1
|
Wajszczyk B, Charzewska J, Godlewski D, Zemła B, Nowakowska E, Kozaczka M, Chilimoniuk M, Pathak DR. Consumption of Dairy Products and the Risk of Developing Breast Cancer in Polish Women. Nutrients 2021; 13:nu13124420. [PMID: 34959971 PMCID: PMC8703752 DOI: 10.3390/nu13124420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Lack of consistency in the relationship between dairy products consumption and breast cancer (BC) risk motivated us to evaluate this association in a case-control study of BC among Polish women. The study includes 1699 women 26–79 years of age, 823 BC cases identified in Cancer Registries and 876 randomly selected controls from the national population registry. Using a validated, semiquantitative food frequency questionnaire (FFQ), the consumption of dairy products was collected for a time period of 10–15 years prior to BC diagnosis. We used logistic regression, adjusting for potential confounders, to assess the relationship between total dairy consumption as well as individual dairy groups of milk, cottage cheese and hard cheese and BC risk for premenopausal and postmenopausal women. For total consumption, a significant decrease in BC risk was observed with increased consumption of one serving/week, OR trend = 0.98, 2% decrease in risk, for premenopausal women only. For milk, a significant decrease in BC risk was observed for an increase in consumption of one glass/week, OR trend = 0.95, 5% decrease, in both strata of menopause. In contrast, for hard cheese, a significant increase in the risk of 10% was observed only in premenopausal women, OR trend = 1.10. Cottage cheese consumption significantly reduced BC risk by 20%, OR trend = 0.80, for an increase in one serving/week for postmenopausal women only. Our results show that individual dairy products have a statistically significant but bi-directional relationship with BC risk, which differs for premenopausal and postmenopausal women.
Collapse
Affiliation(s)
- Bożena Wajszczyk
- Department of Nutrition and Nutritional Value of Food, National Institute of Public Health NIH-National Research Institute, 00-791 Warszawa, Poland
- Correspondence: (B.W.); (J.C.); (D.R.P.)
| | - Jadwiga Charzewska
- Department of Nutrition and Nutritional Value of Food, National Institute of Public Health NIH-National Research Institute, 00-791 Warszawa, Poland
- Correspondence: (B.W.); (J.C.); (D.R.P.)
| | - Dariusz Godlewski
- Center of Cancer Prevention and Epidemiology OPEN, 61-863 Poznań, Poland;
| | | | | | - Maciej Kozaczka
- II Clinic of Radiology and Chemiotherapy, National Institute of Oncology, 44-102 Gliwice, Poland;
| | | | - Dorothy R. Pathak
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (B.W.); (J.C.); (D.R.P.)
| |
Collapse
|
2
|
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol 2019; 235:790-803. [PMID: 31286518 DOI: 10.1002/jcp.29044] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jafar Karami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourramezan
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
3
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Salimi V, Shahsavari Z, Safizadeh B, Hosseini A, Khademian N, Tavakoli-Yaraki M. Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids Health Dis 2017; 16:208. [PMID: 29096636 PMCID: PMC5669027 DOI: 10.1186/s12944-017-0593-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Background Sodium butyrate (NaBu) is a short-chain fatty acid which serves as a histon deacetylase inhibitor and has received considerable interest as a possible regulator of cancer cell death. The regulatory effect of NaBu on cancer cell growth or death has yet to be illustrated in many cancers including breast cancer. This study is aimed to elucidate the possible effect of NaBu on regulation of breast cancer growth and apoptosis. Methods The cytotoxic effect of NaBu on the growth of breast cancer cells (MCF-7 and MDA-MB-468) and normal breast cells (MCF-10A) was determined using MTT assay. Annexin-V-FITC staining and PI staining were performed to detect apoptosis and cell cycle distribution using Flow cytometry, the level of mitochondrial membrane potential (Δψm), Reactive oxygen species (ROS)formation and caspase activity were determined accordingly. Results Based on our data, NaBu induced a dose and time-dependent cell toxicity in breast cancer cells which was related to the cell cycle arrest and induction of apoptosis. The impact of NaBu on MCF-10A cell toxicity, cell cycle distribution and apoptosis was inconsiderable. NaBu-elicited apoptosis was accompanied by the elevated level of ROS, increased caspase activity and reduced mitochondrial membrane potential (Δψm) in MCF-7 and MDA-MB-468 cells and with no effect on the above mentioned factors in MCF-10A cells. Conclusions Our study provided insight in to the role of NaBu on the regulation of breast cancer cell growth and lighten up the pro-apoptotic activity of NaBu.
Collapse
Affiliation(s)
- Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Banafsheh Safizadeh
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ameinh Hosseini
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Khademian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Al-Keilani MS, Al-Sawalha NA. Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms. Chem Res Toxicol 2017; 30:1767-1777. [DOI: 10.1021/acs.chemrestox.7b00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maha S. Al-Keilani
- Jordan University of Science and Technology, College
of Pharmacy, Department of Clinical Pharmacy, P.O. Box 3030, Irbid 22110, Jordan
| | - Nour A. Al-Sawalha
- Jordan University of Science and Technology, College
of Pharmacy, Department of Clinical Pharmacy, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
6
|
Nozaki Y, Tamori S, Inada M, Katayama R, Nakane H, Minamishima O, Onodera Y, Abe M, Shiina S, Tamura K, Kodama D, Sato K, Hara Y, Abe R, Takasawa R, Yoshimori A, Shinomiya N, Tanuma SI, Akimoto K. Correlation between c-Met and ALDH1 contributes to the survival and tumor-sphere formation of ALDH1 positive breast cancer stem cells and predicts poor clinical outcome in breast cancer. Genes Cancer 2017; 8:628-639. [PMID: 28966724 PMCID: PMC5620008 DOI: 10.18632/genesandcancer.148] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
c-Met is a receptor-type tyrosine kinase, which is involved in a wide range of cellular responses such as proliferation, motility, migration and invasion. It has been reported to be overexpressed in various cancers. However, the role of c-Met in breast cancer stem cells (CSCs) still remains unclear. We herein, show that c-Met expression is significantly elevated in Basal-like type of breast cancer in comparison with other subtypes. High expression of c-Met strongly correlated with the expression of two CSC markers, ALDH1A3 and CD133 in breast cancers. In addition, breast cancers at tumor stage III-IV expressing both c-Methigh and ALDH1A3high had poor prognosis. Furthermore, treatment with c-Met inhibitors (Crizotinib, Foretinib, PHA-665752 and Tivantinib) in MDA-MB157 cells with high c-Met protein expression resulted in significant suppression in cell viability, contrary to MDA-MB468 cells with low c-Met protein expression. These c-Met inhibitors also suppressed cell viability and tumor-sphere formation of ALDH1high breast cancer cells with high c-Met expression. These results suggest that c-Met in ALDH1 positive CSCs seems to play an important role in breast cancer repopulation. Therefore, we conclude that c-Met is a potential therapeutic target in ALDH1 positive breast CSCs.
Collapse
Affiliation(s)
- Yuka Nozaki
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.,Translational Research Center, Research Institute for Science& Technology, Tokyo University of Science, Chiba, Japan
| | - Shoma Tamori
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.,Translational Research Center, Research Institute for Science& Technology, Tokyo University of Science, Chiba, Japan
| | - Masahiro Inada
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Reika Katayama
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hiromi Nakane
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Osamu Minamishima
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuka Onodera
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Makoto Abe
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shota Shiina
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kei Tamura
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daichi Kodama
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Keiko Sato
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yasushi Hara
- Research Institute for Biochemical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ryo Abe
- Research Institute for Biochemical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ryoko Takasawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | | | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Sei-Ichi Tanuma
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.,Translational Research Center, Research Institute for Science& Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
7
|
Huang W, Ren C, Huang G, Liu J, Liu W, Wang L, Zhu B, Feng X, Shi J, Li J, Xia X, Jia W, Chen J, Chen Y, Jiang X. Inhibition of store-operated Ca 2+ entry counteracts the apoptosis of nasopharyngeal carcinoma cells induced by sodium butyrate. Oncol Lett 2016; 13:921-929. [PMID: 28356979 DOI: 10.3892/ol.2016.5469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Sodium butyrate (NaBu), a histone deacetylase inhibitor, has demonstrated anti-tumor effects in several cancers, and is a promising candidate chemotherapeutic agent. However, its roles in nasopharyngeal carcinoma (NPC), an endemic malignant disease in Southern China and Southeast Asia, has rarely been studied. In the present study, MTT assay, colony formation assay, flow cytometry analysis and western blotting were performed to explore the influence of NaBu on NPC cells and its underlying mechanism. NaBu induced morphological changes and inhibited proliferation in 5-8F and 6-10B cells. MTT assay revealed that NaBu was cytotoxic to 5-8F and 6-10B cells in a dose- and time-dependent manner. Furthermore, flow cytometry analysis revealed that NaBu induced obvious cell apoptosis in 5-8F and 6-10B cells due to the activation of the mitochondrial apoptosis axis. In addition, flow cytometry analysis and western blotting demonstrated that NaBu could enhance the Ca2+ influx by promoting store-operated Ca2+ entry (SOCE) in 5-8F and 6-10B cells. Inhibition of SOCE by specific inhibitors or downregulated expression of calcium release-activated calcium channel protein 1 and stromal interaction molecule 1 could counteract the apoptosis of NPC cells induced by NaBu. Thus, the current study revealed that enhanced SOCE and activated mitochondrial apoptosis axis may account for the mechanisms of cytotoxicity of NaBu in NPC cells, and that NaBu serves as a promising chemotherapeutic agent in NPC therapy.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Caiping Ren
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guoling Huang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Liu
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weidong Liu
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lei Wang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bin Zhu
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiangling Feng
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jia Shi
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jinlong Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaomeng Xia
- Department of Gynecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei Jia
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiawen Chen
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Changsha, Hunan 410008, P.R. China; Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuxiang Chen
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
Zhang J, Babic A. Regulation of the MET oncogene: molecular mechanisms. Carcinogenesis 2016; 37:345-55. [PMID: 26905592 DOI: 10.1093/carcin/bgw015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
The MET oncogene is a predictive biomarker and an attractive therapeutic target for various cancers. Its expression is regulated at multiple layers via various mechanisms. It is subject to epigenetic modifications, i.e. DNA methylation and histone acetylation. Hypomethylation and acetylation of the MET gene have been associated with its high expression in some cancers. Multiple transcription factors including Sp1 and Ets-1 govern its transcription. After its transcription, METmRNA is spliced into multiple species in the nucleus before being transported to the cytoplasm where its translation is modulated by at least 30 microRNAs and translation initiation factors, e.g. eIF4E and eIF4B. METmRNA produces a single chain pro-Met protein of 170 kDa which is cleaved into α and β chains. These two chains are bound together through disulfide bonds to form a heterodimer which undergoes either N-linked or O-linked glycosylation in the Golgi apparatus before it is properly localized in the membrane. Upon interactions with its ligand, i.e. hepatocyte growth factor (HGF), the activity of Met kinase is boosted through various phosphorylation mechanisms and the Met signal is relayed to downstream pathways. The phosphorylated Met is then internalized for subsequent degradation or recycle via proteasome, lysosome or endosome pathways. Moreover, the Met expression is subject to autoregulation and activation by other EGFRs and G-protein coupled receptors. Since deregulation of the MET gene leads to cancer and other pathological conditions, a better understanding of the MET regulation is critical for Met-targeted therapeutics.
Collapse
Affiliation(s)
- Jack Zhang
- Research and Development, Ventana Medical Systems, Inc., a Member of the Roche Group, Oro Valley, AZ 85755, USA
| | - Andy Babic
- Research and Development, Ventana Medical Systems, Inc., a Member of the Roche Group, Oro Valley, AZ 85755, USA
| |
Collapse
|
9
|
Tume L, Paco K, Ubidia-Incio R, Moya J. CD133 in breast cancer cells and in breast cancer stem cells as another target for immunotherapy. GACETA MEXICANA DE ONCOLOGÍA 2016. [DOI: 10.1016/j.gamo.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Zheng XT, Xiao XQ, Dai JJ. Sodium butyrate down-regulates tristetraprolin-mediated cyclin B1 expression independent of the formation of processing bodies. Int J Biochem Cell Biol 2015; 69:241-8. [PMID: 26555753 DOI: 10.1016/j.biocel.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/10/2015] [Accepted: 11/02/2015] [Indexed: 01/18/2023]
Abstract
Butyrate regulates multiple host cellular events including the cell cycle; however, little is known about the molecular mechanism by which butyrate induces a global down-regulation of the expression of genes associated with the cell cycle. Here, we demonstrate that treating HEK293T cells and the non-small-cell lung cancer cell line A549 with a high concentration of sodium butyrate reduces cyclin B1 expression. The underlying mechanism is related to the destabilization of its mRNA by tristetraprolin, which is up-regulated in response to sodium butyrate. Specifically, the sodium butyrate stimulation reduces the mRNA and protein expression of cyclin B1 and, conversely, upregulates tristetraprolin expression. Importantly, the overexpression of tristetraprolin in HEK293T decreases the mRNA and protein expression of cyclin B1; in contrast, knockdown of tristetraprolin mediated by small interfering RNA increases its expression in response to sodium butyrate treatment for both HEK293T and A549 cells. Furthermore, results from luciferase reporter assays and RNA immunoprecipitation indicate that sodium butyrate accelerates 3' UTR-dependent cyclin B1 decay by enhancing the binding of tristetraprolin to the 3' untranslated region of cyclin B1. Surprisingly, the overexpression of tristetraprolin prevents the formation of processing bodies, and the siRNA-mediated silencing of EDC4 does not restore the sodium butyrate-induced reduction of cyclin B1 expression. Thus, we confirm that NaBu regulates ZFP36-mediated cyclin B1 expression in a manner that is independent of the formation of P-bodies. The above findings disclose a novel mechanism of sodium butyrate-mediated gene expression regulation and might benefit its application in tumor treatment.
Collapse
Affiliation(s)
- Xiang-Tao Zheng
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiao-Qiang Xiao
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.
| | | |
Collapse
|
11
|
Lee D, Sung ES, Ahn JH, An S, Huh J, You WK. Development of antibody-based c-Met inhibitors for targeted cancer therapy. Immunotargets Ther 2015; 4:35-44. [PMID: 27471710 PMCID: PMC4918247 DOI: 10.2147/itt.s37409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Signaling pathways mediated by receptor tyrosine kinases (RTKs) and their ligands play important roles in the development and progression of human cancers, which makes RTK-mediated signaling pathways promising therapeutic targets in the treatment of cancer. Compared with small-molecule compounds, antibody-based therapeutics can more specifically recognize and bind to ligands and RTKs. Several antibody inhibitors of RTK-mediated signaling pathways, such as human epidermal growth factor receptor 2, vascular endothelial growth factor, epidermal growth factor receptor or vascular endothelial growth factor receptor 2, have been developed and are widely used to treat cancer patients. However, since the therapeutic options are still limited in terms of therapeutic efficacy and types of cancers that can be treated, efforts are being made to identify and evaluate novel RTK-mediated signaling pathways as targets for more efficacious cancer treatment. The hepatocyte growth factor/c-Met signaling pathway has come into the spotlight as a promising target for development of potent cancer therapeutic agents. Multiple antibody-based therapeutics targeting hepatocyte growth factor or c-Met are currently in preclinical or clinical development. This review focuses on the development of inhibitors of the hepatocyte growth factor/c-Met signaling pathway for cancer treatment, including critical issues in clinical development and future perspectives for antibody-based therapeutics.
Collapse
Affiliation(s)
- Dongheon Lee
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Eun-Sil Sung
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Jin-Hyung Ahn
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Sungwon An
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Jiwon Huh
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Weon-Kyoo You
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Gaule PB, Crown J, O'Donovan N, Duffy MJ. cMET in triple-negative breast cancer: is it a therapeutic target for this subset of breast cancer patients? Expert Opin Ther Targets 2014; 18:999-1009. [PMID: 25084805 DOI: 10.1517/14728222.2014.938050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The identification and validation of a targeted therapy for triple-negative breast cancer (TNBC) is currently one of the most urgent needs in breast cancer therapeutics. The cMET oncogene encodes a membrane-bound tyrosine kinase implicated in the formation and/or progression of several cancer types, including TNBC. Currently, inhibitors targeting cMET are undergoing clinical trials for a variety of cancers, including TNBC. These include anti-cMET and anti-hepatocyte growth factor (HGF) monoclonal antibodies and tyrosine kinase inhibitors. AREAS COVERED This article reviews the structure and mode of action of cMET, the role of cMET in cancer formation/development, with particular emphasis on its role in basal/TNBC and its potential as a therapeutic target for this subtype of breast cancer. EXPERT OPINION Due to cancer heterogeneity, it is unlikely that all TNBC patients will be responsive to anti-cMET drugs. Therefore, if cMET is to be used as a target for treatment, it will be important to identify predictive biomarkers to select, upfront, those patients likely to benefit. Potential predictive biomarkers for anti-cMET treatments in basal/TNBC include cMET, phospho-cMET, downstream signaling proteins or HGF. These putative predictive biomarkers should be evaluated in a large panel of basal/TNBC cell lines before incorporation into clinical trials involving anti-cMET drugs.
Collapse
Affiliation(s)
- Patricia B Gaule
- Dublin City University, National Institute for Cellular Biotechnology , Dublin 9 , Ireland +00353 1 7007497 ; +00353 1 7005484 ;
| | | | | | | |
Collapse
|
13
|
Chen HM, Lin YW, Wang JL, Kong X, Hong J, Fang JY. Identification of Potential Target Genes of Butyrate in Dimethylhydrazine-Induced Colorectal Cancer in Mice. Nutr Cancer 2013; 65:1171-83. [DOI: 10.1080/01635581.2013.828087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Chen C, Zimmermann M, Tinhofer I, Kaufmann AM, Albers AE. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett 2013; 338:47-56. [DOI: 10.1016/j.canlet.2012.06.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/11/2012] [Accepted: 06/27/2012] [Indexed: 12/19/2022]
|
15
|
Colorectal carcinogenesis: a cellular response to sustained risk environment. Int J Mol Sci 2013; 14:13525-41. [PMID: 23807509 PMCID: PMC3742201 DOI: 10.3390/ijms140713525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/07/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022] Open
Abstract
The current models for colorectal cancer (CRC) are essentially linear in nature with a sequential progression from adenoma through to carcinoma. However, these views of CRC development do not explain the full body of published knowledge and tend to discount environmental influences. This paper proposes that CRC is a cellular response to prolonged exposure to cytotoxic agents (e.g., free ammonia) as key events within a sustained high-risk colonic luminal environment. This environment is low in substrate for the colonocytes (short chain fatty acids, SCFA) and consequently of higher pH with higher levels of free ammonia and decreased mucosal oxygen supply as a result of lower visceral blood flow. All of these lead to greater and prolonged exposure of the colonic epithelium to a cytotoxic agent with diminished aerobic energy availability. Normal colonocytes faced with this unfavourable environment can transform into CRC cells for survival through epigenetic reprogramming to express genes which increase mobility to allow migration and proliferation. Recent data with high protein diets confirm that genetic damage can be increased, consistent with greater CRC risk. However, this damage can be reversed by increasing SCFA supply by feeding fermentable fibre as resistant starch or arabinoxylan. High protein, low carbohydrate diets have been shown to alter the colonic environment with lower butyrate levels and apparently greater mucosal exposure to ammonia, consistent with our hypothesis. Evidence is drawn from in vivo and in vitro genomic and biochemical studies to frame experiments to test this proposition.
Collapse
|
16
|
Chen X, Ding G, Gao Q, Sun J, Zhang Q, Du L, Qiu Z, Wang C, Zheng F, Sun B, Ni J, Feng Z, Zhu J. A human anti-c-Met Fab fragment conjugated with doxorubicin as targeted chemotherapy for hepatocellular carcinoma. PLoS One 2013; 8:e63093. [PMID: 23675455 PMCID: PMC3652865 DOI: 10.1371/journal.pone.0063093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/28/2013] [Indexed: 12/15/2022] Open
Abstract
c-Met is over-expressed in hepatocellular carcinoma(HCC) but is absent or expressed at low levels in normal tissues. Therefore we generated a novel conjugate of a human anti-c-Met Fab fragment (MetFab) with doxorubicin (DOX) and assessed whether it had targeted antitumor activity against HCC and reduced the side-effects of DOX. The MetFab was screened from human phage library, conjugated with DOX via chemical synthesis, and the conjugation MetFab-DOX was confirmed by HPLC. The drug release patterns, the binding efficacy, and cellular distribution of MetFab-DOX were assessed. MetFab-DOX was stable at pH7.2 PBS while release doxorubicin quickly at pH4.0, the binding efficacy of MetFab-DOX was similarly as MetFab, and the cellular distribution of the MetFab-DOX is distinct from free DOX. The cytotoxicity of MetFab-DOX was analyzed by the MTT method and the nude mouse HCC model. The MetFab-DOX demonstrated cytotoxic effects on c-Met expressing-tumor cells, but not on the cells without c-Met expression. MetFab-DOX exerted anti-tumor effect and significantly reduced the side effect of free DOX in mice model. Furthermore, the localization of conjugate was confirmed by immunofluorescence staining of tumor tissue sections and optical tumor imaging, respectively, and the tissue-distribution of drug was compared between free DOX and MetFab-DOX treatment by spectrofluorometer. MetFab-DOX can localize to the tumor tissue, and the concentration of doxorubicin in the tumor was higher after MetFab-DOX administration than after DOX administration. In summary, MetFab-DOX can target c-Met expressing HCC cells effectively and have obvious antitumor activity with decreased side-effects in preclinical models of HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Stability
- Gene Expression
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Hydrogen-Ion Concentration
- Immunoconjugates/chemistry
- Immunoconjugates/genetics
- Immunoconjugates/pharmacology
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Nude
- Molecular Targeted Therapy
- Peptide Library
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/immunology
Collapse
Affiliation(s)
- Ximin Chen
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Guipeng Ding
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Qihe Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Jian Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Qianqian Zhang
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Lijian Du
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Zhenning Qiu
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Changjun Wang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Feng Zheng
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Bowang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Jian Ni
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- * E-mail: (ZF); (JZ)
| | - Jin Zhu
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
- Huadong Medical Institute of Biotechniques, Nanjing, China
- * E-mail: (ZF); (JZ)
| |
Collapse
|
17
|
Wang HG, Huang XD, Shen P, Li LR, Xue HT, Ji GZ. Anticancer effects of sodium butyrate on hepatocellular carcinoma cells in vitro. Int J Mol Med 2013; 31:967-74. [PMID: 23440283 DOI: 10.3892/ijmm.2013.1285] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/28/2013] [Indexed: 11/05/2022] Open
Abstract
In the present study, we investigated the anticancer effects of sodium butyrate (NaBu) on hepatocellular carcinoma (HCC) cells in vitro. As a histone deacetylase (HDAC) inhibitor, NaBu upregulated Ac-H3 and inhibited HDAC4 protein expression in a time- and dose-dependent manner. MTT assays showed that treatment with NaBu at high concentrations significantly inhibited the growth of various HCC cells. Exposure to NaBu for 24 h induced cell cycle arrest in the SMMC-7721 and HepG2 cells. NaBu also induced the apoptosis of SMMC‑7721 cells. The expression levels of cell cycle- and apoptosis-related proteins were further investigated by western blot analysis using specific antibodies. The results provided a possible mechanism responsible for the inhibitory effects of NaBu on the growth of HCC cells. To further analyze the role of NaBu in cell migration, wound healing and Transwell assays were performed, indicating that NaBu significantly inhibits cell migration/invasion in HCC cells. Transforming growth factor-β1 (TGF-β1)-induced epithelial to mesenchymal transition (EMT) has been associated with tumor cell migration and invasion. The EMT markers, E-cadherin, vimentin and N-cadherin, were regulated by TGF-β1, while NaBu inhibited this process in which HDAC4 and matrix metalloproteinase (MMP)7 may be involved. Based on our findings, we propose that NaBu may be useful as an anticancer drug for HCC therapy.
Collapse
Affiliation(s)
- Hong-Gang Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China
| | | | | | | | | | | |
Collapse
|
18
|
KRC-408, a novel c-Met inhibitor, suppresses cell proliferation and angiogenesis of gastric cancer. Cancer Lett 2013; 332:74-82. [PMID: 23348694 DOI: 10.1016/j.canlet.2013.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/30/2022]
Abstract
Among many cancer therapeutic targets, c-Met receptor tyrosine kinase has recently given particular attention. This kinase and its ligand, hepatocyte growth factor (HGF), play a central role in cell proliferation and the survival of several human cancers. Thus, we developed KRC-408 as a novel c-Met inhibitor and investigated its anti-cancer effects on human gastric cancer. KRC-408 inhibited the phosphorylation of c-Met and its constitutive downstream effectors such as phosphatidylinositol 3-kinase (PI3K), Akt, Mek, and Erk. This compound was found to exert anti-cancer effects stronger than those of 5-fluorouracil (5-FU) on gastric cancer cells, especially cell lines that overexpressed c-Met. Interestingly, cytotoxicity of KRC-408 was lower than that of 5-FU in normal gastric cells. Apoptosis induced by KRC-408 was accompanied by increased levels of cleaved caspase-3 and PARP as well as DNA condensation and fragmentation. Flow cytometry analysis showed an accumulation of gastric cancer cells in the G2/M phase with concomitant loss of cells in the S phase following treatment with this drug. In the angiogenesis studies, KRC-408 inhibited tube formation and migration of human umbilical vein endothelial cells (HUVECs), and suppressed microvessel sprouting from rat aortic rings ex vivo along with blood vessel formation in a Matrigel plug assay in mice. Results of an in vivo mouse xenograft experiment showed that the administration of KRC-408 significantly delayed tumor growth in a dose-dependent manner, and suppressed Akt and Erk phosphorylation as well CD34 expression in tumor tissues. These findings indicate that KCR-408 may exert anti-tumor effects by directly affecting tumor cell growth or survival via the c-Met receptor tyrosine kinase pathway. We therefore suggest that KRC-408 is a novel therapeutic candidate effective against gastric cancers that overexpress c-Met.
Collapse
|