1
|
Qi M, Fadool DA, Storace DA. An anatomically distinct subpopulation of orexin neurons project from the lateral hypothalamus to the olfactory bulb. J Comp Neurol 2023; 531:1510-1524. [PMID: 37434469 PMCID: PMC10758201 DOI: 10.1002/cne.25518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Olfactory cues play a key role in natural behaviors such as finding food, finding mates, and avoiding predators. In principle, the ability of the olfactory system to carry out these perceptual functions would be facilitated by signaling related to an organism's physiological state. One candidate pathway includes a direct projection from the hypothalamus to the main olfactory bulb, the first stage of olfactory sensory processing. The pathway from the hypothalamus to the main olfactory bulb is thought to include neurons that express the neuropeptide orexin, although the proportion that is orexinergic remains unknown. A current model proposes that the orexin population is heterogeneous, yet it remains unknown whether the proportion that innervates the main olfactory bulb reflects a distinct subpopulation of the orexin population. Herein, we carried out combined retrograde tract tracing with immunohistochemistry for orexin-A in the mouse to define the proportion of hypothalamic input to the main olfactory bulb that is orexinergic and to determine what fraction of the orexin-A population innervates the bulb. The numbers and spatial positions of all retrogradely labeled neurons and all the orexin-A-expressing neurons were quantified in sequential sections through the hypothalamus. Retrogradely labeled neurons were found in the ipsilateral hypothalamus, of which 22% expressed orexin-A. The retrogradely labeled neurons that did and did not express orexin-A could be anatomically distinguished based on their spatial position and cell body area. Remarkably, only 7% of all the orexin-A neurons were retrogradely labeled, suggesting that only a small fraction of the orexin-A population directly innervate the main olfactory bulb. These neurons spatially overlapped with the orexin-A neurons that did not innervate the bulb, although the two cell populations were differentiated based on cell body area. Overall, these results support a model in which olfactory sensory processing is influenced by orexinergic feedback at the first synapse in the olfactory processing pathway.
Collapse
Affiliation(s)
- Meizhu Qi
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Debra Ann Fadool
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| |
Collapse
|
2
|
Mitra S, Basu S, Singh O, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide- and dopamine-containing systems interact in the ventral tegmental area of the zebra finch, Taeniopygia guttata, during dynamic changes in energy status. Brain Struct Funct 2021; 226:2537-2559. [PMID: 34392422 DOI: 10.1007/s00429-021-02348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
The mesolimbic dopamine (DA)-pathway regulates food-reward, feeding-related behaviour and energy balance. Evidence underscores the importance of feeding-related neuropeptides in modulating activity of these DA neurons. The neuropeptide, CART, a crucial regulator of energy balance, modulates DA-release, and influences the activity of ventral tegmental area (VTA) DAergic neurons in the mammalian brain. Whether CART- and DA-containing systems interact at the level of VTA to regulate energy balance, however, is poorly understood. We explored the interaction between CART- and DA-containing systems in midbrain of the zebra finch, Taeniopygia guttata, an interesting model to study dynamic changes in energy balance due to higher BMR/daytime body temperature, and rapid responsiveness of the feeding-related neuropeptides to changes in energy state. Further, its midbrain DA-neurons share similarities with those in mammals. In the midbrain, tyrosine hydroxylase-immunoreactive (TH-i) neurons were seen in the substantia nigra (SN) and VTA [anterior (VTAa), mid (VTAm) and caudal (VTAc)]; those in VTA were smaller. In the VTA, CART-immunoreactive (CART-i)-fibers densely innervated TH-i neurons, and both CART-immunoreactivity (CART-ir) and TH-immunoreactivity (TH-ir) responded to energy status-dependent changes. Compared to fed and fasted birds, refeeding dramatically enhanced TH-ir and the percentage of TH-i neurons co-expressing FOS in the VTA. Increased prepro-CART-mRNA, CART-ir and a transient appearance of CART-i neurons was observed in VTAa of fasted, but not fed birds. To test the functional interaction between CART- and DA-containing systems, ex-vivo superfused midbrain-slices were treated with CART-peptide and changes in TH-ir analysed. Compared to control tissues, CART-treatment increased TH-ir in VTA but not SN. We propose that CART is a potential regulator of VTA DA-neurons and energy balance in T. guttata.
Collapse
Affiliation(s)
- Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Neuroscience, Tufts University School of Medicine, Boston, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
3
|
Karimi I, Motamedi S, Becker LA. An effort toward molecular neuroeconomics of food deprivation induced food hoarding in mice: focus on xanthine oxidoreductase gene expression and xanthine oxidase activity. Metab Brain Dis 2018; 33:325-331. [PMID: 29260359 DOI: 10.1007/s11011-017-0166-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 12/11/2017] [Indexed: 11/25/2022]
Abstract
The crucial role of xanthine oxidoreductase (XOR) gene and its active isoform, xanthine oxidase (XO), in purine metabolism and cellular oxidative status led us to investigative their fluctuations in food deprivation induced food hoarding in mice. After, 10 h food deprivation, mice that hoarded lesser than 5 g were considered as 'low-hoarders' while mice that hoarded higher than 20 g were considered as 'high-hoarders'. Mice who hoarded between 5 to 20 g of food were excluded from study. An increase (1.133-fold) in encephalic XOR expression has been found in high-hoarders compared with low-hoarders without sex consideration. An increase (~ 50-fold) in encephalic XOR in female high-hoarders vs. female low-hoarders while a decrease (0.026-fold) in encephalic XOR in male high-hoarders vs. male low-hoarders demonstrated that food deprivation is associated with sex-dependent alteration in XOR expression. The encephalic and hepatic XO activities were not different in male high-hoarders vs. male low-hoarders while encephalic XO activity has been also increased significantly in female high-hoarders (~ 4 times) compared to female low-hoarders. The plasma and hepatic XO activities tended to be increased in female high-hoarders as compared to female low-hoarders, however the uric acid levels in plasma, liver and brain tissues were not altered in female high-hoarders as compared to female low-hoarders. In sum, this study generally proposed that different gene expression space is behind of hoarding behavior in a food-deprived mouse model. Specifically, this is the first study that examined the levels of encephalic XO activity and XOR expression in hoarding behavior, although additional studies are requested.
Collapse
Affiliation(s)
- Isaac Karimi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Islamic Republic of Iran.
- Department of Biology, Faculty of Science, Razi University, 67149-67346, Daneshgah Street, Tagh-e-Bostan, Kermanshah, Islamic Republic of Iran.
| | - Shima Motamedi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Islamic Republic of Iran
| | - Lora A Becker
- Department of Psychology, University of Evansville, Evansville, IN, 47722, USA
| |
Collapse
|
4
|
Keen-Rhinehart E, Ondek K, Schneider JE. Neuroendocrine regulation of appetitive ingestive behavior. Front Neurosci 2013; 7:213. [PMID: 24298235 PMCID: PMC3828638 DOI: 10.3389/fnins.2013.00213] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/25/2013] [Indexed: 01/08/2023] Open
Abstract
Food availability in nature is often irregular, and famine is commonplace. Increased motivation to engage in ingestive behaviors increases the chance of survival, providing additional potential opportunities for reproduction. Because of the advantages conferred by entraining ingestive behavior to environmental conditions, neuroendocrine mechanisms regulating the motivation to acquire and ingest food have evolved to be responsive to exogenous (i.e., food stored for future consumption) and endogenous (i.e., body fat stores) fuel availability. Motivated behaviors like eating occur in two phases. The appetitive phase brings animals into contact with food (e.g., foraging, food hoarding), and the more reflexive consummatory phase results in ingestion (e.g., chewing, swallowing). Quantifiable appetitive behaviors are part of the natural ingestive behavioral repertoire of species such as hamsters and humans. This review summarizes current knowledge about neuroendocrine regulators of ingestive behavior, with an emphasis appetitive behavior. We will discuss hormonal regulators of appetitive ingestive behaviors, including the orexigenic hormone ghrelin, which potently stimulates foraging and food hoarding in Siberian hamsters. This section includes a discussion of the hormone leptin, its relation to endogenous fat stores, and its role in food deprivation-induced increases in appetitive ingestive behaviors. Next, we discuss how hormonal regulators interact with neurotransmitters involved in the regulation of ingestive behaviors, such as neuropeptide Y (NPY), agouti-related protein (AgRP) and α-melanocyte stimulating hormone (α-MSH), to regulate ingestive behavior. Finally, we discuss the potential impact that perinatal nutrient availability can have on the neuroendocrine regulation of ingestive behavior. Understanding the hormonal mechanisms that connect metabolic fuel availability to central appetite regulatory circuits should provide a better understanding of the neuroendocrine regulation of the motivation to engage in ingestive behavior.
Collapse
|
5
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
6
|
Wall A, Volkoff H. Effects of fasting and feeding on the brain mRNA expressions of orexin, tyrosine hydroxylase (TH), PYY and CCK in the Mexican blind cavefish (Astyanax fasciatus mexicanus). Gen Comp Endocrinol 2013; 183:44-52. [PMID: 23305930 DOI: 10.1016/j.ygcen.2012.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 10/21/2012] [Accepted: 12/21/2012] [Indexed: 01/16/2023]
Abstract
The effects of fasting and feeding on the brain expression of orexin (OX), tyrosine hydroxylase (TH), peptide Y (PY) and cholecystokinin (CCK) were examined in the blind cavefish Astyanax fasciatus mexicanus. A 10-days fasting period induced increases in both OX and TH brain mRNA expression but had no effect on PYY and CCK expression. Periprandial changes in expression were seen for OX, TH and PYY but not for CCK. OX brain expression peaked 1h prior to a scheduled meal and decreased 1h post feeding in fed fish. A peak in TH expression was seen 1h post feeding in unfed fish whereas a peak in PYY expression was seen 1h post feeding in fed fish. Our result indicates that brain OX, TH and PYY might be involved in the central regulation of feeding of blind cavefish.
Collapse
Affiliation(s)
- Alicia Wall
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|