1
|
De Faria A, Charoenrook V, Larena R, Ferragut-Alegre Á, Valero R, Julio G, Barraquer RI. A Novel Pathogenic Variant in the KRT3 Gene in a Family with Meesmann Corneal Dystrophy. J Clin Med 2025; 14:851. [PMID: 39941522 PMCID: PMC11818442 DOI: 10.3390/jcm14030851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: to report a novel KRT3 Meesmann corneal dystrophy (MECD) mutation and its clinical findings in a Spanish family, thus completing the international database. Case series study. Methods: Two generations of three family members were studied. The clinical ophthalmologic evaluation was made including best-corrected visual acuity (BCVA), biomicroscopy with and without fluorescein, fundoscopy, Schirmer test I, non-invasive break-up time (NiBUT), and esthesiometry. In vivo confocal microscopy (IVCM), anterior segment optical coherence tomography (AS-OCT) with an epithelial map, and genetic analysis were also performed. Results: A novel heterozygous mutation in the KRT3 gene c.1527G>T (p. Glu509Asp) was identified. Biomicroscopy revealed bilateral multiple corneal intraepithelial cysts. IVCM showed numerous and relatively small microcysts (12-32 µm), hyperreflective materials, subepithelial nerve and Bowman's layer alterations. AS-OCT scan revealed diffuse hyperreflectivity and the epithelial map displayed thickening of the corneal epithelium in the interpalpebral zone (proband: 52-68 µm and father's proband: 55-71 µm) with a slightly thinned cornea. Conclusions: We identified a new mutation in the KRT3 gene-c.1527G>T (p. Glu509Asp) in a Spanish family with MECD. A comprehensive characterization of the clinical signs, using different techniques, especially an epithelial map, could be useful to diagnose and monitor epithelial changes by quantitative measures. Epithelial map changes provide better understanding of MECD differential epithelial behavior and its progression changes. Larger studies will be necessary to better understand these specific patterns and clinically evaluate new therapies.
Collapse
Affiliation(s)
- Alix De Faria
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain; (A.D.F.); (V.C.); (R.L.); (Á.F.-A.); (R.I.B.)
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
| | - Víctor Charoenrook
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain; (A.D.F.); (V.C.); (R.L.); (Á.F.-A.); (R.I.B.)
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
| | - Raquel Larena
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain; (A.D.F.); (V.C.); (R.L.); (Á.F.-A.); (R.I.B.)
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
| | - Álvaro Ferragut-Alegre
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain; (A.D.F.); (V.C.); (R.L.); (Á.F.-A.); (R.I.B.)
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
| | | | - Gemma Julio
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain; (A.D.F.); (V.C.); (R.L.); (Á.F.-A.); (R.I.B.)
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
| | - Rafael I. Barraquer
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain; (A.D.F.); (V.C.); (R.L.); (Á.F.-A.); (R.I.B.)
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- School of Medicine, Universitat Internacional de Catalunya, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Roshandel D, Semnani F, Rayati Damavandi A, Masoudi A, Baradaran-Rafii A, Watson SL, Morgan WH, McLenachan S. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29:150-165. [PMID: 37192706 DOI: 10.1016/j.jtos.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The ocular surface, comprised of the corneal and conjunctival epithelium, innervation system, immune components, and tear-film apparatus, plays a key role in ocular integrity as well as comfort and vision. Gene defects may result in congenital ocular or systemic disorders with prominent ocular surface involvement. Examples include epithelial corneal dystrophies, aniridia, ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome, xeroderma pigmentosum (XP), and hereditary sensory and autonomic neuropathy. In addition, genetic factors may interact with environmental risk factors in the development of several multifactorial ocular surface disorders (OSDs) such as autoimmune disorders, allergies, neoplasms, and dry eye disease. Advanced gene-based technologies have already been introduced in disease modelling and proof-of-concept gene therapies for monogenic OSDs. For instance, patient-derived induced pluripotent stem cells have been used for modelling aniridia-associated keratopathy (AAK), XP, and EEC syndrome. Moreover, CRISPR/Cas9 genome editing has been used for disease modelling and/or gene therapy for AAK and Meesmann's epithelial corneal dystrophy. A better understanding of the role of genetic factors in OSDs may be helpful in designing personalized disease models and treatment approaches. Gene-based approaches in monogenic OSDs and genetic predisposition to multifactorial OSDs such as immune-mediated disorders and neoplasms with known or possible genetic risk factors has been seldom reviewed. In this narrative review, we discuss the role of genetic factors in monogenic and multifactorial OSDs and potential opportunities for gene therapy.
Collapse
Affiliation(s)
- Danial Roshandel
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Farbod Semnani
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephanie L Watson
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - William H Morgan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
3
|
Nguyen K, Malik TN, Chaput JC. Chemical evolution of an autonomous DNAzyme with allele-specific gene silencing activity. Nat Commun 2023; 14:2413. [PMID: 37105964 PMCID: PMC10140269 DOI: 10.1038/s41467-023-38100-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Low activity has been the primary obstacle impeding the use of DNA enzymes (DNAzymes) as gene silencing agents in clinical applications. Here we describe the chemical evolution of a DNAzyme with strong catalytic activity under near physiological conditions. The enzyme achieves ~65 turnovers in 30 minutes, a feat only previously witnessed by the unmodified parent sequence under forcing conditions of elevated Mg2+ and pH. Structural constraints imposed by the chemical modifications drive catalysis toward a highly preferred UGUD motif (cut site underlined) that was validated by positive and negative predictions. Biochemical assays support an autonomous RNA cleavage mechanism independent of RNase H1 engagement. Consistent with its strong catalytic activity, the enzyme exhibits persistent allele-specific knock-down of an endogenous mRNA encoding an undruggable oncogenic KRAS target. Together, these results demonstrate that chemical evolution offers a powerful approach for discovering new chemotype combinations that can imbue DNAzymes with the physicochemical properties necessary to support therapeutic applications.
Collapse
Affiliation(s)
- Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA
| | - Turnee N Malik
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697-3958, USA.
| |
Collapse
|
4
|
Novelli F, Ganini C, Melino G, Nucci C, Han Y, Shi Y, Wang Y, Candi E. p63 in corneal and epidermal differentiation. Biochem Biophys Res Commun 2022; 610:15-22. [DOI: 10.1016/j.bbrc.2022.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
|
5
|
Murray JK, Long J, Liu L, Singh S, Pruitt D, Ollmann M, Swearingen E, Hardy M, Homann O, Wu B, Holder JR, Sham K, Herberich B, Lo MC, Dou H, Shkumatov A, Florio M, Rulifson IC. Identification and Optimization of a Minor Allele-Specific Small Interfering RNA to Prevent PNPLA3 I148M-Driven Nonalcoholic Fatty Liver Disease. Nucleic Acid Ther 2021; 31:324-340. [PMID: 34297902 DOI: 10.1089/nat.2021.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human genome wide association studies confirm the association of the rs738409 single nucleotide polymorphism (SNP) in the gene encoding protein patatin like phospholipase domain containing 3 (PNPLA3) with nonalcoholic fatty liver disease (NAFLD); the presence of the resulting mutant PNPLA3 I148M protein is a driver of nonalcoholic steatohepatitis (NASH). While Pnpla3-deficient mice do not display an adverse phenotype, the safety of knocking down endogenous wild type PNPLA3 in humans remains unknown. To expand the scope of a potential targeted NAFLD therapeutic to both homozygous and heterozygous PNPLA3 rs738409 populations, we sought to identify a minor allele-specific small interfering RNA (siRNA). Limiting our search to SNP-spanning triggers, a series of chemically modified siRNA were tested in vitro for activity and selectivity toward PNPLA3 rs738409 mRNA. Conjugation of the siRNA to a triantennary N-acetylgalactosamine (GalNAc) ligand enabled in vivo screening using adeno-associated virus to overexpress human PNPLA3I148M versus human PNPLA3I148I in mouse livers. Structure-activity relationship optimization yielded potent and minor allele-specific compounds that achieved high levels of mRNA and protein knockdown of human PNPLA3I148M but not PNPLA3I148I. Testing of the minor allele-specific siRNA in PNPLA3I148M-expressing mice fed a NASH-inducing diet prevented PNPLA3I148M-driven disease phenotypes, thus demonstrating the potential of a precision medicine approach to treating NAFLD.
Collapse
Affiliation(s)
- Justin K Murray
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Jason Long
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Lei Liu
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Shivani Singh
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Danielle Pruitt
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Michael Ollmann
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Elissa Swearingen
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Miki Hardy
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Oliver Homann
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Bin Wu
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Jerry Ryan Holder
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Kelvin Sham
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Brad Herberich
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Mei-Chu Lo
- Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Hui Dou
- Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Artem Shkumatov
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Monica Florio
- Cardiometabolic Disorders, Amgen Research, Thousand Oaks, California, USA
| | - Ingrid C Rulifson
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| |
Collapse
|
6
|
Topical use of alcohol in ophthalmology - Diagnostic and therapeutic indications. Ocul Surf 2021; 21:1-15. [PMID: 33895368 DOI: 10.1016/j.jtos.2021.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Alcohol (ethanol) has been used in medicine since time immemorial. In ophthalmic practice, besides as an antiseptic, it was given as retrobulbar injections to relieve severe ocular pain. Alcohol can be applied topically to the surface of neoplastic or suspicious lesions to kill cells that might desquamate and seed during surgical excision, to treat epithelial ingrowth that can occur following corneal surgeries, particularly laser in situ keratomileusis (LASIK), and to treat superficial infectious keratitis. In view of its ability to achieve a smooth cleavage plane between the epithelium and the Bowman's layer, alcohol-assisted delamination (ALD) of the corneal epithelium has been used widely and effectively for a variety of diagnostic and therapeutic indications, at times delivering both outcomes. Diagnostically, ALD yields an intact epithelial sheet which can be fixed flat to provide excellent orientation for histopathological evaluation. Therapeutically, it is most commonly used to treat recurrent corneal erosion syndrome, where its efficacy is comparable to that of phototherapeutic keratectomy but with several advantages. It has also been used to treat various forms of epithelial/anterior stromal dystrophies, which can obviate or delay the need for corneal transplantation for several years. In addition, ALD is performed in corneal collagen cross-linking and corneal refractive surgery for relatively atraumatic removal of the epithelium. In this review, we aimed to provide a comprehensive overview of the diagnostic and therapeutic use of topical alcohol in ophthalmology, to describe the surgical and fixation techniques of ALD, and to highlight our experience in ALD over the past decade.
Collapse
|
7
|
Nguyen K, Wang Y, England WE, Chaput JC, Spitale RC. Allele-Specific RNA Knockdown with a Biologically Stable and Catalytically Efficient XNAzyme. J Am Chem Soc 2021; 143:4519-4523. [PMID: 33750115 DOI: 10.1021/jacs.0c11353] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapeutic targeting of allele-specific single nucleotide mutations in RNA is a major challenge in biology and medicine. Herein, we describe the utility of the XNAzyme X10-23 to knock down allele-specific mRNA sequences in cells. We demonstrate the value of this approach by targeting the "undruggable" mutation G12V in oncogenic KRAS. Our results demonstrate how catalytic XNAs could be employed to suppress the expression of mRNAs carrying disease-causing mutations that are difficult to target at the protein level with small molecule therapeutics.
Collapse
|
8
|
Wang Y, Nguyen K, Spitale RC, Chaput JC. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat Chem 2021; 13:319-326. [DOI: 10.1038/s41557-021-00645-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
|
9
|
Fu DJ, Allen EHA, Hickerson RP, Leslie Pedrioli DM, McLean WHI. Development of a Corneal Bioluminescence Mouse for Real-Time In Vivo Evaluation of Gene Therapies. Transl Vis Sci Technol 2020; 9:44. [PMID: 33442498 PMCID: PMC7774114 DOI: 10.1167/tvst.9.13.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose The purpose of this study was to develop and characterize a novel bioluminescence transgenic mouse model that facilitates rapid evaluation of genetic medicine delivery methods for inherited and acquired corneal diseases. Methods Corneal expression of the firefly luciferase transgene (luc2) was achieved via insertion into the Krt12 locus, a type I intermediate filament keratin that is exclusively expressed in the cornea, to generate the Krt12luc2 mouse. The transgene includes a multiple target cassette with human pathogenic mutations in K3 and K12. Results The Krt12luc2 mouse exclusively expresses luc2 in the corneal epithelium under control of the keratin K12 promoter. The luc2 protein is enzymatically active, can be readily visualized, and exhibits a symmetrically consistent readout. Moreover, structural integrity of the corneal epithelium is preserved in mice that are heterozygous for the luc2 transgene (Krt12+/luc2). Conclusions This novel Krt12luc2 mouse model represents a potentially ideal in vivo system for evaluating the efficacies of cornea-targeting gene therapies and for establishing and/or validating new delivery modalities. Importantly, the multiple targeting cassette that is included in the Luc2 transgene will greatly reduce mouse numbers required for in vivo therapy evaluation.
Collapse
Affiliation(s)
- Dun Jack Fu
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Edwin H. A. Allen
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Robyn P. Hickerson
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Deena M. Leslie Pedrioli
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- Department of Molecular Mechanisms of Disease, University of Zürich Hospital, Zürich, Switzerland
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
10
|
Baran-Rachwalska P, Torabi-Pour N, Sutera FM, Ahmed M, Thomas K, Nesbit MA, Welsh M, Moore CBT, Saffie-Siebert SR. Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J Control Release 2020; 326:192-202. [PMID: 32653503 DOI: 10.1016/j.jconrel.2020.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022]
Abstract
The major unmet need and crucial challenge hampering the exciting potential of RNAi therapeutics in ophthalmology is to find an effective, safe and non-invasive means of delivering siRNA to the cornea. Although all tissues of the eye are accessible by injection, topical application is preferable for the frequent treatment regimen that would be necessary for siRNA-induced gene silencing. However, the ocular surface is one of the more complex biological barriers for drug delivery due to the combined effect of short contact time, tear dilution and poor corneal cell penetration. Using nanotechnology to overcome the challenges, we developed a unique silicon-based delivery platform for ocular delivery of siRNA. This biocompatible hybrid of porous silicon nanoparticles and lipids has demonstrated an ability to bind nucleic acid and deliver functional siRNA to corneal cells both in vitro and in vivo. Potent transfection of human corneal epithelial cells with siRNA-ProSilic® formulation was followed by a successful downregulation of reporter protein expression. Moreover, siRNA complexed with this silicon-based hybrid and applied in vivo topically to mice eyes penetrated across all cornea layers and resulted in a significant reduction of the targeted protein expression in corneal epithelium. In terms of siRNA loading capacity, system versatility, and potency of action, ProSilic provides unique attributes as a biodegradable delivery platform for therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Paulina Baran-Rachwalska
- SiSaf Ltd, Surrey Research Park, Guildford GU2 7RE, United Kingdom; Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, United Kingdom
| | | | | | - Mukhtar Ahmed
- SiSaf Ltd, Surrey Research Park, Guildford GU2 7RE, United Kingdom
| | - Keith Thomas
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, United Kingdom
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, United Kingdom
| | - Michael Welsh
- SiSaf Ltd, Surrey Research Park, Guildford GU2 7RE, United Kingdom
| | - C B Tara Moore
- SiSaf Ltd, Surrey Research Park, Guildford GU2 7RE, United Kingdom; Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, United Kingdom.
| | | |
Collapse
|
11
|
Soh YQ, Kocaba V, Weiss JS, Jurkunas UV, Kinoshita S, Aldave AJ, Mehta JS. Corneal dystrophies. Nat Rev Dis Primers 2020; 6:46. [PMID: 32528047 DOI: 10.1038/s41572-020-0178-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Corneal dystrophies are broadly defined as inherited disorders that affect any layer of the cornea and are usually progressive, bilateral conditions that do not have systemic effects. The 2015 International Classification of Corneal Dystrophies classifies corneal dystrophies into four classes: epithelial and subepithelial dystrophies, epithelial-stromal TGFBI dystrophies, stromal dystrophies and endothelial dystrophies. Whereas some corneal dystrophies may result in few or mild symptoms and morbidity throughout a patient's lifetime, others may progress and eventually result in substantial visual and ocular disturbances that require medical or surgical intervention. Corneal transplantation, either with full-thickness or partial-thickness donor tissue, may be indicated for patients with advanced corneal dystrophies. Although corneal transplantation techniques have improved considerably over the past two decades, these surgeries are still associated with postoperative risks of disease recurrence, graft failure and other complications that may result in blindness. In addition, a global shortage of cadaveric corneal graft tissue critically limits accessibility to corneal transplantation in some parts of the world. Ongoing advances in gene therapy, regenerative therapy and cell augmentation therapy may eventually result in the development of alternative, novel treatments for corneal dystrophies, which may substantially improve the quality of life of patients with these disorders.
Collapse
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Netherlands Institute for Innovative Ocular Surgery, Rotterdam, Netherlands
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University, School of Medicine, New Orleans, USA
| | - Ula V Jurkunas
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Schepens Eye Research Institute, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
12
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1062] [Impact Index Per Article: 212.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
13
|
Schiroli D, Gómara MJ, Maurizi E, Atkinson SD, Mairs L, Christie KA, Cobice DF, McCrudden CM, Nesbit MA, Haro I, Moore T. Effective In Vivo Topical Delivery of siRNA and Gene Silencing in Intact Corneal Epithelium Using a Modified Cell-Penetrating Peptide. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:891-906. [PMID: 31476668 PMCID: PMC6723413 DOI: 10.1016/j.omtn.2019.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/03/2023]
Abstract
Autosomal dominantly inherited genetic disorders such as corneal dystrophies are amenable to allele-specific gene silencing with small interfering RNA (siRNA). siRNA delivered to the cornea by injection, although effective, is not suitable for a frequent long-term treatment regimen, whereas topical delivery of siRNA to the cornea is hampered by the eye surface's protective mechanisms. Herein we describe an attractive and innovative alternative for topical application using cell-penetrating peptide derivatives capable of complexing siRNA non-covalently and delivering them into the cornea. Through a rational design approach, we modified derivatives of a cell-penetrating peptide, peptide for ocular delivery (POD), already proved to diffuse into the corneal layers. These POD derivatives were able to form siRNA-peptide complexes (polyplexes) of size and ζ-potential similar to those reported able to undergo cellular internalization. Successful cytoplasmic release and gene silencing in vitro was obtained when an endosomal disruptor, chloroquine, was added. A palmitoylated-POD, displaying the best delivery properties, was covalently functionalized with trifluoromethylquinoline, an analog of chloroquine. This modified POD, named trifluoromethylquinoline-palmitoyl-POD (QN-Palm-POD), when complexed with siRNA and topically applied to the eye in vivo, resulted in up to 30% knockdown of luciferase reporter gene expression in the corneal epithelium. The methods developed within represent a valid standardized approach that is ideal for screening of a range of delivery formulations.
Collapse
Affiliation(s)
- Davide Schiroli
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, Northern Ireland
| | - María J Gómara
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Barcelona, Spain
| | - Eleonora Maurizi
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, Northern Ireland
| | - Sarah D Atkinson
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, Northern Ireland; Northern Ireland Centre for Stratified Medicine, University of Ulster, Londonderry BT47 6SB, UK
| | - Laura Mairs
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, Northern Ireland
| | - Kathleen A Christie
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, Northern Ireland
| | - Diego F Cobice
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, Northern Ireland
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, Northern Ireland
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Barcelona, Spain
| | - Tara Moore
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, Northern Ireland.
| |
Collapse
|
14
|
Giorgio E, Lorenzati M, Rivetti di Val Cervo P, Brussino A, Cernigoj M, Della Sala E, Bartoletti Stella A, Ferrero M, Caiazzo M, Capellari S, Cortelli P, Conti L, Cattaneo E, Buffo A, Brusco A. Allele-specific silencing as treatment for gene duplication disorders: proof-of-principle in autosomal dominant leukodystrophy. Brain 2019; 142:1905-1920. [PMID: 31143934 DOI: 10.1093/brain/awz139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/16/2019] [Accepted: 03/31/2019] [Indexed: 11/14/2022] Open
Abstract
Allele-specific silencing by RNA interference (ASP-siRNA) holds promise as a therapeutic strategy for downregulating a single mutant allele with minimal suppression of the corresponding wild-type allele. This approach has been effectively used to target autosomal dominant mutations and single nucleotide polymorphisms linked with aberrantly expanded trinucleotide repeats. Here, we propose ASP-siRNA as a preferable choice to target duplicated disease genes, avoiding potentially harmful excessive downregulation. As a proof-of-concept, we studied autosomal dominant adult-onset demyelinating leukodystrophy (ADLD) due to lamin B1 (LMNB1) duplication, a hereditary, progressive and fatal disorder affecting myelin in the CNS. Using a reporter system, we screened the most efficient ASP-siRNAs preferentially targeting one of the alleles at rs1051644 (average minor allele frequency: 0.45) located in the 3' untranslated region of the gene. We identified four siRNAs with a high efficacy and allele-specificity, which were tested in ADLD patient-derived fibroblasts. Three of the small interfering RNAs were highly selective for the target allele and restored both LMNB1 mRNA and protein levels close to control levels. Furthermore, small interfering RNA treatment abrogates the ADLD-specific phenotypes in fibroblasts and in two disease-relevant cellular models: murine oligodendrocytes overexpressing human LMNB1, and neurons directly reprogrammed from patients' fibroblasts. In conclusion, we demonstrated that ASP-silencing by RNA interference is a suitable and promising therapeutic option for ADLD. Moreover, our results have a broad translational value extending to several pathological conditions linked to gene-gain in copy number variations.
Collapse
Affiliation(s)
- Elisa Giorgio
- University of Torino, Department of Medical Sciences, Torino, Italy
| | - Martina Lorenzati
- University of Torino, Department of Neuroscience Rita Levi Montalcini and Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - Pia Rivetti di Val Cervo
- University of Milan, Department of Biosciences, Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Milan, Italy
| | | | - Manuel Cernigoj
- University of Milan, Department of Biosciences, Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Milan, Italy
| | | | | | - Marta Ferrero
- University of Torino, Department of Medical Sciences, Torino, Italy
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, CG, Utrecht, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', Naples, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Luciano Conti
- University of Trento, Centre for Integrative Biology (CIBIO), Laboratory of Computational Oncology, Trento, Italy
| | - Elena Cattaneo
- University of Milan, Department of Biosciences, Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Milan, Italy
- National Institute of Molecular Genetics (INGM) Romeo and Enrica Invernizzi, Milano, Italy
| | - Annalisa Buffo
- University of Torino, Department of Neuroscience Rita Levi Montalcini and Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - Alfredo Brusco
- University of Torino, Department of Medical Sciences, Torino, Italy
- Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Torino, Italy
| |
Collapse
|
15
|
Di Iorio E, Barbaro V, Alvisi G, Trevisan M, Ferrari S, Masi G, Nespeca P, Ghassabian H, Ponzin D, Palù G. New Frontiers of Corneal Gene Therapy. Hum Gene Ther 2019; 30:923-945. [PMID: 31020856 DOI: 10.1089/hum.2019.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Corneal diseases are among the most prevalent causes of blindness worldwide. The transparency and clarity of the cornea are guaranteed by a delicate physiological, anatomic, and functional balance. For this reason, all the disorders, including those of genetic origin, that compromise this state of harmony can lead to opacity and eventually vision loss. Many corneal disorders have a genetic etiology, and some are associated with rather rare and complex syndromes. Conventional treatments, such as corneal transplantation, are often ineffective, and to date, many of these disorders are still incurable. Gene therapy carries the promise of being a potential cure for many of these diseases, with solutions and strategies that did not seem possible until a few years ago. With its potential to treat genetic disease by means of deletion, replacement, or editing of a defective gene, the challenge can also be extended to corneal disorders in order to achieve long-term, if not definitive, relief. The aim of this paper is to review the state of the art of the different gene therapy approaches as potential treatments for corneal diseases and the future perspectives for the development of personalized gene-based medicine.
Collapse
Affiliation(s)
- Enzo Di Iorio
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Vanessa Barbaro
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Gualtiero Alvisi
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marta Trevisan
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Ferrari
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Giulia Masi
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Patrizia Nespeca
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Hanieh Ghassabian
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Diego Ponzin
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Giorgio Palù
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
16
|
CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives. Emerg Top Life Sci 2019; 3:313-326. [DOI: 10.1042/etls20180148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
Abstract
Abstract
Genodermatoses constitute a clinically heterogeneous group of devastating genetic skin disorders. Currently, therapy options are largely limited to symptomatic treatments and although significant advances have been made in ex vivo gene therapy strategies, various limitations remain. However, the recent technical transformation of the genome editing field promises to overcome the hurdles associated with conventional gene addition approaches. In this review, we discuss the need for developing novel treatments and describe the current status of gene editing for genodermatoses, focusing on a severe blistering disease called epidermolysis bullosa (EB), for which significant progress has been made. Initial research utilized engineered nucleases such as transcription activator-like effector nucleases and meganucleases. However, over the last few years, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) have upstaged older generation gene editing tools. We examine different strategies for CRISPR/Cas9 application that can be employed depending on the type and position of the mutation as well as the mode of its inheritance. Promising developments in the field of base editing opens new avenues for precise correction of single base substitutions, common in EB and other genodermatoses. We also address the potential limitations and challenges such as safety concerns and delivery efficiency. This review gives an insight into the future of gene editing technologies for genodermatoses.
Collapse
|
17
|
Finis D, Stammen J, Lisch W, Geerling G. [Epithelial Dystrophies of the Cornea]. Klin Monbl Augenheilkd 2019; 236:e23-e36. [PMID: 30776844 DOI: 10.1055/a-0849-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In 2015, the first revision of the international classification of corneal dystrophies (IC3D) has been published. According to this latest version of the IC3D the dystrophies of the cornea are divided into · epithelial and subepithelial dystrophies,. · epithelial-stromal TGFBI dystrophies,. · stromal dystrophies, and. · Descemet-membrane and endothelial dystrophies.. This article summarizes the epithelial and subepithelial dystrophies of the cornea, which, according to IC3D are the following: · epithelial basement membrane dystrophy (EBMD),. · epithelial recurrent erosion dystrophy (ERED),. · subepithelial mucinous corneal dystrophy (SMCD),. · Meesmann corneal dystrophy (MECD),. · Lisch epithelial corneal dystrophy (LECD),. · gelatinous drop-like corneal dystrophy (GDLD).. The main problem concerning almost all dystrophies of the corneal epithelium are epithelial defects (erosion) associated with pain, epiphora and red eyes. In addition, all dystrophies of the epithelium tend to relapse.While therapy is usually initiated with topical therapeutics, in the course of the disease invasive procedures like phototherapeutic keratectomy (PTK) (possibly with the administration of mitomycin C) or in severe cases even keratoplasty (preferably as deep anterior lamellar keratoplasty; DALK) have to be used. Due to the origin of the disease in the epithelial stem cells at the limbus, the replacement of these cells can also be discussed.
Collapse
|
18
|
Nishino T, Kobayashi A, Mori N, Masaki T, Yokogawa H, Fujiki K, Yanagawa A, Murakami A, Sugiyama K. In vivo histology and p.L132V mutation in KRT12 gene in Japanese patients with Meesmann corneal dystrophy. Jpn J Ophthalmol 2018; 63:46-55. [PMID: 30535821 DOI: 10.1007/s10384-018-00643-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/21/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE To report genetic mutational analysis and in vivo histology of Meesmann corneal dystrophy. STUDY DESIGN Prospective, case control study. METHODS Six patients from three independent families with clinically diagnosed Meesmann corneal dystrophy were enrolled in this study. Slit-lamp biomicroscopy with fluorescein vital staining, anterior segment optical coherence tomography (AS-OCT), and in vivo laser confocal microscopy (IVCM) were performed on selected patients. Mutational screening for the keratin genes KRT3 and KRT12 was performed in all six patients and selected unaffected family members. RESULTS Slit-lamp biomicroscopy revealed numerous intraepithelial microcysts in all affected individuals. AS-OCT revealed hyperreflectivity and high corneal epithelial layer thickness (mean, 64.8μm) in all individuals tested (3/3). By using IVCM, multiple epithelial microcysts and hyperreflective materials (6/6), subepithelial nerve abnormalities (6/6), tiny punctate hyperreflective material (6/6), and needle-like hyperreflective materials (4/6) were observed in the corneal stromal layer. A heterozygous genetic mutation in the KRT12 gene (c.394 C>G, p.L132V) was identified in all six patients. No pathological mutation was observed in the KRT3 gene. CONCLUSION We identified a heterozygous genetic mutation (c.394 C>G, p.L132V) in the KRT12 gene in six Japanese patients with inherited Meesmann corneal dystrophy. This is the first study to confirm this genetic mutation in Japanese Meesmann corneal dystrophy patients. This mutation has been independently reported in an American Meesmann corneal dystrophy patient, confirming its pathogenicity. AS-OCT and IVCM proved to be useful tools for observing corneal epithelial layer pathology in this dystrophy. Furthermore, IVCM reveals corneal stromal layer pathological changes not previously reported in this dystrophy.
Collapse
Affiliation(s)
- Tsubasa Nishino
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Akira Kobayashi
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Natsuko Mori
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Toshinori Masaki
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hideaki Yokogawa
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Keiko Fujiki
- Department of Ophthalmology, Juntendo University Graduate School of Medical Science, Tokyo, Japan
| | - Ai Yanagawa
- Department of Ophthalmology, Juntendo University Graduate School of Medical Science, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medical Science, Tokyo, Japan
| | - Kazuhisa Sugiyama
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
19
|
Basche M, Kampik D, Kawasaki S, Branch MJ, Robinson M, Larkin DF, Smith AJ, Ali RR. Sustained and Widespread Gene Delivery to the Corneal Epithelium via In Situ Transduction of Limbal Epithelial Stem Cells, Using Lentiviral and Adeno-Associated Viral Vectors. Hum Gene Ther 2018; 29:1140-1152. [PMID: 30070149 DOI: 10.1089/hum.2018.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal epithelial dystrophies are typically characterized by symptoms such as pain, light sensitivity, and corneal opacification leading to impaired vision. The development of gene therapy for such conditions has been hindered by an inability to achieve sustained and extensive gene transfer, as the epithelium is highly replicative and has evolved to exclude foreign material. We undertook a comprehensive study in mice aiming to overcome these impediments. Direct injection of lentiviral vector within the stem cell niche resulted in centripetal streaks of epithelial transgene expression sustained for >1 year, indicating limbal epithelial stem cell transduction in situ. The extent of transgene expression varied markedly but at maximum covered 26% of the corneal surface. After intrastromal injection, adeno-associated viral (AAV) vectors were found to penetrate Bowman's membrane and mediate widespread, but transient (12-16 days), epithelial transgene expression. This was sufficient, when applied within a Cre/lox system, to result in recombined epithelium covering up to approximately 80% of the corneal surface. Lastly, systemic delivery of AAV2/9 in neonatal mice resulted in extensive corneal transduction, despite the relative avascularity of the tissue. These findings provide the foundations of a gene therapy toolkit for the corneal epithelium, which might be applied to correction of inherited epithelial dystrophies.
Collapse
Affiliation(s)
- Mark Basche
- 1 Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom; London, United Kingdom
| | - Daniel Kampik
- 1 Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom; London, United Kingdom
| | - Satoshi Kawasaki
- 2 Department of Ophthalmology, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Matthew J Branch
- 1 Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom; London, United Kingdom
| | - Martha Robinson
- 1 Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom; London, United Kingdom
| | | | - Alexander J Smith
- 1 Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom; London, United Kingdom
| | - Robin R Ali
- 1 Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom; London, United Kingdom
- 4 NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
20
|
Christie KA, Courtney DG, DeDionisio LA, Shern CC, De Majumdar S, Mairs LC, Nesbit MA, Moore CBT. Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Sci Rep 2017; 7:16174. [PMID: 29170458 PMCID: PMC5701044 DOI: 10.1038/s41598-017-16279-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 holds immense potential to treat a range of genetic disorders. Allele-specific gene disruption induced by non-homologous end-joining (NHEJ) DNA repair offers a potential treatment option for autosomal dominant disease. Here, we successfully delivered a plasmid encoding S. pyogenes Cas9 and sgRNA to the corneal epithelium by intrastromal injection and acheived long-term knockdown of a corneal epithelial reporter gene, demonstrating gene disruption via NHEJ in vivo. In addition, we used TGFBI corneal dystrophies as a model of autosomal dominant disease to assess the use of CRISPR/Cas9 in two allele-specific systems, comparing cleavage using a SNP-derived PAM to a guide specific approach. In vitro, cleavage via a SNP-derived PAM was found to confer stringent allele-specific cleavage, while a guide-specific approach lacked the ability to distinguish between the wild-type and mutant alleles. The failings of the guide-specific approach highlights the necessity for meticulous guide design and assessment, as various degrees of allele-specificity are achieved depending on the guide sequence employed. A major concern for the use of CRISPR/Cas9 is its tendency to cleave DNA non-specifically at “off-target” sites. Confirmation that S. pyogenes Cas9 lacks the specificity to discriminate between alleles differing by a single base-pair regardless of the position in the guide is demonstrated.
Collapse
Affiliation(s)
- Kathleen A Christie
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - David G Courtney
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | | | | | - Shyamasree De Majumdar
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Laura C Mairs
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - C B Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK. .,Avellino Laboratories, Menlo Park, California, CA, 94025, USA.
| |
Collapse
|
21
|
Oliver VF, Vincent AL. The Genetics and Pathophysiology of IC3D Category 1 Corneal Dystrophies: A Review. Asia Pac J Ophthalmol (Phila) 2016; 5:272-81. [PMID: 27213768 DOI: 10.1097/apo.0000000000000205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Corneal dystrophies are a group of inherited disorders affecting the cornea, many of which lead to visual impairment. The International Committee for Classification of Corneal Dystrophies has established criteria to clarify the status of the various corneal dystrophies, which include the knowledge of the underlying genetics. In this review, we discuss the International Committee for Classification of Corneal Dystrophies category 1 (second edition) corneal dystrophies, for which a clear genetic link has been established. We highlight the various mechanisms underlying corneal dystrophy pathology, including structural disorganization, instability or maladhesion, aberrant protein stability and deposition, abnormal cellular proliferation or apoptosis, and dysfunction of normal enzymatic processes. Understanding these genetic mechanisms is essential for designing targets for therapeutic intervention, especially in the age of gene therapy and gene editing.
Collapse
Affiliation(s)
- Verity Frances Oliver
- From the *Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; and †Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | | |
Collapse
|
22
|
Novelli F, Lena AM, Panatta E, Nasser W, Shalom-Feuerstein R, Candi E, Melino G. Allele-specific silencing of EEC p63 mutant R304W restores p63 transcriptional activity. Cell Death Dis 2016; 7:e2227. [PMID: 27195674 PMCID: PMC4917656 DOI: 10.1038/cddis.2016.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
EEC (ectrodactily-ectodermal dysplasia and cleft lip/palate) syndrome is a rare genetic disease, autosomal dominant inherited. It is part of the ectodermal dysplasia disorders caused by heterozygous mutations in TP63 gene. EEC patients present limb malformations, orofacial clefting, skin and skin's appendages defects, ocular abnormalities. The transcription factor p63, encoded by TP63, is a master gene for the commitment of ectodermal-derived tissues, being expressed in the apical ectodermal ridge is critical for vertebrate limb formation and, at a later stage, for skin and skin's appendages development. The ΔNp63α isoform is predominantly expressed in epithelial cells and it is indispensable for preserving the self-renewal capacity of adult stem cells and to engage specific epithelial differentiation programs. Small interfering RNA (siRNA) offers a potential therapy approach for EEC patients by selectively silencing the mutant allele. Here, using a systemic screening based on a dual-luciferase reported gene assay, we have successfully identified specific siRNAs for repressing the EEC-causing p63 mutant, R304W. Upon siRNA treatment, we were able to restore ΔNp63-WT allele transcriptional function in induced pluripotent stem cells that were derived from EEC patient biopsy. This study demonstrates that siRNAs approach is promising and, may pave the way for curing/delaying major symptoms, such as cornea degeneration and skin erosions in young EEC patients.
Collapse
Affiliation(s)
- F Novelli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - A M Lena
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - E Panatta
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - W Nasser
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - E Candi
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Leicester, UK
| |
Collapse
|
23
|
Allen EHA, Courtney DG, Atkinson SD, Moore JE, Mairs L, Poulsen ET, Schiroli D, Maurizi E, Cole C, Hickerson RP, James J, Murgatroyd H, Smith FJD, MacEwen C, Enghild JJ, Nesbit MA, Leslie Pedrioli DM, McLean WHI, Moore CBT. Keratin 12 missense mutation induces the unfolded protein response and apoptosis in Meesmann epithelial corneal dystrophy. Hum Mol Genet 2016; 25:1176-91. [PMID: 26758872 PMCID: PMC4764196 DOI: 10.1093/hmg/ddw001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 11/23/2022] Open
Abstract
Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations.
Collapse
Affiliation(s)
- Edwin H A Allen
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK, Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - David G Courtney
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Sarah D Atkinson
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Johnny E Moore
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK, Cathedral Eye Clinic, Academy Street, Belfast BT15 1ED, UK
| | - Laura Mairs
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | | | - Davide Schiroli
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Eleonora Maurizi
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Christian Cole
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - Robyn P Hickerson
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - John James
- Microscopy Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helen Murgatroyd
- Department of Ophthalmology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Frances J D Smith
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - Carrie MacEwen
- Department of Ophthalmology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN), Science Park, Aarhus University, Aarhus, Denmark and
| | - M Andrew Nesbit
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Deena M Leslie Pedrioli
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - W H Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK,
| | - C B Tara Moore
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK,
| |
Collapse
|
24
|
Chen JL, Lin BR, Gee KM, Gee JA, Chung DWD, Frausto RF, Deng SX, Aldave AJ. Identification of presumed pathogenic KRT3 and KRT12 gene mutations associated with Meesmann corneal dystrophy. Mol Vis 2015; 21:1378-86. [PMID: 26788030 PMCID: PMC4704769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/30/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To report potentially pathogenic mutations in the keratin 3 (KRT3) and keratin 12 (KRT12) genes in two individuals with clinically diagnosed Meesmann corneal dystrophy (MECD). METHODS Slit-lamp examination was performed on the probands and available family members to identify characteristic features of MECD. After informed consent was obtained, saliva samples were obtained as a source of genomic DNA, and screening of KRT3 and KRT12 was performed. Potentially pathogenic variants were screened for in 200 control chromosomes. PolyPhen-2, SIFT, and PANTHER were used to predict the functional impact of identified variants. Short tandem repeat genotyping was performed to confirm paternity. RESULTS Slit-lamp examination of the first proband demonstrated bilateral, diffusely distributed, clear epithelial microcysts, consistent with MECD. Screening of KRT3 revealed a heterozygous missense variant in exon 1, c.250C>T (p.(Arg84Trp)), which has a minor allele frequency of 0.0076 and was not identified in 200 control chromosomes. In silico analysis with PolyPhen-2 and PANTHER predicted the variant to be damaging to protein function; however, SIFT analysis predicted tolerance of the variant. The second proband demonstrated bilateral, diffusely distributed epithelial opacities that appeared gray-white on direct illumination and translucent on retroillumination. Neither parent demonstrated corneal opacities. Screening of KRT12 revealed a novel heterozygous insertion/deletion variant in exon 6, c.1288_1293delinsAGCCCT (p.(Arg430_Arg431delinsSerPro)). This variant was not present in either of the proband's parents or in 200 control chromosomes and was predicted to be damaging by PolyPhen-2, PANTHER, and SIFT. Haplotype analysis confirmed paternity of the second proband, indicating that the variant arose de novo. CONCLUSIONS We present a novel KRT12 mutation, representing the first de novo mutation and the first indel in KRT12 associated with MECD. In addition, we report a variant of uncertain significance in KRT3 in an individual with MECD. Although the potential pathogenicity of this variant is unknown, it is the first variant affecting the head domain of K3 to be reported in an individual with MECD and suggests that disease-causing variants associated with MECD may not be restricted to primary sequence alterations of either the helix-initiation or helix-termination motifs of K3 and K12.
Collapse
|
25
|
CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Ther 2015; 23:108-12. [PMID: 26289666 PMCID: PMC4705418 DOI: 10.1038/gt.2015.82] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/16/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022]
Abstract
CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics.
Collapse
|
26
|
Affiliation(s)
- Rebecca L Haines
- Epithelial Biology Group, Institute of Medical Biology, Immunos, Singapore
| | | |
Collapse
|
27
|
Cao W, Yan M, Hao Q, Wang S, Wu L, Liu Q, Li M, Biddle FG, Wu W. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family. J Int Med Res 2013; 41:511-8. [PMID: 23569037 DOI: 10.1177/0300060513477306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.
Collapse
Affiliation(s)
- Wei Cao
- Clinical Research Centre, People's Hospital of Zhengzhou, Zhengzhou, Henan, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Allen EHA, Atkinson SD, Liao H, Moore JE, Pedrioli DML, Smith FJD, McLean WHI, Moore CBT. Allele-specific siRNA silencing for the common keratin 12 founder mutation in Meesmann epithelial corneal dystrophy. Invest Ophthalmol Vis Sci 2013; 54:494-502. [PMID: 23233254 DOI: 10.1167/iovs.12-10528] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify an allele-specific short interfering RNA (siRNA), against the common KRT12 mutation Arg135Thr in Meesmann epithelial corneal dystrophy (MECD) as a personalized approach to treatment. METHODS siRNAs against the K12 Arg135Thr mutation were evaluated using a dual luciferase reporter gene assay and the most potent and specific siRNAs were further screened by Western blot. Off-target effects on related keratins were assessed and immunological stimulation of TLR3 was evaluated by RT-PCR. A modified 5' rapid amplification of cDNA ends method was used to confirm siRNA-mediated mutant knockdown. Allele discrimination was confirmed by quantitative infrared immunoblotting. RESULTS The lead siRNA, with an IC(50) of thirty picomolar, showed no keratin off-target effects or activation of TLR3 in the concentration ranges tested. We confirmed siRNA-mediated knockdown by the presence of K12 mRNA fragments cleaved at the predicted site. A dual tag infrared immunoblot showed knockdown to be allele-specific, with 70% to 80% silencing of the mutant protein. CONCLUSIONS A potent allele-specific siRNA against the K12 Arg135Thr mutation was identified. In combination with efficient eyedrop formulation delivery, this would represent a personalized medicine approach, aimed at preventing the pathology associated with MECD and other ocular surface pathologies with dominant-negative or gain-of-function pathomechanisms.
Collapse
Affiliation(s)
- Edwin H A Allen
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.,Dermatology and Genetic Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee DD1 5EH, Scotland
| | - Sarah D Atkinson
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.,Dermatology and Genetic Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee DD1 5EH, Scotland
| | - Haihui Liao
- Dermatology and Genetic Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee DD1 5EH, Scotland
| | - Jonathan E Moore
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Deena M Leslie Pedrioli
- Dermatology and Genetic Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee DD1 5EH, Scotland
| | - Frances J D Smith
- Dermatology and Genetic Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee DD1 5EH, Scotland
| | - W H Irwin McLean
- Dermatology and Genetic Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee DD1 5EH, Scotland
| | - C B Tara Moore
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.,Dermatology and Genetic Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
29
|
Lindahl K, Kindmark A, Laxman N, Åström E, Rubin CJ, Ljunggren Ö. Allele dependent silencing of collagen type I using small interfering RNAs targeting 3'UTR Indels - a novel therapeutic approach in osteogenesis imperfecta. Int J Med Sci 2013; 10:1333-43. [PMID: 23983594 PMCID: PMC3752721 DOI: 10.7150/ijms.5774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 07/23/2013] [Indexed: 11/05/2022] Open
Abstract
Osteogenesis imperfecta, also known as "brittle bone disease", is a heterogeneous disorder of connective tissue generally caused by dominant mutations in the genes COL1A1 and COL1A2, encoding the α1 and α2 chains of type I (pro)collagen. Symptomatic patients are usually prescribed bisphosphonates, but this treatment is neither curative nor sufficient. A promising field is gene silencing through RNA interference. In this study small interfering RNAs (siRNAs) were designed to target each allele of 3'UTR insertion/deletion polymorphisms (indels) in COL1A1 (rs3840870) and COL1A2 (rs3917). For both indels, the frequency of heterozygous individuals was determined to be approximately 50% in Swedish cohorts of healthy controls as well as in patients with osteogenesis imperfecta. Cultures of primary human bone derived cells were transfected with siRNAs through magnet-assisted transfection. cDNA from transfected cells was sequenced in order to measure targeted allele/non-targeted allele ratios and the overall degree of silencing was assessed by quantitative PCR. Successful allele dependent silencing was observed, with promising results for siRNAs complementary to both the insertion and non-insertion harboring alleles. In COL1A1 cDNA the indel allele ratios were shifted from 1 to 0.09 and 0.19 for the insertion and non-insertion allele respectively while the equivalent resulting ratios for COL1A2 were 0.05 and 0.01. Reductions in mRNA abundance were also demonstrated; in cells treated with siRNAs targeting the COL1A1 alleles the average COL1A1 mRNA levels were reduced 65% and 78% compared to negative control levels and in cells treated with COL1A2 siRNAs the average COL1A2 mRNA levels were decreased 26% and 49% of those observed in the corresponding negative controls. In conclusion, allele dependent silencing of collagen type I utilizing 3'UTR indels common in the general population constitutes a promising mutation independent therapeutic approach for osteogenesis imperfecta.
Collapse
Affiliation(s)
- Katarina Lindahl
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
30
|
Hassan H, Thaung C, Ebenezer ND, Larkin G, Hardcastle AJ, Tuft SJ. Severe Meesmann's epithelial corneal dystrophy phenotype due to a missense mutation in the helix-initiation motif of keratin 12. Eye (Lond) 2012; 27:367-73. [PMID: 23222558 DOI: 10.1038/eye.2012.261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To describe a severe phenotype of Meesmann's epithelial corneal dystrophy (MECD) and to determine the underlying molecular cause. METHODS We identified a 30-member family affected by MECD and examined 11 of the 14 affected individuals. Excised corneal tissue from one affected individual was examined histologically. We used PCR and direct sequencing to identify mutation of the coding regions of the KRT3 and KRT12 genes. RESULTS Cases had an unusually severe phenotype with large numbers of intraepithelial cysts present from infancy and they developed subepithelial fibrosis in the second to third decade. In some individuals, the cornea became superficially vascularized, a change accompanied by the loss of clinically obvious epithelial cysts. Visual loss from amblyopia or corneal opacity was common and four individuals were visually impaired (≤6/24 bilaterally) and one was blind (<6/60 bilaterally). In all affected family members, there was a heterozygous missense mutation c. 395T>C (p. L132P) in exon 1 of the KRT12 gene, which codes for the helix-initiation motif of the K12 polypeptide. This sequence change was not found in unaffected family members or in 100 unaffected controls. CONCLUSIONS The Leu132Pro missense mutation is within the helix-initiation motif of the keratin and is predicted to result in a significant structural change of the K12 protein. The clinical effects are markedly more severe than the phenotype usually associated with the Arg135Thr mutation within this motif, most frequently seen in European patients with MECD.
Collapse
Affiliation(s)
- H Hassan
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | |
Collapse
|
31
|
Parekh M, Ferrari S, Di Iorio E, Barbaro V, Bertolin M, Ferrari B, Ponzin D. Targeting corneal disorders using gene therapy. EXPERT REVIEW OF OPHTHALMOLOGY 2012. [DOI: 10.1586/eop.12.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Roth W, Hatzfeld M, Magin TM. Targeting the palm: a leap forward toward treatment of keratin disorders. J Invest Dermatol 2012; 132:1541-2. [PMID: 22584502 DOI: 10.1038/jid.2012.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Any rational therapy benefits from an understanding of basic biology and the simplicity of its strategy. Among keratinopathies, epidermolytic palmoplantar keratoderma stands out by virtue of hotspot mutations in the KRT9 gene, exclusively expressed in the palmoplantar epidermis. In this issue, Leslie Pedrioli et al. report on the successful application of KRT9-specific siRNAs in cultured cells and in a mouse model. The study beautifully illustrates the potency of a thorough experimental approach and the challenges that remain, especially in its delivery.
Collapse
Affiliation(s)
- Wera Roth
- Division of Cell and Developmental Biology, Translational Centre for Regenerative Medicine and Institute of Biology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
33
|
Leslie Pedrioli DM, Fu DJ, Gonzalez-Gonzalez E, Contag CH, Kaspar RL, Smith FJ, Irwin McLean W. Generic and Personalized RNAi-Based Therapeutics for a Dominant-Negative Epidermal Fragility Disorder. J Invest Dermatol 2012; 132:1627-35. [DOI: 10.1038/jid.2012.28] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|