1
|
Reta MA, Said HM, Maningi NE, Wubetu GY, Agonafir M, Fourie PB. Genetic diversity of Mycobacterium tuberculosis strains isolated from spiritual holy water site attendees in Northwest Ethiopia. A cross-sectional study. New Microbes New Infect 2024; 59:101235. [PMID: 38590765 PMCID: PMC11000200 DOI: 10.1016/j.nmni.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Background The genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains was characterized among isolates from individuals with pulmonary tuberculosis (PTB) symptoms attended holy water sites (HWSs) in the Amhara region, Ethiopia. Methods A cross-sectional study was done from June 2019 to March 2020 to describe the genetic diversity and drug-resistance profiles of MTBC isolates. Sputum specimens were collected and cultured in the Löwenstein-Jensen culture medium. Line Probe Assay, MTBDRplus VER 2.0, and MTBDRsl VER 2.0 were used to detect first-and second-line anti-TB drug-resistance patterns. A spoligotyping technique was utilized to characterize the genetic diversity. Statistical analysis was performed using STATA 15. Results Of 560 PTB-symptomatic participants, 122 (21.8%) were culture-positive cases. Spoligotyping of 116 isolates revealed diverse MTBC sublineages, with four major lineages: Euro-American (EA) (Lineage 4), East-African-Indian (EAI) (Lineage 3), Ethiopian (ETH) (Lineage 7), East Asian (EA) (Lineage 2). The majority (96.6%) of the isolates were EA (lineage 4) and EAI, with proportions of 54.3% and 42.2%, respectively. A total of 31 spoligotype patterns were identified, 26 of which were documented in the SITVIT2 database. Of these, there were 15 unique spoligotypes, while eleven were grouped with 2-17 isolates. SIT149/T3-ETH (n = 17), SIT26/CAS1-DELHI (n = 16), SIT25/CAS1-DELHI (n = 12), and SIT52/T2 (n = 11) spoligotypes were predominant. A rare spoligotype pattern: SIT41/Turkey and SIT1/Beijing, has also been identified in North Shewa. The overall clustering rate of sub-lineages with known SIT was 76.4%.Of the 122 culture-positive isolates tested, 16.4% were resistant to rifampicin (RIF) and/or isoniazid (INH). Multidrug-resistant TB (MDR-TB) was detected in 12.3% of isolates, five of which were fluoroquinolones (FLQs) resistant. SIT149/T3-ETH and SIT21/CAS1-KILI sublineages showed a higher proportion of drug resistance. Conclusions Diverse MTBC spoligotypes were identified, with the T and CAS families and EA (lineage 4) predominating. A high prevalence of drug-resistant TB, with SIT149/T3-ETH and CAS1-KILI sublineages comprising a greater share, was observed. A study with large sample size and a sequencing method with stronger discriminatory power is warranted to understand better the genetic diversity of circulating MTBC in this cohort of study, which would help to adopt targeted interventions.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Halima M. Said
- National Institute for Communicable Diseases (NICD), Centre for Tuberculosis, Johannesburg, South Africa
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban, South Africa
| | - Gizachew Yismaw Wubetu
- Amhara Public Health Institute (APHI), Bahir Dar, Ethiopia
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Ferdosnejad K, Sholeh M, Abdolhamidi R, Soroush E, Siadat SD, Tarashi S. The occurrence rate of Haarlem and Beijing genotypes among Middle Eastern isolates of multi drug resistant Mycobacterium tuberculosis: A systematic review and meta-analysis. Respir Investig 2024; 62:296-304. [PMID: 38295613 DOI: 10.1016/j.resinv.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Antibiotic resistance is a serious problem that poses a major challenge to tuberculosis control worldwide. Many developing countries still struggle with this infection in term of various aspects as it remains a major health concern. A number of developing countries are located in the Middle East, one of the world's most important regions. The control of this infection remains largely suboptimal despite intensive research in the field, and the mechanisms that lead to its progression have not yet been fully understood. Therefore, TB control must be amended through the identification of new strategies. For this reason, monitoring genetic characterizations of TB strains by molecular typing methods in different geographical regions can be important to setting local programs and global strategies to control TB infection. It is important to know the genotype of Mycobacterium tuberculosis strains to evaluate the occurrence of outbreaks and the transmission of this disease. Beijing and Haarlem genotypes are the most prevalent and, in these families, there is greater association with drug resistance, resulting in more severe forms of TB and higher levels of treatment failure than in other families. The current study is planned to systematically conduct a review using a meta-analysis to show the prevalence of Beijing and Haarlem genotypes in the Middle Eastern MDR-TB cases. M. tuberculosis strains pose particular epidemiological and clinical concerns as they can endanger tuberculosis control programs.
Collapse
Affiliation(s)
| | - Mohammad Sholeh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Bacteriology, Pasture Institute of Iran, Tehran, Iran
| | | | - Erfan Soroush
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Agonafir M, Belay G, Maningi NE, Feleke A, Reta MA, Olifant SL, Hassen MS, Girma T, Fourie PB. Genetic diversity of Mycobacterium tuberculosis isolates from the central, eastern and southeastern Ethiopia. Heliyon 2023; 9:e22898. [PMID: 38125463 PMCID: PMC10731068 DOI: 10.1016/j.heliyon.2023.e22898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The population structure of Mycobacterium tuberculosis complex (MTBC) in Ethiopia is diverse but dominated by Euro-American (Lineage 4) and East-African-Indian (Lineage 3) lineages. The objective of this study was to describe the genetic diversity of MTBC isolates in Central, Eastern and Southeastern Ethiopia. Methods A total of 223 MTBC culture isolates obtained from patients referred to Adama and Harar TB reference laboratories were spoligotyped. Demographic and clinical characteristics were collected. Results Six major lineages: Euro-American (Lineage 4), East-African-Indian (Lineage 3), East Asian (Lineage 2), Indo-Oceanic (Lineage 1), Mycobacterium africanum (Lineage 5 and Lineage 6) and Ethiopian (Lineage 7) were identified. The majority (94.6 %) of the isolates were Euro-American and East-African-Indian, with proportions of 75.3 % and 19.3 %, respectively. Overall, 77 different spoligotype patterns were identified of which 42 were registered in the SITVIT2 database. Of these, 27 spoligotypes were unique, while 15 were clustered with 2-49 isolates. SIT149/T3_ETH (n = 49), SIT53/T1 (n = 33), SIT21/CAS1_Kili (n = 24) and SIT41/Turkey (n = 11) were the dominant spoligotypes. A rare Beijing spoligotype pattern, SIT541, has also been identified in Eastern Ethiopia. The overall clustering rate of sub-lineages with known SIT was 71.3 %. Age group (25-34) was significantly associated with clustering. Conclusion We found a heterogeneous population structure of MTBC dominated by T and CAS families, and the Euro-American lineage. The identification of the Beijing strain, particularly the rare SIT541 spoligotype in Eastern Ethiopia, warrants a heightened surveillance plan, as little is known about this genotype. A large-scale investigation utilizing a tool with superior discriminatory power, such as whole genome sequencing, is necessary to gain a thorough understanding of the genetic diversity of MTBC in the nation, which would help direct the overall control efforts.
Collapse
Affiliation(s)
- Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Nontuthuko E. Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adey Feleke
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Sharon L. Olifant
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Tewodros Girma
- Harar Health Research and Regional Laboratory, Harar, Ethiopia
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Shibabaw A, Gelaw B, Ghanem M, Legall N, Schooley AM, Soehnlen MK, Salvador LCM, Gebreyes W, Wang SH, Tessema B. Molecular epidemiology and transmission dynamics of multi-drug resistant tuberculosis strains using whole genome sequencing in the Amhara region, Ethiopia. BMC Genomics 2023; 24:400. [PMID: 37460951 DOI: 10.1186/s12864-023-09502-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Drug resistant Mycobacterium tuberculosis prevention and care is a major challenge in Ethiopia. The World health organization has designated Ethiopia as one of the 30 high burden multi-drug resistant tuberculosis (MDR-TB) countries. There is limited information regarding genetic diversity and transmission dynamics of MDR-TB in Ethiopia. OBJECTIVE To investigate the molecular epidemiology and transmission dynamics of MDR-TB strains using whole genome sequence (WGS) in the Amhara region. METHODS Forty-five MDR-TB clinical isolates from Amhara region were collected between 2016 and 2018, and characterized using WGS and 24-loci Mycobacterium Interspersed Repetitive Units Variable Number of Tandem Repeats (MIRU-VNTR) typing. Clusters were defined based on the maximum distance of 12 single nucleotide polymorphisms (SNPs) or alleles as the upper threshold of genomic relatedness. Five or less SNPs or alleles distance or identical 24-loci VNTR typing is denoted as surrogate marker for recent transmission. RESULTS Forty-one of the 45 isolates were analyzed by WGS and 44% (18/41) of the isolates were distributed into 4 clusters. Of the 41 MDR-TB isolates, 58.5% were classified as lineage 4, 36.5% lineage 3 and 5% lineage 1. Overall, TUR genotype (54%) was the predominant in MDR-TB strains. 41% (17/41) of the isolates were clustered into four WGS groups and the remaining isolates were unique strains. The predominant cluster (Cluster 1) was composed of nine isolates belonging to lineage 4 and of these, four isolates were in the recent transmission links. CONCLUSIONS Majority of MDR-TB strain cluster and predominance of TUR lineage in the Amhara region give rise to concerns for possible ongoing transmission. Efforts to strengthen TB laboratory to advance diagnosis, intensified active case finding, and expanded contact tracing activities are needed in order to improve rapid diagnosis and initiate early treatment. This would lead to the interruption of the transmission chain and stop the spread of MDR-TB in the Amhara region.
Collapse
Affiliation(s)
- Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA.
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA.
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| | - Baye Gelaw
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Noah Legall
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Angie M Schooley
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA
| | - Marty K Soehnlen
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA
| | - Liliana C M Salvador
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and life sciences, University of Arizona, Tucson, AZ, USA
| | - Wondwossen Gebreyes
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Shu-Hua Wang
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Belay Tessema
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
AYDIN E, TARHAN G, ŞAHİN F, EREN S. Molecular epidemiological typing of M. tuberculosis isolates isolated from Turkey's Eastern Anatolia with in house PCR method. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.997873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Panaiotov S, Madzharov D, Hodzhev Y. Biodiversity of Mycobacterium tuberculosis in Bulgaria Related to Human Migrations or Ecological Adaptation. Microorganisms 2022; 10:microorganisms10010146. [PMID: 35056596 PMCID: PMC8778017 DOI: 10.3390/microorganisms10010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Bulgaria is among the 18 high-priority countries of the WHO European Region with high rates of tuberculosis. The causative agent of tuberculosis is thought to have emerged in Africa 70,000 years ago, or during the Neolithic age, and colonized the world through human migrations. The established main lineages of tuberculosis correlate highly with geography. The goal of our study was to investigate the biodiversity of Mycobacteriumtuberculosis in Bulgaria in association with human migration history during the last 10 centuries. We analyzed spoligotypes and MIRU-VNTR genotyping data of 655 drug-sensitive and 385 multidrug-resistant M. tuberculosis strains collected in Bulgaria from 2008 to 2018. We assigned the genotype of all isolates using SITVITWEB and MIRU-VNTRplus databases and software. We investigated the major well-documented historical events of immigration to Bulgaria that occurred during the last millennium. Genetic profiles demonstrated that, with the exceptions of 3 strains of Mycobacterium bovis and 18 strains of Lineage 2 (W/Beijing spoligotype), only Lineage 4 (Euro-American) was widely diffused in Bulgaria. Analysis of well-documented immigrations of Roma from the Indian subcontinent during the 10th to the 12th centuries, Turkic peoples from Central Asia in the medieval centuries, and more recently Armenians, Russians, and Africans in the 20th century influenced the biodiversity of M. tuberculosis in Bulgaria but only with genotypes of sublineages within the L4. We hypothesize that these sublineages were more virulent, or that ecological adaptation of imported M. tuberculosis genotypes was the main driver contributing to the current genetic biodiversity of M. tuberculosis in Bulgaria. We also hypothesize that some yet unknown local environmental factors may have been decisive in the success of imported genotypes. The ecological factors leading to local genetic biodiversity in M. tuberculosis are multifactorial and have not yet been fully clarified. The coevolution of long-lasting pathogen hosts should be studied, taking into account environmental and ecological changes.
Collapse
Affiliation(s)
- Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-887-720-061
| | | | - Yordan Hodzhev
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
| |
Collapse
|
7
|
Asgharzadeh M, Rashedi J, Poor BM, Kafil HS, Zadeh HM, Ahmadpour E. How Molecular Epidemiology Can Affect Tuberculosis Control in the Middle East Countries: A Systematic Review and Meta-Analysis. Infect Disord Drug Targets 2021; 21:28-37. [PMID: 31903887 DOI: 10.2174/1871526520666200106123619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nowadays, due to the incidence of specific strains of Mycobacterium tuberculosis and also an increase in the rate of drug resistant-TB, the mortality rate has been increased by this disease. The identification of common strains in the region, as well as the sources of transmission, is essential to control the disease, which is possible by using molecular epidemiology. OBJECTIVES In this survey, the studies utilizing the spoligotyping method in Muslim Middle East countries are reviewed to determine their role in the control of TB. METHODS All studies conducted from 2005 to June 2016 were considered systematically in three electronic databases out of which 23 studies were finally selected. RESULTS The average rate of clustering was 84% and the rate of recent transmission varied from 21.7% to 92.4%. The incidence of Beijing strains has been found to be rising in the abovementioned countries. In Iran and Saudi Arabia known as immigration and labour-hosting countries, respectively, rapid transmittable and drug-resistant Beijing strains were higher than those in other Muslim Middle East countries. CONCLUSION Considering the incidence of highly virulent strains, due to the increase in immigration and people infected with HIV, tuberculosis, especially drug-resistant form, careful monitoring is needed.
Collapse
Affiliation(s)
- Mohammad Asgharzadeh
- Biotechnology Research Center, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Rashedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behroz Mahdavi Poor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Moharram Zadeh
- Women's Reproduction Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Department of Medical Parasitology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Molecular typing of drug-resistant Mycobacterium tuberculosis strains from Turkey. J Glob Antimicrob Resist 2020; 23:130-134. [PMID: 32956873 DOI: 10.1016/j.jgar.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Appropriate antibiotic therapy and prevention of cross-contamination are the most important subjects in tuberculosis (TB) control. The aim of this study was to investigate the major phylogenetic clades and transmission rate of multidrug-resistant (MDR) Mycobacterium tuberculosis isolates (n = 200) from patients with TB in Sivas and Konya Provinces of Turkey. METHODS The phylogenetic relationship among the isolates was investigated by spoligotyping method. In addition, the 24-locus mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing method was used to reveal cross-contamination. RESULTS Spoligotyping revealed 13 different spoligotypes. A total of 188 strains (94.0%) were included in the cluster. The most prominent spoligofamily was the T family (43.0% of strains), followed by LAM (26.0%), H (8.0%), X and S (both 6.0%) and U (5.0%). Also, 12 strains (6.0%) belonged to the Beijing profile. MIRU-VNTR results showed 176 (88.0%) different genotypes among the isolates. In total, 24 strains (12.0%) were in the cluster. CONCLUSIONS According to spoligotyping, there is a heterogeneous M. tuberculosis population in Turkey. MIRU-VNTR results showed that cross-contamination observed between MDR M. tuberculosis isolates in Turkey is controllable.
Collapse
|
9
|
Ismail S, Al Amry K, Aggor G, El Naggar H, Selim S. Spoligotyping with pncA sequencing strategy conferring the transmission of multidrug-resistant tuberculosis in Egypt. Int J Mycobacteriol 2020; 8:211-217. [PMID: 31512595 DOI: 10.4103/ijmy.ijmy_111_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background This study explored the genetic diversity of Mycobacterium tuberculosis isolates in Egypt by spoligotyping in combination with pncA gene sequencing, spoNC. Methods First, isolates were selected from 400 isolates positive for M. tuberculosis that referred to Central Labs Ministry of Health and then were subjected to the study analyses. Results Twenty one isolates were found to be multidrug resistant (MDR) and 29 isolates were sensitive for isonizide (INH) and rifampicine (RIF) after testing by phenotypic drug susceptibility testing (DST) and Mycobacteria Growth Indicator Tube (MGIT). Spoligotyping yielded 45 patterns belonging to seven families that previously reported in neighboring countries such as Iraq, Syria, Iran, and Turkey. While four isolates were orphans. Conclusion Application of spoNC on obtained spoligotype patterns enhances to reduce the clustering rate. Bejing family the predominant (34%) were subdivided by pncA sequence into three sensitive DST pncA wild type, three MDR-DST isolates showing cys14Arg mutation in pncA, two sensitive DST isolates with pncA Gly97Asp mutation, and three sensitive DST pncAVal128Gly mutation. The next most common CASI_DELHI family (16%) were subdivided by pncA sequencing into CASI_DELHI (st 381, MDR) including two pncA silent mutation ser65ser (tcc > tct) and CASI_DELHI (st26, sensitive) which included six pncA (wild-type) results, and Latin-American-Mediterranean 6 family (6%) all had PncA Gly97Asp mutation. We concluded that spoNC provides good snap shot for MDR surveillance and its country origin and performs early identification of outbreaks in Egypt.
Collapse
Affiliation(s)
- Suzan Ismail
- Department of Biotechnology, Animal Health Research Institute, Giza, Egypt
| | - Khaled Al Amry
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Galal Aggor
- Department of Biotechnology, Animal Health Research Institute, Giza, Egypt
| | - Hoida El Naggar
- Mycobacteriology Unit, Central Labs of Ministry of Health and Population, Cairo, Egypt
| | - Salah Selim
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Muvunyi CM, Ngabonziza JCS, Uwimana I, Harelimana JDD, Mucyo Y, Sebatunzi OR, Muvunyi TZ, Seruyange E, Masaisa F, Mazarati JB, Gasana M. Highly successful treatment outcome of multidrug-resistant and genetic diversity of multidrug-resistant Mycobacterium tuberculosis strains in Rwanda. Trop Med Int Health 2019; 24:879-887. [PMID: 31066112 DOI: 10.1111/tmi.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine prevalent MDR-TB genotypes and describe treatment outcome and bacteriology conversion in MDR-TB patients. METHODS Review of laboratory records of 173 MDR-TB patients from all over Rwanda who initiated treatment under programmatic management of MDR-TB (PMDT) between 2014 and 2015. Fifty available archived isolates were genotyped by mycobacterial interspersed repetitive units - variable number of tandem repeats (MIRU-VNTR) genotyping. RESULT Of the 170 patients whose outcome was known, 114 (66.3%) were cured and 36 (21%) completed the treatment, giving a successful outcome (cured and completed) of 150 (87.3%) patients. Of 20 MDR-TB patients with unfavourable treatment outcome, 18 died, one failed and one defaulted/stopped treatment. Of the 18 patients who died, 11 (61%) were HIV-coinfected. The treatment outcome was successful for 93.9% among HIV negative and 81.8% among HIV-coinfected patients (P = 0.02). Sputum smear conversion occurred in 3, 46, 57 and 78 patients before 2, 3, 4 and 6 months, respectively, with median time of sputum smear and culture conversion at 3 months. The 44 MDR-TB isolates with MIRU-VNTR result, showed high genetic diversity with low clustering rate (9.09%) and Uganda II being the most prevalent sub-family lineage detected in 68.2% of isolates. Beijing family was the least common genotype detected (2.3%, 1 isolate). CONCLUSION The high success rates for MDR-TB treatment achieved in Rwanda were comparable to outcomes observed in resource-rich settings with HIV being an independent risk factor for poor treatment outcome. High genetic diversity and low clustering rate reported here suggest that reactivation of previous disease plays an important role in the transmission of MDR-TB in Rwanda.
Collapse
Affiliation(s)
- Claude Mambo Muvunyi
- Department of Clinical Biology, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | | | - Innocent Uwimana
- National Reference Laboratory Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Jean De Dieu Harelimana
- Department of Biomedical Laboratory Science, School of Health Science, University of Rwanda, Kigali, Rwanda
| | - Yves Mucyo
- Tuberculosis and Other Respiratory Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Osee Rurambya Sebatunzi
- Department of Internal Medicine, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | | | - Eric Seruyange
- Department of Internal Medicine, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Florence Masaisa
- Department of Clinical Biology, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda.,Department of Internal Medicine, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | | | - Michel Gasana
- Tuberculosis and Other Respiratory Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| |
Collapse
|
11
|
Feyisa SG, Abdurahman AA, Jimma W, Chaka EE, Kardan-Yamchi J, Kazemian H. Resistance of Mycobacterium tuberculosis strains to Rifampicin: A systematic review and meta-analysis. Heliyon 2019; 5:e01081. [PMID: 30619960 PMCID: PMC6314001 DOI: 10.1016/j.heliyon.2018.e01081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 12/01/2022] Open
Abstract
Introduction Antitubercular drug resistance strain is a horrifying barrier to effective TB treatment and prevention. The present study aimed to determine the prevalence and geographical distribution of rifampicin-resistance M. tuberculosis (MTB) strains. Methods We searched two electronic databases, PubMed and EMBASE, until 26 March 2017 and updated our search on 27 April 2018 and accessed all prevalence studies of MTB strain and their drug susceptibility patterns to rifampicin. The pooled prevalence estimate was determined using random effects model. Results We identified 23 studies satisfying the inclusion criteria. The proportion of rifampicin resistance strains was diverged depending on the type of strains, country and Regions. The pooled estimate of rifampicin-resistance strains of MTB for the included studies was 4% (95% CI: 3–5%). In subgroup analysis based on World Health Organization (WHO) Regions, the pooled estimate of rifampicin-resistance strains of MTB was 11% (95% CI: 9–13%) with the Western Pacific Region 24%, Europian Region 10%, South-East Asian Region 6%, African Region 3% and Region of American 1%. Beijing family was the most dominant strain resistance to rifampicin with pooled prevalence of 14% (95% CI: 10–18%). The pooled prevalence of other families, i.e. EAI, T, CAS, MANU, Haarlem, LAM and Ural, was ≤2% for each. Conclusion High burden of rifampicin resistance MTB strains was identified in the Western Pacific Region. Of these, Beijing family was predominantly resistance to rifampicin in Western Pacific Region and South-East Asian Region and also spread to European Region and Region of American.
Collapse
Affiliation(s)
- Seifu Gizaw Feyisa
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biology, College of Natural Sciences, Jimma University, Ethiopia
| | - Ahmed Abdulahi Abdurahman
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Worku Jimma
- Department of Health Information Management, School of School of Allied Medical Sciences, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Information Science, Jimma Institute of Technology, Jimma University, Ethiopia
| | - Eshetu Ejeta Chaka
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Public Health, College of Medical and Health Sciences, Ambo University, Ethiopia
| | - Jalil Kardan-Yamchi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Couvin D, David A, Zozio T, Rastogi N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. INFECTION GENETICS AND EVOLUTION 2018; 72:31-43. [PMID: 30593925 DOI: 10.1016/j.meegid.2018.12.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 02/01/2023]
Abstract
In order to provide a global overview of genotypic, epidemiologic, demographic, phylogeographical, and drug resistance characteristics related to the prevailing tuberculosis (TB) epidemic, we hereby report an update of the 6th version of the international genotyping database SITVIT2. We also make all the available information accessible through a dedicated website (available at http://www.pasteur-guadeloupe.fr:8081/SITVIT2). Thanks to the public release of SITVIT2 which is currently the largest international multimarker genotyping database with a compilation of 111,635 clinical isolates from 169 countries of patient origin (131 countries of isolation, representing 1032 cities), our major aim is to highlight macro- and micro-geographical cleavages and phylogeographical specificities of circulating Mycobacterium tuberculosis complex (MTBC) clones worldwide. For this purpose, we retained strains typed by the most commonly used PCR-based methodology for TB genotyping, i.e., spoligotyping based on the polymorphism of the direct repeat (DR) locus, 5-loci Exact Tandem Repeats (ETRs), and MIRU-VNTR minisatellites used in 12-, 15-, or 24-loci formats. We describe the SITVIT2 database and integrated online applications that permit to interrogate the database using easy drop-down menus to draw maps, graphics and tables versus a long list of parameters and variables available for individual clinical isolates (year and place of isolation, origin, sex, and age of patient, drug-resistance, etc.). Available tools further allow to generate phylogenetical snapshot of circulating strains as Lineage-specific WebLogos, as well as minimum spanning trees of their genotypes in conjunction with their geographical distribution, drug-resistance, demographic, and epidemiologic characteristics instantaneously; whereas online statistical analyses let a user to pinpoint phylogeographical specificities of circulating MTBC lineages and conclude on actual demographic trends. Available associated information on gender (n = 18,944), age (n = 16,968), drug resistance (n = 19,606), and HIV serology (n = 2673), allowed to draw some important conclusions on TB geo-epidemiology; e.g. a positive correlation exists between certain Mycobacterium tuberculosis lineages (such as CAS and Beijing) and drug resistance (p-value<.001), while other lineages (such as LAM, X, and BOV) are more frequently associated with HIV-positive serology (p-value<.001). Besides, availability of information on the year of isolation of strains (range 1759-2012), also allowed to make tentative correlations between drug resistance information and lineages - portraying probable evolution trends over time and space. To conclude, the present approach of geographical mapping of predominant clinical isolates of tubercle bacilli causing the bulk of the disease both at country and regional level in conjunction with epidemiologic and demographic characteristics allows to shed new light on TB geo-epidemiology in relation with the continued waves of peopling and human migration.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France.
| | - Audrey David
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Thierry Zozio
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France.
| |
Collapse
|
13
|
Mycobacterium tuberculosis genotypes and predominant clones among the multidrug-resistant isolates in Spain 1998-2005. INFECTION GENETICS AND EVOLUTION 2017; 55:117-126. [PMID: 28789982 DOI: 10.1016/j.meegid.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 11/23/2022]
Abstract
Although the incidence of tuberculosis (TB) is gradually decreasing in Spain, there is an increase in the proportion of foreign-born cases. This changing scenario is slowly shifting the local TB epidemiology from endemic to imported cases with an increased risk for multidrug-resistant (MDR) and extensively drug resistant (XDR) strains of Mycobacterium tuberculosis complex. MDR/XDR strains from Spain (n=366 MTBC isolates, 1 strain per patient) isolated between 1998 and 2005 were retained for this retrospective analysis. All strains were analyzed by spoligotyping, while 12-loci MIRU-VNTR data were available for 106 isolates from 2003 to 2005. Demographic, phylogenetic, and epidemiologic analyses using anonymized data were collected and analyzed using the SITVIT2 database. Our study provides with a first snapshot of genetic diversity of MDR/XDR-TB in several autonomous regions of Spain. It highlights significantly more of SIT1/Beijing and SIT66/BOV MDR isolates (5.7% and 7.38% respectively) and increasingly more foreign-born cases from Eastern Europe. Future studies should focus on shared genotypes between Spanish and foreign-born patients to decipher the modes of transmission and risk factors involved, and decipher the proportion of imported cases of active disease versus cases of reactivation of latent TB infection among foreign-born individuals.
Collapse
|
14
|
Comparative study of genotypes of Mycobacterium tuberculosis from a Northern Indian setting with strains reported from other parts of India and neighboring countries. Tuberculosis (Edinb) 2017; 105:60-72. [DOI: 10.1016/j.tube.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 01/11/2023]
|
15
|
Panwalkar N, Chauhan DS, Desikan P. Spoligotype defined lineages of Mycobacterium tuberculosis and drug resistance: Merely a casual correlation? Indian J Med Microbiol 2017; 35:27-32. [PMID: 28303814 DOI: 10.4103/0255-0857.202327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Drug-resistant tuberculosis (TB) is a major challenge to TB control strategy worldwide. Analysis of genetic polymorphism among drug resistant Mycobacterium tuberculosis (MTB) strains may help provide some insight into the transmission dynamics of these strains. Spoligotyping is a widely used technique to identify genetic polymorphism, based on 43 known spacers interspersed between direct repeat regions. Considerable work has been done in various parts of the world using this technique to identify and analyse the polymorphic nature of MTB. Many studies have been carried out to determine the association of drug resistance with spoligotype defined lineages, and much data has been produced over the years. New information continues to be generated. This review aims to put together the findings of relevant studies in an attempt to understand the correlation of drug resistance with spoligotype defined lineages of MTB. This would help provide a perspective of the available data that can be used as a starting point to understand the molecular epidemiology of drug resistant TB.
Collapse
Affiliation(s)
- Nikita Panwalkar
- Department of Microbiology and NRL, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| | - Devendra S Chauhan
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Indian Council of Medical Research, Agra, Uttar Pradesh, India
| | - Prabha Desikan
- Department of Microbiology and NRL, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| |
Collapse
|
16
|
Ndungu PW, Kariuki S, Revathi G, Ng’ang’a Z, Niemann S. Mycobacteria Interspersed Repetitive Units-Variable Number of Tandem Repeat, Spoligotyping and Drug Resistance of Isolates from Pulmonary Tuberculosois Patients in Kenya. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/aim.2017.73017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
18
|
Refrégier G, Abadia E, Matsumoto T, Ano H, Takashima T, Tsuyuguchi I, Aktas E, Cömert F, Gomgnimbou MK, Panaiotov S, Phelan J, Coll F, McNerney R, Pain A, Clark TG, Sola C. Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor. INFECTION GENETICS AND EVOLUTION 2016; 45:461-473. [PMID: 27746295 DOI: 10.1016/j.meegid.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
Two geographically distant M. tuberculosis sublineages, Tur from Turkey and T3-Osaka from Japan, exhibit partially identical genotypic signatures (identical 12-loci MIRU-VNTR profiles, distinct spoligotyping patterns). We investigated T3-Osaka and Tur sublineages characteristics and potential genetic relatedness, first using MIRU-VNTR locus analysis on 21 and 25 samples of each sublineage respectively, and second comparing Whole Genome Sequences of 8 new samples to public data from 45 samples uncovering human tuberculosis diversity. We then tried to date their Most Recent Common Ancestor (MRCA) using three calibrations of SNP accumulation rate (long-term=0.03SNP/genome/year, derived from a tuberculosis ancestor of around 70,000years old; intermediate=0.2SNP/genome/year derived from a Peruvian mummy; short-term=0.5SNP/genome/year). To disentangle between these scenarios, we confronted the corresponding divergence times with major human history events and knowledge on human genetic divergence. We identified relatively high intrasublineage diversity for both T3-Osaka and Tur. We definitively proved their monophyly; the corresponding super-sublineage (referred to as "T3-Osa-Tur") shares a common ancestor with T3-Ethiopia and Ural sublineages but is only remotely related to other Euro-American sublineages such as X, LAM, Haarlem and S. The evolutionary scenario based on long-term evolution rate being valid until T3-Osa-Tur MRCA was not supported by Japanese fossil data. The evolutionary scenario relying on short-term evolution rate since T3-Osa-Tur MRCA was contradicted by human history and potential traces of past epidemics. T3-Osaka and Tur sublineages were found likely to have diverged between 800y and 2000years ago, potentially at the time of Mongol Empire. Altogether, this study definitively proves a strong genetic link between Turkish and Japanese tuberculosis. It provides a first hypothesis for calibrating TB Euro-American lineage molecular clock; additional studies are needed to reliably date events corresponding to intermediate depths in tuberculosis phylogeny.
Collapse
Affiliation(s)
- Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Edgar Abadia
- Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Tomoshige Matsumoto
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Hiromi Ano
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Tetsuya Takashima
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Izuo Tsuyuguchi
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Elif Aktas
- Şişli Etfal Research and Training Hopital, Istanbul, Turkey
| | - Füsun Cömert
- Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| | - Michel Kireopori Gomgnimbou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Stefan Panaiotov
- National Center of Parasitic and Infectious Diseases, Sofia, Bulgaria
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Old Main Building, Groote Schuur Hospital, Cape Town,South Africa
| | - Arnab Pain
- Pathogen Genomics Group, Biological, Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
19
|
Combined Genotypic, Phylogenetic, and Epidemiologic Analyses of Mycobacterium tuberculosis Genetic Diversity in the Rhône Alpes Region, France. PLoS One 2016; 11:e0153580. [PMID: 27128522 PMCID: PMC4851328 DOI: 10.1371/journal.pone.0153580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The present work relates to identification and a deep molecular characterization of circulating Mycobacterium tuberculosis complex (MTBC) strains in the Rhône-Alpes region, France from 2000 to 2010. It aimed to provide with a first snapshot of MTBC genetic diversity in conjunction with bacterial drug resistance, type of disease and available demographic and epidemiologic characteristics over an eleven-year period, in the south-east of France. METHODS Mycobacterium tuberculosis complex (MTBC) strains isolated in the Rhône-Alpes region, France (n = 2257, 1 isolate per patient) between 2000 and 2010 were analyzed by spoligotyping. MIRU-VNTR typing was applied on n = 1698 strains (with full results available for 974 strains). The data obtained were compared with the SITVIT2 database, followed by detailed genotyping, phylogenetic, and epidemiologic analyses in correlation with anonymized data on available demographic, and epidemiologic characteristics, and location of disease (pulmonary or extrapulmonary TB). RESULTS The most predominant spoligotyping clusters were SIT53/T1 (n = 346, 15.3%) > SIT50/H3 (n = 166, 7.35%) > SIT42/LAM9 (n = 125, 5.5%) > SIT1/Beijing (n = 72, 3.2%) > SIT47/H1 (n = 71, 3.1%). Evolutionary-recent strains belonging to the Principal Genetic Group (PGG) 2/3, or Euro-American lineages (T, LAM, Haarlem, X, S) were predominant and represented 1768 or 78.33% of all isolates. For strains having drug resistance information (n = 1119), any drug resistance accounted for 14.83% cases vs. 1.52% for multidrug resistance (MDR); and was significantly more associated with age group 21-40 years (p-value<0.001). Extra-pulmonary TB was more common among female patients while pulmonary TB predominated among men (p-value<0.001; OR = 2.16 95%CI [1.69; 2.77]). Also, BOV and CAS lineages were significantly well represented in patients affected by extra-pulmonary TB (p-value<0.001). The origin was known for 927/2257 patients: 376 (40.6%) being French-born vs. 551 (59.4%) Foreign-born. French patients were significantly older (mean age: 58.42 yrs 95%CI [56.04; 60.80]) than Foreign-born patients (mean age: 42.38 yrs. 95%CI [40.75; 44.0]). CONCLUSION The study underlined the importance of imported TB cases on the genetic diversity and epidemiologic characteristics of circulating MTBC strains in Rhône-Alpes region, France over a large time-period. It helps better understand intricate relationships between certain lineages and geographic origin of the patients, and pinpoints genotypic and phylogenetic specificities of prevailing MTBC strains. Lastly, it also demonstrated a slow decline in isolation of M. africanum lineage in this region between 2000 and 2010.
Collapse
|
20
|
Devi KR, Bhutia R, Bhowmick S, Mukherjee K, Mahanta J, Narain K. Genetic Diversity of Mycobacterium tuberculosis Isolates from Assam, India: Dominance of Beijing Family and Discovery of Two New Clades Related to CAS1_Delhi and EAI Family Based on Spoligotyping and MIRU-VNTR Typing. PLoS One 2015; 10:e0145860. [PMID: 26701129 PMCID: PMC4689458 DOI: 10.1371/journal.pone.0145860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022] Open
Abstract
Tuberculosis (TB) is one of the major public health concerns in Assam, a remote state located in the northeastern (NE) region of India. The present study was undertaken to explore the circulating genotypes of Mycobacterium tuberculosis complex (MTBC) in this region. A total of 189 MTBC strains were collected from smear positive pulmonary tuberculosis cases from different designated microscopy centres (DMC) from various localities of Assam. All MTBC isolates were cultured on Lowenstein-Jensen (LJ) media and subsequently genotyped using spoligotyping and 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing. Spoligotyping of MTBC isolates revealed 89 distinct spoligo patterns. The most dominant MTBC strain belonged to Beijing lineage and was represented by 35.45% (n = 67) of total isolates, followed by MTBC strains belonging to Central Asian-Delhi (CAS/Delhi) lineage and East African Indian (EAI5) lineage. In addition, in the present study 43 unknown spoligo patterns were detected. The discriminatory power of spoligotyping was found to be 0.8637 based on Hunter Gaston Discriminatory Index (HGDI). On the other hand, 24-loci MIRU-VNTR typing revealed that out of total 189 MTBC isolates from Assam 185 (97.9%) isolates had unique MIRU-VNTR profiles and 4 isolates grouped into 2 clusters. Phylogenetic analysis of 67 Beijing isolates based on 24-loci MIRU-VNTR typing revealed that Beijing isolates from Assam represent two major groups, each comprising of several subgroups. Neighbour-Joining (NJ) phylogenetic tree analysis based on combined spoligotyping and 24-loci MIRU-VNTR data of 78 Non-Beijing isolates was carried out for strain lineage identification as implemented by MIRU-VNTRplus database. The important lineages of MTBC identified were CAS/CAS1_Delhi (41.02%, n = 78) and East-African-Indian (EAI, 33.33%). Interestingly, phylogenetic analysis of orphan (23.28%) MTBC spoligotypes revealed that majority of these orphan isolates from Assam represent two new sub-clades Assam/EAI and Assam/CAS. The prevalence of multidrug resistance (MDR) in Beijing and Non-Beijing strains was found to be 10.44% and 9.01% respectively. In conclusion, the present study has shown the predominance of Beijing isolates in Assam which is a matter of great concern because Beijing strains are considered to be ecologically more fit enabling wider dissemination of M. tuberculosis. Other interesting finding of the present study is the discovery of two new clades of MTBC isolates circulating in Assam. More elaborate longitudinal studies are required to be undertaken in this region to understand the transmission dynamics of MTBC.
Collapse
Affiliation(s)
- Kangjam Rekha Devi
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Rinchenla Bhutia
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Shovonlal Bhowmick
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Kaustab Mukherjee
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
| | - Kanwar Narain
- Regional Medical Research Centre, N.E. Region (Indian Council of Medical Research), Post Box #105, Dibrugarh 786 001, Assam, India
- * E-mail:
| |
Collapse
|
21
|
Couvin D, Rastogi N. Tuberculosis – A global emergency: Tools and methods to monitor, understand, and control the epidemic with specific example of the Beijing lineage. Tuberculosis (Edinb) 2015; 95 Suppl 1:S177-89. [DOI: 10.1016/j.tube.2015.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Ahmed MM, Mohammed SH, Nasurallah HAA, Ali MM, Couvin D, Rastogi N. Snapshot of the genetic diversity of Mycobacterium tuberculosis isolates in Iraq. Int J Mycobacteriol 2014; 3:184-96. [DOI: 10.1016/j.ijmyco.2014.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 10/24/2022] Open
|
23
|
Torkaman MRA, Nasiri MJ, Farnia P, Shahhosseiny MH, Mozafari M, Velayati AA. Estimation of Recent Transmission of Mycobacterium Tuberculosis Strains among Iranian and Afghan Immigrants: A Cluster-Based Study. J Clin Diagn Res 2014; 8:DC05-DC8. [PMID: 25386431 PMCID: PMC4225883 DOI: 10.7860/jcdr/2014/8886.4864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/30/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Iran has extended borders with high-TB burden countries (Afghanistan and Pakistan) and immigrations of these populations influences TB distribution in the region and threatens the control strategies. The aim of this study was to evaluate the extent of recent TB transmission among Iranian and Afghan cases. MATERIALS AND METHODS Spoligotyping and 15-locus variable number tandem repeat (VNTR) typing were applied to genotype 102 MTB isolates (2009 to 2010). Phylogenetic relationships were analysed by two methods: a cluster-graph method and a minimum spanning tree (MST) method. Furthermore, evaluation of recent TB transmission was assessed with three indices including, RTIn, RTIn-1 and TMI. RESULTS Using molecular typing, 35 different spoligotypes were detected among the studied isolates. Seventy seven cases (75.4%) were distributed into 10 clusters and the remaining 25 (24.5%) isolates had a unique pattern. The cluster sizes also ranged from 2 to 21 isolates. The most frequent spoligotype in our populations belong to Haarlem (n=30, 29.4%) followed by CAS (n= 29, 28.4%) and Beijing (n=16, 15.6%) lineages. The used indices give the following values: RTIn = 0.75, RTIn-1 = 0.65 and TMI = 0.24. CONCLUSION The low rate of TB transmission in our findings (24%) showed that the mode of TB transmission in Iran is mostly associated with reactivation of a previous TB infection and that recently a transmitted disease has a minor role. However, the increasing incidence of the intra-community transmission in recent years highlights the need for establishing new strategies for control of TB.
Collapse
Affiliation(s)
- Mohammad Reza Allahyar Torkaman
- Post Graduate, Department of Microbiology, Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD),Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- PhD Student, Department of Microbiology, Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD),Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parissa Farnia
- Associated Professor, Department of Microbiology, Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD),Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shahhosseiny
- Associated Professor, Department of Microbiology, Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD),Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Mozafari
- Post Graduate, Department of Microbiology, Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD),Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Professor, Department of Microbiology, Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD),Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
de Freitas FAD, Bernardo V, Gomgnimbou MK, Sola C, Siqueira HR, Pereira MAS, Fandinho FCO, Gomes HM, Araújo MEI, Suffys PN, Marques EA, Albano RM. Multidrug resistant Mycobacterium tuberculosis: a retrospective katG and rpoB mutation profile analysis in isolates from a reference center in Brazil. PLoS One 2014; 9:e104100. [PMID: 25093512 PMCID: PMC4122415 DOI: 10.1371/journal.pone.0104100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/07/2014] [Indexed: 01/27/2023] Open
Abstract
Background Multidrug resistance is a critical factor in tuberculosis control. To gain better understanding of multidrug resistant tuberculosis in Brazil, a retrospective study was performed to compare genotypic diversity and drug resistance associated mutations in Mycobacterium tuberculosis isolates from a national reference center. Methods and Findings Ninety-nine multidrug resistant isolates from 12 Brazilian states were studied. Drug-resistance patterns were determined and the rpoB and katG genes were screened for mutations. Genotypic diversity was investigated by IS6110-RFLP and Luminex 47 spoligotyping. Mutations in rpoB and katG were seen in 91% and 93% of the isolates, respectively. Codon 315 katG mutations occurred in 82.8% of the isolates with a predominance of the Ser315Thr substitution. Twenty-five isolates were clustered in 11 groups with identical IS6110-RFLP patterns while 74 showed unique patterns with no association between mutation frequencies or susceptibility profiles. The most prevalent spoligotyping lineages were LAM (47%), T (17%) and Haarlen (12%). The Haarlen lineage showed a higher frequency of codon 516 rpoB mutations while codon 531 mutations prevailed in the other isolates. Conclusions Our data suggest that there were no major multidrug resistant M. tuberculosis strains transmitted among patients referred to the reference center, indicating an independent acquisition of resistance. In addition, drug resistance associated mutation profiles were well established among the main spoligotyping lineages found in these Brazilian multidrug resistant isolates, providing useful data for patient management and treatment.
Collapse
Affiliation(s)
- Flávia A. D. de Freitas
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vagner Bernardo
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michel K. Gomgnimbou
- CNRS–Université Paris–Sud, Institut de Génétique et Microbiologie– Infection Genetics Emerging Pathogens Evolution Team, Orsay, France
| | - Christophe Sola
- CNRS–Université Paris–Sud, Institut de Génétique et Microbiologie– Infection Genetics Emerging Pathogens Evolution Team, Orsay, France
| | - Hélio R. Siqueira
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia A. S. Pereira
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fátima C. O. Fandinho
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Harrison M. Gomes
- Laboratório de Biologia Molecular Aplicada a Micobacteria, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo E. I. Araújo
- Laboratório de Biologia Molecular Aplicada a Micobacteria, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Philip N. Suffys
- Laboratório de Biologia Molecular Aplicada a Micobacteria, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elizabeth A. Marques
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolpho M. Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
25
|
Fallico L, Couvin D, Peracchi M, Pascarella M, Franchin E, Lavezzo E, Rassu M, Manganelli R, Rastogi N, Palù G. Four year longitudinal study of Mycobacterium tuberculosis complex isolates in a region of North-Eastern Italy. INFECTION GENETICS AND EVOLUTION 2014; 26:58-64. [DOI: 10.1016/j.meegid.2014.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 01/31/2023]
|
26
|
Predicting Mycobacterium tuberculosis complex clades using knowledge-based Bayesian networks. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398484. [PMID: 24864238 PMCID: PMC4016944 DOI: 10.1155/2014/398484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/10/2013] [Indexed: 01/25/2023]
Abstract
We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web.
Collapse
|
27
|
Strain diversity of Mycobacterium tuberculosis isolates from pulmonary tuberculosis patients in Afar pastoral region of Ethiopia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238532. [PMID: 24734230 PMCID: PMC3966356 DOI: 10.1155/2014/238532] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/22/2014] [Indexed: 12/02/2022]
Abstract
Data on genotypic diversity of Mycobacterium tuberculosis complex (MTBC) is important to understand its epidemiology, human adaptation, clinical phenotypes, and drug resistance.
This study aimed to characterize MTBC clinical isolates circulating in a predominantly pastoralist area in Ethiopia, a country where tuberculosis is the second leading cause of mortality.
Culture of sputum samples collected from a total of 325 pulmonary TB suspects was done to isolate MTBC. Spoligotyping was used to characterize 105 isolates from culture positive
slopes and the result was compared with an international database. Forty-four spoligotype patterns were observed to correspond to 35 shared-types (SITs) containing 96 isolates and
9 orphan patterns; 27 SITs containing 83 isolates matched a preexisting shared-type in the database, whereas 8 SITs (n = 13 isolates) were newly created. A total of 19 SITs containing
80 isolates were clustered within this study (overall clustering of 76.19%). Three dominant lineages (T, CAS, and Manu) accounted for 76.19% of the isolates. SIT149/T3-ETH was one
of the two most dominant sublineages. Unlike previous reports, we show that Manu lineage strains not only constitute a dominant lineage, but are also associated with HIV infection in
Afar region of Ethiopia. The high level of clustering suggests the presence of recent transmission that should be further studied using additional genotyping markers.
Collapse
|
28
|
Molecular epidemiology and genotyping of Mycobacterium tuberculosis isolated in Baghdad. BIOMED RESEARCH INTERNATIONAL 2014; 2014:580981. [PMID: 24719873 PMCID: PMC3955663 DOI: 10.1155/2014/580981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) remains a major health problem in Iraq but the strains responsible for the epidemic have been poorly characterized. Our aim was to characterize the TB strains circulating in Bagdad (Iraq). A total of 270 Mycobacterium tuberculosis complex (MTBC) strains isolated between 2010 and 2011 from TB patients attending the Center of Chest and Respiratory diseases in Baghdad were analyzed by Spoligotyping. The analysis indicated that 94.1% of the isolates belong to known genotype clades: CAS 39.6%, ill-defined T clade 29.6%, Manu 7.4%, Haarlem 7%, Ural 4.1%, LAM 3.3%, X 0.7%, LAM7-TUR 0.7%, EAI 0.7%, S 0.7%, and unknown 5.9%. Comparison with the international multimarker database SITVIT2 showed that SIT 309 (CAS1-Delhi) and SIT1144 (T1) were the most common types. In addition, 44 strains were included in SITVIT2 database under 16 new Spoligotype International Types (SITs); of these, 6 SITs (SIT3346, SIT3497, SIT3708, SIT3790, SIT3791, and SIT3800) (n = 32 strains) were created within the present study and 10 were created after a match with an orphan in the database. By using 24-loci MIRU-VNTR-typing on a subset of 110 samples we found a high recent transmission index (RTI) of 33.6%. In conclusion, we present the first unifying framework for both epidemiology and evolutionary analysis of M. tuberculosis in Iraq.
Collapse
|
29
|
Muwonge A, Malama S, Johansen TB, Kankya C, Biffa D, Ssengooba W, Godfroid J, Djønne B, Skjerve E. Molecular epidemiology, drug susceptibility and economic aspects of tuberculosis in Mubende district, Uganda. PLoS One 2013; 8:e64745. [PMID: 23741382 PMCID: PMC3669366 DOI: 10.1371/journal.pone.0064745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Background Tuberculosis (TB) remains a global public health problem whose effects have major impact in developing countries like Uganda. This study aimed at investigating genotypic characteristics and drug resistance profiles of Mycobacterium tuberculosis isolated from suspected TB patients. Furthermore, risk factors and economic burdens that could affect the current control strategies were studied. Methods TB suspected patients were examined in a cross-sectional study at the Mubende regional referral hospital between February and July 2011. A questionnaire was administered to each patient to obtain information associated with TB prevalence. Isolates of M. tuberculosis recovered during sampling were examined for drug resistance to first line anti-TB drugs using the BACTEC-MGIT960TMsystem. All isolates were further characterized using deletion analysis, spoligotyping and MIRU-VNTR analysis. Data were analyzed using different software; MIRU-VNTR plus, SITVITWEB, BioNumerics and multivariable regression models. Results M. tuberculosis was isolated from 74 out of 344 patients, 48 of these were co-infected with HIV. Results from the questionnaire showed that previously treated TB, co-infection with HIV, cigarette smoking, and overcrowding were risk factors associated with TB, while high medical related transport bills were identified as an economic burden. Out of the 67 isolates that gave interpretable results, 23 different spoligopatterns were detected, nine of which were novel patterns. T2 with the sub types Uganda-I and Uganda-II was the most predominant lineage detected. Antibiotic resistance was detected in 19% and multidrug resistance was detected in 3% of the isolates. Conclusion The study detected M. tuberculosis from 21% of examined TB patients, 62% of whom were also HIV positive. There is a heterogeneous pool of genotypes that circulate in this area, with the T2 lineage being the most predominant. High medical related transport bills and drug resistance could undermine the usefulness of the current TB strategic interventions.
Collapse
Affiliation(s)
- Adrian Muwonge
- Department of Food Safety and Infection Biology, Centre for Epidemiology and Biostatistics, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|