1
|
Duraisamy R, Palanisamy UM, Sheriffa Begum KMM, Dharmar P. Facile induction and stabilization of intramolecular antiparallel G-quadruplex of d(TTAGGG)n on interaction with triazine-2-imidazole ethyl amine compound and its Cu(II), Zn(II) complexes under no-salt conditions. J CHEM SCI 2022. [DOI: 10.1007/s12039-021-01996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Kurutos A, Nikodinovic-Runic J, Veselinovic A, Veselinović JB, Kamounah FS, Ilic-Tomic T. RNA-targeting low-molecular-weight fluorophores for nucleoli staining: synthesis, in silico modelling and cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj01659h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein we present our work on the synthesis, investigation of the photophysical properties, interactions with nucleic acids, molecular docking, and imaging application of three carbocyanine dyes.
Collapse
Affiliation(s)
- Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | | | - Jovana B. Veselinović
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Fadhil S. Kamounah
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
3
|
Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Gupta S, Tiwari N, Munde M. A Comprehensive Biophysical Analysis of the Effect of DNA Binding Drugs on Protamine-induced DNA Condensation. Sci Rep 2019; 9:5891. [PMID: 30971720 PMCID: PMC6458161 DOI: 10.1038/s41598-019-41975-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
DNA condensation is a ubiquitous phenomenon in biology, yet the physical basis for it has remained elusive. Here, we have explored the mechanism of DNA condensation through the protamine-DNA interaction, and by examining on it the influence of DNA binding drugs. We observed that the DNA condensation is accompanied by B to Ψ-DNA transition as a result of DNA base pair distortions due to protamine binding, bringing about the formation of toroidal structure through coil-globule transition. The binding energetics suggested that electrostatic energy, bending energy and hydration energy must play crucial roles in DNA condensation. EtBr intercalation interferes with the protamine-DNA interaction, challenging the distortion of the DNA helix and separation of DNA base pairs by protamine. Thus, EtBr, by competing directly with protamine, resists the phenomenon of DNA condensation. On the contrary, netropsin impedes the DNA condensation by an allosteric mechanism, by resisting the probable DNA major groove bending by protamine. In summary, we demonstrate that drugs with distinct binding modes use different mechanism to interfere with DNA condensation.
Collapse
Affiliation(s)
- Sakshi Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Tiwari
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Prusov AN, Smirnova TA, Kolomijtseva GY. Thermodynamic Study of Interactions of Distamycin A with Chromatin in Rat Liver Nuclei in the Presence of Polyamines. BIOCHEMISTRY (MOSCOW) 2018; 83:1231-1244. [PMID: 30472960 DOI: 10.1134/s0006297918100085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the thermodynamics of melting of isolated rat liver nuclei with different degrees of chromatin condensation determined by the concentration of polyamines (PA) and the solution ionic strength, as well as the effect of the antibiotic distamycin A (DM) on melting. Differential scanning calorimetry (DSC) profiles of nuclear preparations contained three peaks that reflected melting of three main chromatin domains. The number of peaks did not depend on the degree of condensation; however, nuclei with more condensed chromatin had a higher total enthalpy. DM stabilized peaks II and III corresponding to the melting of relaxed and topologically strained DNA, respectively, but destabilized peak I corresponding to the melting of nucleosome core histones. At the saturating concentration (DM/DNA molar ratio = 0.1), DM increased Tm of peaks II and III by ~5°C and decreased Tm of peak I by ~2.5°C. Based on the dependence of ΔH on DM concentration, we established that at low DM/DNA ratio (≤0.03), when DM interacted predominantly with AT-rich DNA regions, the enthalpy of peak II decreased in parallel with the increase in the enthalpy of peak III, which indicated that DM induces structural transitions in the nuclear chromatin associated with the increase in torsional stress in DNA. An increase in free energy under saturation conditions was equal to the change in the free energy of DM interaction with DNA. However, the increase in the enthalpy of melting of the nuclei in the presence of DM was much greater than the enthalpy of titration of nuclei with DM. This indicates a significant increase in the strength of interaction between the two DNA strands apparently due, among other things, to changes in the torsional stress of DNA in the nuclei. Titration of the nuclei with increasing PA concentrations resulted in the decrease in the number of DM-binding sites and the non-monotonous dependence of the enthalpy and entropy contribution to the binding free energy on the PA content. We suggested that the observed differences in the thermodynamic parameters were due to the different width of the minor groove in the nuclear chromatin DNA, which depends on PA concentration.
Collapse
Affiliation(s)
- A N Prusov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - T A Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - G Ya Kolomijtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Banerjee A, Sanyal S, Dutta S, Chakraborty P, Das PP, Jana K, Vasudevan M, Das C, Dasgupta D. The plant alkaloid chelerythrine binds to chromatin, alters H3K9Ac and modulates global gene expression. J Biomol Struct Dyn 2016; 35:1491-1499. [PMID: 27494525 DOI: 10.1080/07391102.2016.1188154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chelerythrine (CHL), a plant alkaloid, possesses antimicrobial, anti-inflammatory, and antitumor properties. Although CHL influences several key signal transduction pathways, its ability to interact directly with nucleoprotein complex chromatin, in eukaryotic cells has so far not been looked into. Here we have demonstrated its association with hierarchically assembled chromatin components, viz. long chromatin, chromatosome, nucleosome, chromosomal DNA, and histone H3 and the consequent effect on chromatin structure. CHL was found to repress acetylation at H3K9. It is more target-specific in terms of gene expression alteration and less cytotoxic compared to its structural analog sanguinarine.
Collapse
Affiliation(s)
- Amrita Banerjee
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Sulagna Sanyal
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Shreyasi Dutta
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Payal Chakraborty
- b Genome Informatics Research Group , Bionivid Technology Pvt Ltd. , Bangalore 560043 , India
| | - Prajna Paramita Das
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Kuladip Jana
- c Division of Molecular Medicine, Centre for Translational Animal Research , Bose Institute , P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054 , India
| | - Madavan Vasudevan
- b Genome Informatics Research Group , Bionivid Technology Pvt Ltd. , Bangalore 560043 , India
| | - Chandrima Das
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Dipak Dasgupta
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| |
Collapse
|
7
|
Chakraborty SD, Sau A, Kuznetsov DV, Banerjee A, Bardhan M, Bhattacharya M, Dasgupta D, Basu S, Senapati D. Development of a Triplet-Triplet Absorption Ruler: DNA- and Chromatin-Mediated Drug Molecule Release from a Nanosurface. J Phys Chem B 2016; 120:6872-81. [PMID: 27284775 DOI: 10.1021/acs.jpcb.6b05278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Triplet-triplet (T-T) absorption spectroscopy has been used successfully as a molecular ruler to understand the actual release process of sanguinarine as a drug molecule from a gold nanoparticle surface in the presence of cell components, that is, DNA and chromatin. The obtained results have been verified by fluorescence and surface-enhanced Raman spectroscopy (SERS), and a plausible explanation has been put forward to describe the underestimation and overestimation of the percentage (%) of the release of drug molecules measured by fluorescence- and SERS-based techniques, respectively, over the highlighted T-T absorption spectroscopy. Because of the intrinsic nature of absorption, the reported T-T absorption spectroscopic assay overpowers fluorescence- and SERS-based assays, which are limited by the long-range interaction and nonlinear dependence of the concentration of analytes, respectively.
Collapse
Affiliation(s)
| | | | - Denis V Kuznetsov
- Department of Functional Nanosystems and High Temperature Materials, National University of Science and Technology 'MISiS' , Leninsky, Prospect 4, 119049 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
8
|
Khazir J, Riley DL, Pilcher LA, De-Maayer P, Mir BA. Anticancer Agents from Diverse Natural Sources. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400901130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review attempts to portray the discovery and development of anticancer agents/drugs from diverse natural sources. Natural molecules from these natural sources including plants, microbes and marine organisms have been the basis of treatment of human diseases since the ancient times. Compounds derived from nature have been important sources of new drugs and also serve as templates for synthetic modification. Many successful anti-cancer drugs currently in use are naturally derived or their analogues and many more are under clinical trials. This review aims to highlight the invaluable role that natural products have played, and continue to play, in the discovery of anticancer agents.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa
| | - Darren L. Riley
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa
| | - Lynne A. Pilcher
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa
| | - Pieter De-Maayer
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria 0028, South Africa
- Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Bilal Ahmad Mir
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria 0028, South Africa
- Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
9
|
Banerjee A, Sanyal S, Kulkarni KK, Jana K, Roy S, Das C, Dasgupta D. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder. FEBS Open Bio 2014; 4:987-95. [PMID: 25473595 PMCID: PMC4247356 DOI: 10.1016/j.fob.2014.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/23/2014] [Accepted: 10/12/2014] [Indexed: 01/13/2023] Open
Abstract
Mithramycin (MTR) is a clinically approved DNA-binding antitumor antibiotic currently in Phase 2 clinical trials at National Institutes of Health for treatment of osteosarcoma. In view of the resurgence in the studies of this generic antibiotic as a human medicine, we have examined the binding properties of MTR with the integral component of chromatin - histone proteins - as a part of our broad objective to classify DNA-binding molecules in terms of their ability to bind chromosomal DNA alone (single binding mode) or both histones and chromosomal DNA (dual binding mode). The present report shows that besides DNA, MTR also binds to core histones present in chromatin and thus possesses the property of dual binding in the chromatin context. In contrast to the MTR-DNA interaction, association of MTR with histones does not require obligatory presence of bivalent metal ion like Mg(2+). As a consequence of its ability to interact with core histones, MTR inhibits histone H3 acetylation at lysine 18, an important signature of active chromatin, in vitro and ex vivo. Reanalysis of microarray data of Ewing sarcoma cell lines shows that upon MTR treatment there is a significant down regulation of genes, possibly implicating a repression of H3K18Ac-enriched genes apart from DNA-binding transcription factors. Association of MTR with core histones and its ability to alter post-translational modification of histone H3 clearly indicates an additional mode of action of this anticancer drug that could be implicated in novel therapeutic strategies.
Collapse
Key Words
- BAC, benzalkonium chloride
- BSA, bovine serum albumin
- CBP, CREB-binding protein
- CD, circular dichroism
- Core histones
- Dual binding mode
- EM, electron microscopy
- EWS-FLI1, transcription factor with a DNA binding domain FLI1 and a transcription enhancer domain EWS
- Epigenetic modulator
- FACS, fluorescence activated cell sorting
- H3K18 acetylation
- H3K18Ac, histone H3 lysine 18 acetylation
- HAT, histone acetyltransferase
- HD, Huntington’s disease
- ITC, isothermal titration calorimetry
- M2+, bivalent metal ion such as Mg2+
- MTR, mithramycin
- MTT, 3-(4-5 dimethylthiazol-2-yl) 2-5diphenyl-tetrazolium bromide
- Mithramycin
- NIH, National Institutes of Health
- PBS, phosphate-buffered saline
- PTM, post-translational modification
- SGR, sanguinarine
- TBST, Tris-buffered saline Tween-20
- TCA, trichloroacetic acid
Collapse
Affiliation(s)
- Amrita Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Sulagna Sanyal
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Kirti K Kulkarni
- Bionivid Technology Pvt Ltd, Kasturi Nagar, Bangalore 560043, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Chandrima Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Dipak Dasgupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| |
Collapse
|
10
|
Dutta S, Lahiri S, Banerjee A, Saha S, Dasgupta D. Association of antitumor antibiotic Mithramycin with Mn2+ and the potential cellular targets of Mithramycin after association with Mn2+. J Biomol Struct Dyn 2014; 33:434-46. [PMID: 24559512 DOI: 10.1080/07391102.2014.887031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mithramycin (MTR), an aureolic acid group of antitumor antibiotic is used for the treatment of several types of tumors. We have reported here the association of MTR with an essential micronutrient, manganese (Mn(2+)). Spectroscopic methods have been used to characterize and understand the kinetics and mechanism of complex formation between them. MTR forms a single type of complex with Mn(2+) in the mole ratio of 2:1 [MTR: Mn(2+)] via a two step kinetic process. Circular dichroism (CD) spectroscopic study indicates that the complex [(MTR)2 Mn(2+)] has a right-handed twist conformation similar in structure with the complexes reported for Mg(2+) and Zn(2+). This conformation allows binding via minor groove of DNA with (G, C) base preference during the interaction with double-stranded B-DNA. Using absorbance, fluorescence, and CD spectroscopy we have shown that [(MTR)2 Mn(2+)] complex binds to double-stranded DNA with an apparent dissociation constant of 32 μM and binding site size of 0.2 (drug/nucleotide). It binds to chicken liver chromatin with apparent dissociation constant value 298 μM. Presence of histone proteins in chromatin inhibits the accessibility of the complex for chromosomal DNA. We have also shown that MTR binds to Mn(2+) containing metalloenzyme manganese superoxide dismutase from Escherichia coli.
Collapse
Affiliation(s)
- Shreyasi Dutta
- a Biophysics & Structural Genomics Division , Saha Institute of Nuclear Physics , Block-AF, Sector-I, Bidhan Nagar, Kolkata - 700 064 , India
| | | | | | | | | |
Collapse
|
11
|
Banerjee A, Majumder P, Sanyal S, Singh J, Jana K, Das C, Dasgupta D. The DNA intercalators ethidium bromide and propidium iodide also bind to core histones. FEBS Open Bio 2014; 4:251-9. [PMID: 24649406 PMCID: PMC3958746 DOI: 10.1016/j.fob.2014.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 01/17/2023] Open
Abstract
Eukaryotic DNA is compacted in the form of chromatin, in a complex with histones and other non-histone proteins. The intimate association of DNA and histones in chromatin raises the possibility that DNA-interactive small molecules may bind to chromatin-associated proteins such as histones. Employing biophysical and biochemical techniques we have characterized the interaction of a classical intercalator, ethidium bromide (EB) and its structural analogue propidium iodide (PI) with hierarchical genomic components: long chromatin, chromatosome, core octamer and chromosomal DNA. Our studies show that EB and PI affect both chromatin structure and function, inducing chromatin compaction and disruption of the integrity of the chromatosome. Calorimetric studies and fluorescence measurements of the ligands demonstrated and characterized the association of these ligands with core histones and the intact octamer in absence of DNA. The ligands affect acetylation of histone H3 at lysine 9 and acetylation of histone H4 at lysine 5 and lysine 8 ex vivo. PI alters the post-translational modifications to a greater extent than EB. This is the first report showing the dual binding (chromosomal DNA and core histones) property of a classical intercalator, EB, and its longer analogue, PI, in the context of chromatin.
Collapse
Affiliation(s)
- Amrita Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Parijat Majumder
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Sulagna Sanyal
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Jasdeep Singh
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Chandrima Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Dipak Dasgupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| |
Collapse
|
12
|
Ghosh D, Dey SK, Saha C. Mutation induced conformational changes in genomic DNA from cancerous K562 cells influence drug-DNA binding modes. PLoS One 2014; 9:e84880. [PMID: 24416304 PMCID: PMC3885628 DOI: 10.1371/journal.pone.0084880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023] Open
Abstract
Normal human genomic DNA (N-DNA) and mutated DNA (M-DNA) from K562 leukemic cells show different thermodynamic properties and binding affinities on interaction with anticancer drugs; adriamycin (ADR) and daunomycin (DNM). Isothermal calorimetric thermograms representing titration of ADR/DNM with N-DNA and M-DNA on analysis best fitted with sequential model of four and three events respectively. From Raman spectroscopy it has been identified that M-DNA is partially transformed to A form owing to mutations and N-DNA on binding of drugs too undergoes transition to A form of DNA. A correlation of thermodynamic contribution and structural data reveal the presence of different binding events in drug and DNA interactions. These events are assumed to be representative of minor groove complexation, reorientation of the drug in the complex, DNA deformation to accommodate the drugs and finally intercalation. Dynamic light scattering and zeta potential data also support differences in structure and mode of binding of N and M DNA. This study highlights that mutations can manifest structural changes in DNA, which may influence the binding efficacy of the drugs. New generation of drugs can be designed which recognize the difference in DNA structure in the cancerous cells instead of their biochemical manifestation.
Collapse
Affiliation(s)
- Debjani Ghosh
- School of Biotechnology and Biological Sciences, West Bengal University of Technology, Salt Lake, Kolkata, India
| | - Subrata Kumar Dey
- School of Biotechnology and Biological Sciences, West Bengal University of Technology, Salt Lake, Kolkata, India
| | - Chabita Saha
- School of Biotechnology and Biological Sciences, West Bengal University of Technology, Salt Lake, Kolkata, India
| |
Collapse
|
13
|
Shan C, Tan JH, Ou TM, Huang ZS. Natural products and their derivatives as G-quadruplex binding ligands. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4920-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Minor Groove Binder Distamycin Remodels Chromatin but Inhibits Transcription. PLoS One 2013; 8:e57693. [PMID: 23460895 PMCID: PMC3584068 DOI: 10.1371/journal.pone.0057693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/28/2013] [Indexed: 11/19/2022] Open
|
15
|
Chen C, Shanmugasundaram K, Rigby AC, Kung AL. Shikonin, a natural product from the root of Lithospermum erythrorhizon, is a cytotoxic DNA-binding agent. Eur J Pharm Sci 2013; 49:18-26. [PMID: 23422689 DOI: 10.1016/j.ejps.2013.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/10/2013] [Accepted: 02/02/2013] [Indexed: 01/05/2023]
Abstract
To search for compounds that disrupt binding of the EWS-FLI1 fusion protein to its cognate targets, we developed a homogeneous high-throughput proximity assay and screened 5200 small molecule compounds. Many well-known DNA-binding chemotherapeutic agents, such as actinomycin D, cisplatin, doxorubicin, daunorubicin, and epirubicin scored in the assay and not surprising also disrupted the binding of other transcription factors. Unexpectedly, we found that Shikonin, a natural product from the root of Lithospermum erythrorhizon, similarly disrupted protein-DNA interactions. Mechanistic studies demonstrated that Shikonin displaces SYBR green from binding to the minor groove of DNA and is able to inhibit topoisomerase mediated DNA relaxation. In cells, Shikonin blocked the binding of EWS-FLI1 to the NR0B1 promoter, and attenuated gene expression. Shikonin rapidly induced G2/M arrest and apoptosis in Ewing sarcoma cells. These results demonstrate that contrary to other purported mechanisms of action, Shikonin is a DNA-binding cytotoxic agent.
Collapse
Affiliation(s)
- Changmin Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kumaran Shanmugasundaram
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alan C Rigby
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew L Kung
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
16
|
Dasgupta D, Majumder P, Banerjee A. A revisit of the mode of interaction of small transcription inhibitors with genomic DNA. J Biosci 2012; 37:475-81. [PMID: 22750984 DOI: 10.1007/s12038-012-9211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One class of small molecules with therapeutic potential for treatment of cancer functions as transcription inhibitors via interaction with double-stranded DNA. Majority of the studies of the interaction with DNA have so far been reported under conditions nonexistent in vivo. Inside the cell, DNA is present in the nucleus as a complex with proteins known as chromatin. For the last few years we have been studying the interaction of these DNA-binding small molecules at the chromatin level with emphasis on the drug-induced structural alterations in chromatin. Our studies have shown that at the chromatin level these molecules could be classified in two broad categories: single-binding and dual-binding molecules. Single-binding molecules access only DNA in the chromatin, while the dual-binding molecules could bind to both DNA and the associated histone(s). Structural effects of the DNA-binding molecules upon chromatin in light of the above broad categories and the associated biological implications of the two types of binding are discussed.
Collapse
Affiliation(s)
- Dipak Dasgupta
- Biophysics Division, Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata 700 064, India.
| | | | | |
Collapse
|