaherpesvirus murine herpesvirus are presented, emphasizing the host and viral factors that may contribute to lung fibrosis. The experimental data are considered in the context of the pathogenesis of naturally occurring pulmonary fibrosis in humans and horses.
Collapse
Affiliation(s)
- K. J. Williams
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
31
|
Sinclair AJ. Epigenetic control of Epstein-Barr virus transcription - relevance to viral life cycle? Front Genet 2013; 4:161. [PMID: 23986773 PMCID: PMC3753449 DOI: 10.3389/fgene.2013.00161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/04/2013] [Indexed: 12/20/2022] Open
Abstract
DNA methylation normally leads to silencing of gene expression but Epstein-Barr virus (EBV) provides an exception to the epigenetic paradigm. DNA methylation is absolutely required for the expression of many viral genes. Although the viral genome is initially un-methylated in newly infected cells, it becomes extensively methylated during the establishment of viral latency. One of the major regulators of EBV gene expression is a viral transcription factor called Zta (BZLF1, ZEBRA, Z) that resembles the cellular AP1 transcription factor. Zta recognizes at least 32 variants of a 7-nucleotide DNA sequence element, the Zta-response element (ZRE), some of which contain a CpG motif. Zta only binds to the latter class of ZREs in their DNA-methylated form, whether they occur in viral or cellular promoters and is functionally relevant for the activity of these promoters. The ability of Zta to interpret the differential DNA methylation of the viral genome is paramount for both the establishment of viral latency and the release from latency to initiate viral replication.
Collapse
|
32
|
The B-cell-specific transcription factor and master regulator Pax5 promotes Epstein-Barr virus latency by negatively regulating the viral immediate early protein BZLF1. J Virol 2013; 87:8053-63. [PMID: 23678172 DOI: 10.1128/jvi.00546-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The latent-to-lytic switch of Epstein-Barr virus (EBV) is mediated by the immediate early protein BZLF1 (Z). However, the cellular factors regulating this process remain incompletely characterized. In this report, we show that the B-cell-specific transcription factor Pax5 helps to promote viral latency in B cells by blocking Z function. Although Z was previously shown to directly interact with Pax5 and inhibit its activity, the effect of Pax5 on Z function has not been investigated. Here, we demonstrate that Pax5 inhibits Z-mediated lytic viral gene expression and the release of infectious viral particles in latently infected epithelial cell lines. Conversely, we found that shRNA-mediated knockdown of endogenous Pax5 in a Burkitt lymphoma B-cell line leads to viral reactivation. Furthermore, we show that Pax5 reduces Z activation of early lytic viral promoters in reporter gene assays and inhibits Z binding to lytic viral promoters in vivo. We confirm that Pax5 and Z directly interact and show that this interaction requires the carboxy-terminal DNA-binding/dimerization domain of Z and the amino-terminal DNA-binding domain of Pax5. A Pax5 DNA-binding mutant (V26G/P80R) that interacts with Z retains the ability to inhibit Z function, whereas a Pax5 mutant (Δ106-110) that is deficient for interaction with Z does not inhibit Z-mediated lytic viral reactivation. Since the B-cell-specific transcription factor Oct-2 also directly interacts with Z and inhibits its function, these results suggest that EBV uses multiple redundant mechanisms to establish and maintain viral latency in B cells.
Collapse
|
33
|
Murata T, Tsurumi T. Epigenetic modification of the Epstein-Barr virus BZLF1 promoter regulates viral reactivation from latency. Front Genet 2013; 4:53. [PMID: 23577022 PMCID: PMC3620531 DOI: 10.3389/fgene.2013.00053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/25/2013] [Indexed: 01/08/2023] Open
Abstract
The Epstein-Barr virus (EBV) is an oncogenic human gamma-herpesvirus that predominantly establishes latent infection in B lymphocytes. Viral genomes exist as extrachromosomal episomes with a nucleosomal structure. Maintenance of virus latency or execution of reactivation is controlled by the expression of BZLF1, a viral immediate-early gene product, tightly controlled at the transcriptional level. In this article, we review how BZLF1 transcription is controlled, in other words how virus reactivation is regulated, especially in terms of epigenetics. We recently found that histone H3 lysine 27 trimethylation (H3K27me3) and H4K20me3 markers are crucial for suppression of BZLF1 in latent Raji cells. In addition, H3K9me2/3, heterochromatin protein 1, and H2A ubiquitination are associated with latency, whereas positive markers, such as higher histone acetylation and H3K4me3, are concomitant with reactivation. Since lytic replication eventually causes cell cycle arrest and cell death, development of oncolytic therapy for EBV-positive cancers is conceivable using epigenetic disruptors. In addition, we note the difficulties in analyzing roles of epigenetics in EBV, including issues like cell type dependence and virus copy numbers.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute Nagoya, Japan
| | | |
Collapse
|
34
|
Base-pair resolution DNA methylome of the EBV-positive Endemic Burkitt lymphoma cell line DAUDI determined by SOLiD bisulfite-sequencing. Leukemia 2013; 27:1751-3. [PMID: 23307032 PMCID: PMC3740476 DOI: 10.1038/leu.2013.4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Kang X, Chen X, He Y, Guo D, Guo L, Zhong J, Shu HB. DDB1 is a cellular substrate of NS3/4A protease and required for hepatitis C virus replication. Virology 2013; 435:385-94. [DOI: 10.1016/j.virol.2012.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
36
|
Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. J Virol 2012; 87:935-50. [PMID: 23135711 DOI: 10.1128/jvi.01790-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early proteins BZLF1 and BRLF1 can both induce lytic EBV reactivation when overexpressed in latently infected cells. Although EBV genome methylation is required for BZLF1-mediated activation of lytic gene expression, the effect of viral genome methylation on BRLF1-mediated viral reactivation has not been well studied. Here, we have compared the effect of viral DNA methylation on BZLF1- versus BRLF1-mediated activation of lytic EBV gene transcription and viral genome replication. We show that most early lytic viral promoters are preferentially activated by BZLF1 in the methylated form, while methylation decreases the ability of BRLF1 to activate most early lytic promoters, as well as the BLRF2 late viral promoter. Moreover, methylation of bacmid constructs containing the EBV genome enhances BZLF1-mediated, but decreases BRLF1-mediated, early lytic gene expression. Methylation of viral promoter DNA does not affect BRLF1 binding to a variety of different CpG-containing BRLF1 binding motifs (RREs) in vitro or in vivo. However, BRLF1 preferentially induces H3K9 histone acetylation of unmethylated promoters in vivo. The methylated and unmethylated forms of an oriLyt-containing plasmid replicate with similar efficiency when transfected into EBV-positive cells that express the essential viral replication proteins in trans. Most importantly, we demonstrate that lytic viral gene expression and replication can be induced by BRLF1, but not BZLF1, expression in an EBV-positive telomerase-immortalized epithelial cell line (NOKs-Akata) in which lytic viral gene promoters remain largely unmethylated. These results suggest that the unmethylated form of the EBV genome can undergo viral reactivation and replication in a BRLF1-dependent manner.
Collapse
|
37
|
Genome-wide analyses of Zta binding to the Epstein-Barr virus genome reveals interactions in both early and late lytic cycles and an epigenetic switch leading to an altered binding profile. J Virol 2012; 86:12494-502. [PMID: 23015699 DOI: 10.1128/jvi.01705-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Epstein-Barr virus (EBV) genome sustains substantial epigenetic modification involving chromatin remodelling and DNA methylation during lytic replication. Zta (ZEBRA, BZLF1), a key regulator of the EBV lytic cycle, is a transcription and replication factor, binding to Zta response elements (ZREs) in target promoters and EBV lytic origins of replication. In vitro, Zta binding is modulated by DNA methylation; a subset of CpG-containing Zta binding sites (CpG ZREs) is bound only in a DNA methylation-dependent manner. The question of how the dynamic epigenetic environment impacts Zta interaction during the EBV lytic cycle is unknown. To address this, we used chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-Seq) to identify Zta binding sites across the EBV genome before and after viral DNA replication. Replication did not alter the association of Zta across many regions of the EBV genome, but a striking reduction in Zta binding occurred at some loci that contain CpG ZREs. Separating Zta-bound DNA into methylated and nonmethylated fractions, we found that promoters that contain CpG ZREs were enriched in the methylated fraction but that Zta binding to promoters lacking CpG ZREs was not reduced. We hypothesize that the loss of DNA methylation on the EBV genome during the lytic cycle causes the reduced binding to CpG ZREs; this may act as a lytic cycle epigenetic switch. However, the epigenetic changes associated with the replicated EBV genome do not affect the interaction of Zta with many loci that are rich in non-CpG ZREs; this leads to sustained binding at these regions.
Collapse
|
38
|
Chatterjee R, Vinson C. CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:763-70. [PMID: 22387149 PMCID: PMC3371161 DOI: 10.1016/j.bbagrm.2012.02.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 01/22/2023]
Abstract
CG methylation is an epigenetically inherited chemical modification of DNA found in plants and animals. In mammals it is essential for accurate regulation of gene expression and normal development. Mammalian genomes are depleted for the CG dinucleotide, a result of the chemical deamination of methyl-cytosine in CG resulting in TpG. Most CG dinucleotides are methylated, but ~15% are unmethylated. Five percent of CGs cluster into ~20,000 regions termed CG islands (CGI) which are generally unmethylated. About half of CGIs are associated with housekeeping genes. In contrast, the gene body, repeats and transposable elements in which CGs are generally methylated. Unraveling the epigenetic machinery operating in normal cells is important for understanding the epigenetic aberrations that are involved in human diseases including cancer. With the advent of high-throughput sequencing technologies, it is possible to identify the CG methylation status of all 30million unique CGs in the human genome, and monitor differences in distinct cell types during differentiation and development. Here we summarize the present understanding of DNA methylation in normal cells and discuss recent observations that CG methylation can have an effect on tissue specific gene expression. We also discuss how aberrant CG methylation can lead to cancer. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
39
|
Ramasubramanyan S, Osborn K, Flower K, Sinclair AJ. Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome. J Virol 2012; 86:1809-19. [PMID: 22090141 PMCID: PMC3264371 DOI: 10.1128/jvi.06334-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/10/2011] [Indexed: 12/28/2022] Open
Abstract
The ability of Epstein-Barr virus (EBV) to establish latency allows it to evade the immune system and to persist for the lifetime of its host; one distinguishing characteristic is the lack of transcription of the majority of viral genes. Entry into the lytic cycle is coordinated by the viral transcription factor, Zta (BZLF1, ZEBRA, and EB1), and downstream effectors, while viral genome replication requires the concerted action of Zta and six other viral proteins at the origins of lytic replication. We explored the chromatin context at key EBV lytic cycle promoters (BZLF1, BRLF1, BMRF1, and BALF5) and the origins of lytic replication during latency and lytic replication. We show that a repressive heterochromatin-like environment (trimethylation of histone H3 at lysine 9 [H3K9me3] and lysine 27 [H3K27me3]), which blocks the interaction of some transcription factors with DNA, encompasses the key early lytic regulatory regions. Epigenetic silencing of the EBV genome is also imposed by DNA methylation during latency. The chromatin environment changes during the lytic cycle with activation of histones H3, H4, and H2AX occurring at both the origins of replication and at the key lytic regulatory elements. We propose that Zta is able to reverse the effects of latency-associated repressive chromatin at EBV early lytic promoters by interacting with Zta response elements within the H3K9me3-associated chromatin and demonstrate that these interactions occur in vivo. Since the interaction of Zta with DNA is not inhibited by DNA methylation, it is clear that Zta uses two routes to overcome epigenetic silencing of its genome.
Collapse
|