1
|
Giakoumettis D, Pourzitaki C, Vavilis T, Tsingotjidou A, Kyriakoudi A, Tsimidou M, Boziki M, Sioga A, Foroglou N, Kritis A. Crocus sativus L. Causes a Non Apoptotic Calpain Dependent Death in C6 Rat Glioma Cells, Exhibiting a Synergistic Effect with Temozolomide. Nutr Cancer 2018; 71:491-507. [PMID: 30273051 DOI: 10.1080/01635581.2018.1506493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Crocus sativus L., a dietary herb, has been used for various diseases including cancer. This is an in vitro study investigating the antineoplastic effect of the extract of the plant against C6 glioma rat cell line. The mechanism of cellular death and the synergistic effect of the extract with the alkylating agent temozolomide (TMZ) were investigated. Cellular viability was examined in various concentrations of the extract alone or in combination with TMZ. Apoptosis was determined with flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and autophagy by western blotting of the light chain 3 (LC3)-II. Cellular viability was reduced after exposure to the extract with half maximal inhibition concentration at 3 mg/ml. Flow cytometry and TUNEL assay suggested that the extract does not induce apoptosis. Moreover, their combination increased the ratio dead/apoptotic cells 10-fold (P < 0.001). LC3-II protein levels reduced after Crocus extract while this effect was reversed when the calpain inhibitor MDL28170 was added, suggesting a calpain-dependent death possibly through autophagy. We concluded that the extract of Crocus increases dead cell number after 48 h of exposure. Our results suggest that the cell undergoes calpain-dependent programmed cell death while co-exposure to Crocus extract and TMZ enhances the antineoplastic effect of the latter.
Collapse
Affiliation(s)
- Dimitrios Giakoumettis
- a Clinic of Neurosurgery, ΑHΕPΑ University Hospital, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Chryssa Pourzitaki
- b Laboratory of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Theofanis Vavilis
- c Laboratory of Physiology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
- d cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Anastasia Tsingotjidou
- e Laboratory of Histology and Anatomy, Faculty of Health Science , Veterinary school Aristotle university of Thessaloniki , Thessaloniki , Greece
| | - Anastasia Kyriakoudi
- f Laboratory of Food Chemistry and Technology, School of Chemistry , Aristotle university of Thessaloniki , Thessaloniki , Greece
| | - Maria Tsimidou
- f Laboratory of Food Chemistry and Technology, School of Chemistry , Aristotle university of Thessaloniki , Thessaloniki , Greece
| | - Marina Boziki
- g 2nd Neurological Clinic, University Hospital, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Antonia Sioga
- h Laboratory of Histology and Embryology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Nikolaos Foroglou
- a Clinic of Neurosurgery, ΑHΕPΑ University Hospital, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| | - Aristeidis Kritis
- c Laboratory of Physiology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
- d cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences , Aristotle University of Thessaloniki , Greece , Thessaloniki , Greece
| |
Collapse
|
2
|
Yu Y, Wang D, Li H, Liu Y, Xiang Z, Wu J, Jing X. IPSC‑MSC inhibition assessment in Raw 264.7 cells following oxygen and glucose deprivation reveals a distinct function for cardiopulmonary resuscitation. Mol Med Rep 2018; 17:8212-8220. [PMID: 29658608 PMCID: PMC5983996 DOI: 10.3892/mmr.2018.8864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Hypoxia is a serious stress state. The nervous system is less tolerant to hypoxia, and cell death due to hypoxia is irreversible. With the incidence of cardiovascular disease gradually increasing, the sudden cardiac death rate is additionally increasing. Although cardiopulmonary resuscitation (CPR) is an important development, recovery is frequently poor. In a successful recovery population, ~40% of the population was in a vegetative state or subsequently succumbed to their condition, and ~20% had brain damage. Therefore, the recovery of the brain is of particular importance in CPR. Immune disorders are one of the major mechanisms of cerebral resuscitation following CPR. Studies have demonstrated that induced pluripotent stem cell-derived mesenchymal stem cells (IPSC-MSCs) have a strong immune regulatory effect during tissue repair and anti-inflammatory effects. IPSC-MSCs may inhibit the inflammatory response by means of the inflammatory reaction network to improve brain function following CPR, although the cellular and molecular mechanisms remain unclear. Macrophages are a bridge between innate immune and specific immune responses in the body; therefore, it was hypothesized that macrophages may be the important effector cell of the role of IPSC-MSCs in improving brain function following recovery of spontaneous respiration and circulation subsequent to cardiopulmonary resuscitation. In the present study, IPSC-MSCs were applied to the oxygen and glucose deprivation (OGD) model. It was observed that intervention with IPSC-MSCs was able to alter the polarization direction of macrophages. The difference in the proportions of M1 and M2 macrophages was statistically significant at 6, 12, 24 and 48 h (P=0.037, P<0.05) in the OGD + IPSC-MSCs group (M1, 33.48±5.6%; M2, 50.84±6.9%) and in the OGD group (M1, 83.55±7.3%; M2, 11.41±3.2%), and over time this trend was more obvious. The polarization direction of macrophages is associated with the neurogenic locus notch homolog protein 1 (Notch-1) signaling pathway. In conclusion, it was observed that IPSC-MSCs may be associated with altered macrophage polarization, which may be accomplished by inhibiting the Notch-1 signaling pathway.
Collapse
Affiliation(s)
- Yi Yu
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Li
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yujie Liu
- Department of Breast Surgery and Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhao Xiang
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Junlin Wu
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoli Jing
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
3
|
Vavilis T, Kritis A. On PC12 oxygen glucose deprivation and cell death. Biomed Pharmacother 2018; 104:849-850. [PMID: 29566991 DOI: 10.1016/j.biopha.2018.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022] Open
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Physiology, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), University Campus, 54124 Thessaloniki, Greece.
| | - Aristeidis Kritis
- Laboratory of Physiology, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), University Campus, 54124 Thessaloniki, Greece.
| |
Collapse
|
4
|
Zhang B, Yang Y, Tang J, Tao Y, Jiang B, Chen Z, Feng H, Yang L, Zhu G. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism. Oncotarget 2017; 8:43061-43067. [PMID: 28574841 PMCID: PMC5522127 DOI: 10.18632/oncotarget.17898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/15/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. RESULTS Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). MATERIALS AND METHODS Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. CONCLUSIONS In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Yunfeng Yang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Bing Jiang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Kasprowska D, Machnik G, Kost A, Gabryel B. Time-Dependent Changes in Apoptosis Upon Autophagy Inhibition in Astrocytes Exposed to Oxygen and Glucose Deprivation. Cell Mol Neurobiol 2017; 37:223-234. [PMID: 26983718 PMCID: PMC11482150 DOI: 10.1007/s10571-016-0363-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/08/2016] [Indexed: 12/19/2022]
Abstract
Recent studies have implicated the role of autophagy in brain ischemia pathophysiology. However, it remains unclear whether autophagy activation is protective or detrimental to astrocytes undergoing ischemic stress. This study evaluated the influence of ischemia-induced autophagy on cell death and the course of intrinsic and extrinsic apoptosis in primary cultures of rat cortical astrocytes exposed to combined oxygen-glucose deprivation (OGD). The role of autophagy was assessed by pharmacological inhibition with 3-methyladenine (3-MA). Cell viability was evaluated by measuring LDH release and through the use of the alamarBlue Assay. Apoptosis and necrosis were determined by fluorescence microscopy after Hoechst 33,342 and propidium iodide staining, respectively. The levels of apoptosis-related proteins were analyzed by immunoblotting. The downregulation of autophagy during OGD resulted in decreased cell viability and time-dependent changes in levels of apoptosis and necrosis. After short-term OGD (1, 4 h), cells treated with 3-MA showed higher level of cleaved caspase 3 compared with control cells. This result was consistent with an evaluation of apoptotic cell number by fluorescence microscopy. However, after prolonged exposure to OGD (8, 24 h), the number of apoptotic astrocytes (microscopically evaluated) did not differ or was even lower (as marked by caspase 3) in the presence of the autophagy inhibitor in comparison to the control. A higher level of necrosis was observed in 3-MA-treated cells compared to non-treated cells after 24 h OGD. The downregulation of autophagy caused time-dependent changes in both extrinsic (cleaved caspase 8, TNFα) and intrinsic (cleaved caspase 9) apoptotic pathways. Our results strongly indicate that the activation of autophagy in astrocytes undergoing ischemic stress is an adaptive mechanism, which allows for longer cell survival by delaying the initiation of apoptosis and necrosis.
Collapse
Affiliation(s)
- Daniela Kasprowska
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland.
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065, Katowice, Poland.
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Alicja Kost
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Bożena Gabryel
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
6
|
Liu Y, Lu Z, Cui M, Yang Q, Tang Y, Dong Q. Tissue kallikrein protects SH-SY5Y neuronal cells against oxygen and glucose deprivation-induced injury through bradykinin B2 receptor-dependent regulation of autophagy induction. J Neurochem 2016; 139:208-220. [PMID: 27248356 DOI: 10.1111/jnc.13690] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yanping Liu
- Department of Neurology; Huashan Hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| | - Zhengyu Lu
- Department of Neurology; Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Mei Cui
- Department of Neurology; Huashan Hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| | - Qi Yang
- Department of Neurology; Huashan Hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| | - Yuping Tang
- Department of Neurology; Huashan Hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| | - Qiang Dong
- Department of Neurology; Huashan Hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| |
Collapse
|
7
|
Vavilis T, Delivanoglou N, Aggelidou E, Stamoula E, Mellidis K, Kaidoglou A, Cheva A, Pourzitaki C, Chatzimeletiou K, Lazou A, Albani M, Kritis A. Oxygen-Glucose Deprivation (OGD) Modulates the Unfolded Protein Response (UPR) and Inflicts Autophagy in a PC12 Hypoxia Cell Line Model. Cell Mol Neurobiol 2016; 36:701-12. [PMID: 26239244 PMCID: PMC11482405 DOI: 10.1007/s10571-015-0250-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022]
Abstract
Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen-glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Nikoleta Delivanoglou
- Laboratory of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni Aggelidou
- Laboratory of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni Stamoula
- Laboratory of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Kyriakos Mellidis
- Laboratory of Physiology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Kaidoglou
- Laboratory of Histology, Embryology and Anthropology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angeliki Cheva
- Department of Pathology, General Hospital of Thessaloniki "G. Papanikolaou", Thessaloniki, Greece
| | - Chryssa Pourzitaki
- Laboratory of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Chatzimeletiou
- Unit of Human Reproduction, 1st Department of Obstetrics and Gynaecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Antigone Lazou
- Laboratory of Physiology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Albani
- Laboratory of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Aristeidis Kritis
- Laboratory of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
8
|
YiQiFuMai Powder Injection Ameliorates Cerebral Ischemia by Inhibiting Endoplasmic Reticulum Stress-Mediated Neuronal Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5493279. [PMID: 27087890 PMCID: PMC4818822 DOI: 10.1155/2016/5493279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 02/05/2023]
Abstract
YiQiFuMai (YQFM) powder injection as a modern preparation derived from Sheng Mai San, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, its neuroprotective effect and underlying mechanism in cerebral ischemia remain to be explored. The present study was designed to investigate the neuroprotective effect of YQFM on endoplasmic reticulum (ER) stress-mediated neuronal apoptosis in the permanent middle cerebral artery occlusion- (MCAO-) injured mice and the oxygen-glucose deprivation- (OGD-) induced pheochromocytoma (PC12) cells. The results showed that single administration of YQFM (1.342 g/kg, i.p.) could reduce the brain infarction and improve the neurological deficits and the cerebral blood flow (CBF) after MCAO for 24 h in mice. Moreover, incubation with YQFM (100, 200, and 400 μg/mL) could increase the cell viability, decrease the caspase-3 activity, and inhibit the cell apoptosis in OGD-induced PC12 cells for 12 h. In addition, YQFM treatment could significantly modulate cleaved caspase-3 and Bcl-2 expressions and inhibit the expressions of ER stress-related marker proteins and signaling pathways in vivo and in vitro. In conclusion, our findings provide the first evidence that YQFM ameliorates cerebral ischemic injury linked with modulating ER stress-related signaling pathways, which provided some new insights for its prevention and treatment of cerebral ischemia diseases.
Collapse
|
9
|
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 2015; 9:91. [PMID: 25852482 PMCID: PMC4362409 DOI: 10.3389/fncel.2015.00091] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.
Collapse
Affiliation(s)
- Aristeidis A Kritis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Eleni G Stamoula
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Krystallenia A Paniskaki
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Theofanis D Vavilis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| |
Collapse
|
10
|
He C, Stroink AR, Wang CX. The role of DAPK-BimEL pathway in neuronal death induced by oxygen-glucose deprivation. Neuroscience 2013; 258:254-62. [PMID: 24269611 DOI: 10.1016/j.neuroscience.2013.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023]
Abstract
Death-associated protein kinase (DAPK) has been found promoting cell death under stress conditions, including cell death during brain ischemia. However, little is known about the mechanisms how DAPK is involved in the neuronal death-promoting process during ischemia. The present study was to examine the DAPK signal transduction pathways using an ischemia mimicking model, oxygen glucose deprivation (OGD). OGD was induced by incubating SH-SY5Y neuroblastoma cells in glucose-free culture medium flushed with a mixture of N₂ and CO₂. DAPK expression was inhibited by transfection of SH-SY5Y cells with DAPK short hairpin RNA (shRNA). Cell death induced by OGD exposure was assessed by Annexin V-FITC and propidium iodide (PI) assay. Protein expressions were examined by Western blot and protein interactions were detected with immunoprecipitation followed by Western blot. OGD treatment resulted in neuronal death and led to DAPK activation as demonstrated by increase of DAPK (active form) and decrease of phospho-DAPK (inactive form). The activation of DAPK in turn led to BimEL up-regulation and endoplasmic reticulum (ER) stress activation. Further analyses showed that DAPK mediated BimEL expression through extracellular signal-regulated protein kinase1/2 (ERK1/2) inactivation and c-Jun-N-terminal kinase1/2 (JNK1/2) activation. These findings revealed novel signal transduction pathways leading to neuronal death in response to OGD.
Collapse
Affiliation(s)
- C He
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA; Central Illinois Neuroscience Foundation, Bloomington, IL 61701, USA
| | - A R Stroink
- Central Illinois Neuroscience Foundation, Bloomington, IL 61701, USA
| | - C X Wang
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA; Central Illinois Neuroscience Foundation, Bloomington, IL 61701, USA.
| |
Collapse
|
11
|
The Role of HSPA12B in Regulating Neuronal Apoptosis. Neurochem Res 2013; 38:311-20. [DOI: 10.1007/s11064-012-0922-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/26/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|