1
|
Messina A, Sovrano VA, Baratti G, Musa A, Gobbo A, Adiletta A, Sgadò P. Valproic acid exposure affects social visual lateralization and asymmetric gene expression in zebrafish larvae. Sci Rep 2024; 14:4474. [PMID: 38395997 PMCID: PMC10891151 DOI: 10.1038/s41598-024-54356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Cerebral asymmetry is critical for typical brain function and development; at the same time, altered brain lateralization seems to be associated with neuropsychiatric disorders. Zebrafish are increasingly emerging as model species to study brain lateralization, using asymmetric development of the habenula, a phylogenetically old brain structure associated with social and emotional processing, to investigate the relationship between brain asymmetry and social behavior. We exposed 5-h post-fertilization zebrafish embryos to valproic acid (VPA), a compound used to model the core signs of ASD in many vertebrate species, and assessed social interaction, visual lateralization and gene expression in the thalamus and the telencephalon. VPA-exposed zebrafish exhibit social deficits and a deconstruction of social visual laterality to the mirror. We also observe changes in the asymmetric expression of the epithalamic marker leftover and in the size of the dorsolateral part of the habenula in adult zebrafish. Our data indicate that VPA exposure neutralizes the animals' visual field bias, with a complete loss of the left-eye use bias in front of their own mirror image, and alters brain asymmetric gene expression and morphology, opening new perspectives to investigate brain lateralization and its link to atypical social cognitive development.
Collapse
Affiliation(s)
- Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy.
| | - Greta Baratti
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Alessia Musa
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Alessandra Gobbo
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy.
| |
Collapse
|
2
|
Miletto Petrazzini ME, Gambaretto L, Dadda M, Brennan C, Agrillo C. Are cerebral and behavioural lateralization related to anxiety-like traits in the animal model zebrafish ( Danio rerio)? Laterality 2020; 26:144-162. [PMID: 33334244 DOI: 10.1080/1357650x.2020.1854280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Brain lateralization refers to hemispheric asymmetries in functions and/or neuroanatomical structures. Functional specialization in non-human animals has been mainly inferred through observation of lateralized motor responses and sensory perception. Only in a few cases has the influence of brain asymmetries on behaviour been described. Zebrafish has rapidly become a valuable model to investigate this issue as it displays epithalamic asymmetries that have been correlated to some lateralized behaviours. Here we investigated the relation between neuroanatomical or behavioural lateralization and anxiety using a light-dark preference test in adult zebrafish. In Experiment 1, we observed how scototaxis response varied as a function of behavioural lateralization measured in the detour task as turning preference in front of a dummy predator. In Experiment 2, foxD3:GFP transgenic adult zebrafish with left or right parapineal position, were tested in the same light-dark test as fish in Experiment 1. No correlation was found between the behaviour observed in the detour test and in the scototaxis test nor between the left- and right-parapineal fish and the scototaxis response. The consistency of results obtained in both experiments indicates that neither behavioural nor neuroanatomical asymmetries are related to anxiety-related behaviours measured in the light-dark test.
Collapse
Affiliation(s)
- Maria Elena Miletto Petrazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Department of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Linda Gambaretto
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Caroline Brennan
- Department of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Miletto Petrazzini ME, Sovrano VA, Vallortigara G, Messina A. Brain and Behavioral Asymmetry: A Lesson From Fish. Front Neuroanat 2020; 14:11. [PMID: 32273841 PMCID: PMC7113390 DOI: 10.3389/fnana.2020.00011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/05/2020] [Indexed: 11/27/2022] Open
Abstract
It is widely acknowledged that the left and right hemispheres of human brains display both anatomical and functional asymmetries. For more than a century, brain and behavioral lateralization have been considered a uniquely human feature linked to language and handedness. However, over the past decades this idea has been challenged by an increasing number of studies describing structural asymmetries and lateralized behaviors in non-human species extending from primates to fish. Evidence suggesting that a similar pattern of brain lateralization occurs in all vertebrates, humans included, has allowed the emergence of different model systems to investigate the development of brain asymmetries and their impact on behavior. Among animal models, fish have contributed much to the research on lateralization as several fish species exhibit lateralized behaviors. For instance, behavioral studies have shown that the advantages of having an asymmetric brain, such as the ability of simultaneously processing different information and perform parallel tasks compensate the potential costs associated with poor integration of information between the two hemispheres thus helping to better understand the possible evolutionary significance of lateralization. However, these studies inferred how the two sides of the brains are differentially specialized by measuring the differences in the behavioral responses but did not allow to directly investigate the relation between anatomical and functional asymmetries. With respect to this issue, in recent years zebrafish has become a powerful model to address lateralization at different level of complexity, from genes to neural circuitry and behavior. The possibility of combining genetic manipulation of brain asymmetries with cutting-edge in vivo imaging technique and behavioral tests makes the zebrafish a valuable model to investigate the phylogeny and ontogeny of brain lateralization and its relevance for normal brain function and behavior.
Collapse
Affiliation(s)
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | | | - Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
4
|
do Carmo Silva RX, Lima-Maximino MG, Maximino C. The aversive brain system of teleosts: Implications for neuroscience and biological psychiatry. Neurosci Biobehav Rev 2018; 95:123-135. [DOI: 10.1016/j.neubiorev.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
|
5
|
Ströckens F, Güntürkün O. Cryptochrome 1b: a possible inducer of visual lateralization in pigeons? Eur J Neurosci 2015; 43:162-8. [PMID: 26535920 DOI: 10.1111/ejn.13119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 01/22/2023]
Abstract
The visual system of adult pigeons shows a lateralization of object discrimination with a left hemispheric dominance on the behavioural, physiological and anatomical levels. The crucial trigger for the establishment of this asymmetry is the position of the embryo inside the egg, which exposes the right eye to light falling through the egg shell. As a result, the right-sided retina is more strongly stimulated with light during embryonic development. However, it is unknown how this embryonic light stimulation is transduced to the brain as rods and cones are not yet functional. A possible solution could be the blue-light-sensitive molecule cryptochrome 1 (Cry1), which is expressed in retinal ganglion cells (RGCs) of several mammalian and avian species. RGCs have been shown to be functional during the time of induction of asymmetry and possess projections to primary visual areas. Therefore, Cry1-containing RGCs could be responsible for induction of asymmetry. The aim of this study was to identify the expression pattern of the Cry1 subtype Cry1b in the retina of embryonic, post-hatch and adult pigeons by immunohistochemical staining and to show whether Cry1b-containing RGCs project to the optic tectum. Cry1b-positive cells were indeed mainly found in the RGC layer and to lesser extent in the inner nuclear layer at all ages, including the embryonic stage. Tracing in adult animals revealed that at least a subset of Cry1b-containing RGCs project to the optic tectum. Thus, Cry1b-containing RGCs within the embryonic retina could be involved in the induction of asymmetries in the visual system of pigeons.
Collapse
Affiliation(s)
- Felix Ströckens
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Onur Güntürkün
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
6
|
Desvignes T, Nguyen T, Chesnel F, Bouleau A, Fauvel C, Bobe J. X-Linked Retinitis Pigmentosa 2 Is a Novel Maternal-Effect Gene Required for Left-Right Asymmetry in Zebrafish. Biol Reprod 2015; 93:42. [PMID: 26134862 DOI: 10.1095/biolreprod.115.130575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment.
Collapse
Affiliation(s)
- Thomas Desvignes
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France IFREMER, LALR, Palavas Les Flots, France
| | - Thaovi Nguyen
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | | | - Aurélien Bouleau
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France IFREMER, LALR, Palavas Les Flots, France
| | | | - Julien Bobe
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| |
Collapse
|
7
|
|