1
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Tao L, Ren X, Zhai W, Chen Z. Progress and Prospects of Non-Canonical NF-κB Signaling Pathway in the Regulation of Liver Diseases. Molecules 2022; 27:molecules27134275. [PMID: 35807520 PMCID: PMC9268066 DOI: 10.3390/molecules27134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.
Collapse
Affiliation(s)
- Li Tao
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Xiaomeng Ren
- College of Pharmaceutical and Biology Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| | - Wenhui Zhai
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| |
Collapse
|
3
|
Platelet CD40L Expression Response to Mixing of pRBCs and Washed Platelets but no Causality Association between Platelet ROS Generation and CD40L Expression: An In Vitro Study. Antioxidants (Basel) 2022; 11:antiox11061108. [PMID: 35740005 PMCID: PMC9219937 DOI: 10.3390/antiox11061108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Platelets play a role in transfusion reaction via reactive oxygen species (ROS) generation and CD40 ligand (CD40L) expression. In this study, we aimed to test the hypothesis that the mixing of packed red blood cells (pRBCs) and washed platelets has a causal effect on platelet ROS generation and CD40L expression. Thus, a better understanding of this causality relationship may help interrupt the chain of events and avoid an uncontrollable transfusion reaction. We simulated transfusion in vitro by mixing pRBCs and washed platelets. Donor cross-matched stored pRBCs) from our blood bank and recipient whole blood from patients undergoing coronary artery bypass graft surgery prepared into washed platelets were used. Briefly, donor pRBCs were added to washed recipient platelets to form 1%, 5%, or 10% (v/v) mixtures. The mixed blood sample was used to determine platelet ROS generation (dichlorofluorescein fluorescence levels) and CD40L expression. The effect of antioxidants (20 mM glutamine and 20 mM dipeptiven) on ROS generation and CD40L expression was also evaluated. Platelet ROS generation was not significantly associated with the mixing of pRBCs and washed platelets (p = 0.755), glutamine treatment (p = 0.800), or dipeptiven treatment (p = 0.711). The expression of CD40L by platelets increased significantly (p < 0.001), and no significant difference was noted after treatment with glutamine (p = 0.560) or dipeptiven (p = 0.618). We observed that the mixing pRBCs and washed platelets had no effect via ROS, whereas CD40L could directly induce transfusion reactions. Furthermore, platelets did not causally express ROS or CD40L after being mixed with pRBCs. Although antioxidants are more accessible than anti-CD40L antibodies, platelet ROS may not serve as a therapeutic target for antioxidants. Nevertheless, CD40L expression may be a valuable therapeutic target for managing transfusion reactions.
Collapse
|
4
|
Das M, Devi KP, Belwal T, Devkota HP, Tewari D, Sahebnasagh A, Nabavi SF, Khayat Kashani HR, Rasekhian M, Xu S, Amirizadeh M, Amini K, Banach M, Xiao J, Aghaabdollahian S, Nabavi SM. Harnessing polyphenol power by targeting eNOS for vascular diseases. Crit Rev Food Sci Nutr 2021; 63:2093-2118. [PMID: 34553653 DOI: 10.1080/10408398.2021.1971153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kiumarth Amini
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Poland
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Safieh Aghaabdollahian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Involvement of superoxide generated by NADPH oxidase in the shedding of procoagulant vesicles from human monocytic cells exposed to bupivacaine. J Thromb Thrombolysis 2018; 44:341-354. [PMID: 28819812 DOI: 10.1007/s11239-017-1531-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It is known that a variety of sized procoagulant vesicles that express tissue factor are released from several types of cells including monocytes by mechanisms related to the induction of apoptosis, while it has not yet been evaluated whether superoxide is involved in the production of such vesicles. Here, we report that a local anesthetic bupivacaine induces apoptosis in human monocytic cells THP-1 within a short observation period, where the shedding of procoagulant vesicles is associated. The property as procoagulant vesicles was evaluated using flow cytometry by the binding of FITC-conjugated fibrinogen to vesicles in the presence of fresh frozen plasma and the suppression of this binding by heparin. Bupivacaine (1 mg/ml) increased the apoptotic cells and procoagulant vesicles. LY294002 (100 µM), that inhibits the recruiting of intracellular component of NADPH oxidase to construct the activated form of this enzyme complex, or superoxide dismutase (1500 unit/ml) suppressed bupivacaine-provoked induction of apoptosis and the increase of procoagulant vesicles. We suggest that this simple experimental system is useful to explore the molecular mechanisms of action of superoxide in the shedding of procoagulant vesicles from human monocytic cells.
Collapse
|
6
|
Lameijer M, Binderup T, van Leent MMT, Senders ML, Fay F, Malkus J, Sanchez-Gaytan BL, Teunissen AJP, Karakatsanis N, Robson P, Zhou X, Ye Y, Wojtkiewicz G, Tang J, Seijkens TTP, Kroon J, Stroes ESG, Kjaer A, Ochando J, Reiner T, Pérez-Medina C, Calcagno C, Fisher EA, Zhang B, Temel RE, Swirski FK, Nahrendorf M, Fayad ZA, Lutgens E, Mulder WJM, Duivenvoorden R. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat Biomed Eng 2018; 2:279-292. [PMID: 30936448 PMCID: PMC6447057 DOI: 10.1038/s41551-018-0221-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Macrophage accumulation in atherosclerosis is directly linked to the destabilization and rupture of plaque, causing acute atherothrombotic events. Circulating monocytes enter the plaque and differentiate into macrophages, where they are activated by CD4+ T lymphocytes through CD40-CD40 ligand signalling. Here, we report the development and multiparametric evaluation of a nanoimmunotherapy that moderates CD40-CD40 ligand signalling in monocytes and macrophages by blocking the interaction between CD40 and tumour necrosis factor receptor-associated factor 6 (TRAF6). We evaluated the biodistribution characteristics of the nanoimmunotherapy in apolipoprotein E-deficient (Apoe-/-) mice and in non-human primates by in vivo positron-emission tomography imaging. In Apoe-/- mice, a 1-week nanoimmunotherapy treatment regimen achieved significant anti-inflammatory effects, which was due to the impaired migration capacity of monocytes, as established by a transcriptome analysis. The rapid reduction of plaque inflammation by the TRAF6-targeted nanoimmunotherapy and its favourable toxicity profiles in both mice and non-human primates highlights the translational potential of this strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Marnix Lameijer
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Tina Binderup
- Cluster for Molecular Imaging and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Mandy M T van Leent
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Max L Senders
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Francois Fay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joost Malkus
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brenda L Sanchez-Gaytan
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abraham J P Teunissen
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Karakatsanis
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Robson
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuxiang Ye
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Tang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Andreas Kjaer
- Cluster for Molecular Imaging and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jordi Ochando
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan E Temel
- Saha Cardiovascular Research Center and Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.
| | - Raphaël Duivenvoorden
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands.
- Department of Nephrology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
DeTemple DE, Oldhafer F, Falk CS, Chen‐Wacker C, Figueiredo C, Kleine M, Ramackers W, Timrott K, Lehner F, Klempnauer J, Bock M, Vondran FWR. Hepatocyte-induced CD4 + T cell alloresponse is associated with major histocompatibility complex class II up-regulation on hepatocytes and suppressible by regulatory T cells. Liver Transpl 2018; 24:407-419. [PMID: 29365365 PMCID: PMC5887891 DOI: 10.1002/lt.25019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/07/2017] [Accepted: 12/16/2017] [Indexed: 12/21/2022]
Abstract
Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+ CD25high CD127low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD.
Collapse
Affiliation(s)
- Daphne E. DeTemple
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Felix Oldhafer
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Christine S. Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Centre TransplantationHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| | - Chen Chen‐Wacker
- Institute for Transfusion MedicineHannover Medical SchoolHannoverGermany
| | | | - Moritz Kleine
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Wolf Ramackers
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Kai Timrott
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Frank Lehner
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Juergen Klempnauer
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Michael Bock
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| | - Florian W. R. Vondran
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| |
Collapse
|
8
|
Davies SP, Reynolds GM, Stamataki Z. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Front Immunol 2018; 9:44. [PMID: 29422896 PMCID: PMC5790054 DOI: 10.3389/fimmu.2018.00044] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gary M Reynolds
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Laing RW, Bhogal RH, Wallace L, Boteon Y, Neil DAH, Smith A, Stephenson BTF, Schlegel A, Hübscher SG, Mirza DF, Afford SC, Mergental H. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion. Transplantation 2017; 101:2746-2756. [PMID: 28520579 PMCID: PMC5656179 DOI: 10.1097/tp.0000000000001821] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. METHODS Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. RESULTS The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. CONCLUSIONS Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.
Collapse
Affiliation(s)
- Richard W Laing
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- National Institute for Health Research, Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Institute of Immunology and Immunotherapy, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Ricky H Bhogal
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- National Institute for Health Research, Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Institute of Immunology and Immunotherapy, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Lorraine Wallace
- National Institute for Health Research, Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Institute of Immunology and Immunotherapy, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Yuri Boteon
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- National Institute for Health Research, Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Institute of Immunology and Immunotherapy, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Desley AH Neil
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Amanda Smith
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Barney TF Stephenson
- National Institute for Health Research, Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Institute of Immunology and Immunotherapy, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Stefan G Hübscher
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- National Institute for Health Research, Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Institute of Immunology and Immunotherapy, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Simon C Afford
- National Institute for Health Research, Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Institute of Immunology and Immunotherapy, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- National Institute for Health Research, Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Institute of Immunology and Immunotherapy, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| |
Collapse
|
10
|
Yuan M, Zhang L, You F, Zhou J, Ma Y, Yang F, Tao L. MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol Cell Biochem 2017; 431:123-131. [PMID: 28281187 DOI: 10.1007/s11010-017-2982-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/24/2017] [Indexed: 12/30/2022]
Abstract
An increasing body of evidence indicates that inflammation and apoptosis are involved in the development of acute myocardial infarction (AMI). In this study, we sought to investigate the specific role and the underlying regulatory mechanism of miR-145-5p in myocardial ischemic injury. H9c2 cardiac cells were exposed to hypoxia to establish a model of myocardial hypoxic/ischemic injury. We found that miR-145-5p was notably down-regulated, while CD40 expression was highly elevated in H9c2 cells following exposure to acute hypoxia. Additionally, hypoxia markedly enhanced the inflammatory response, as reflected by an increase in the secretion of the cytokines IL-1β, TNF-α, and IL-6, whereas the introduction of miR-145-5p effectively suppressed inflammatory factor production triggered by hypoxia. Furthermore, we observed hypoxia stimulation significantly augmented apoptosis accompanied by a decrease in the expression of Bcl-2 and an increase in the expression of Bax, Caspase-3, and Caspase-9. However, augmentation of miR-145-5p led to a dramatic prevention of hypoxia-induced apoptosis. Importantly, we identified CD40 as a direct target of miR-145-5p. Interestingly, the depletion of CD40 with small interfering RNAs (siRNAs) apparently repressed the production of inflammatory cytokines and apoptosis in the setting of acute hypoxic treated. Taken together, these data demonstrated that miR-145-5p may function as a cardiac-protective molecule in myocardial ischemic injury by ameliorating inflammation and apoptosis via negative regulation of CD40. The study gives evidence that miR-145-5p provides an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Liwei Zhang
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Fei You
- Department of Cardiology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Jingyu Zhou
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yongjiang Ma
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Feifei Yang
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China
| |
Collapse
|
11
|
Wu T, Xiang Y, Lv Y, Li D, Yu L, Guo R. miR-590-3p mediates the protective effect of curcumin on injured endothelial cells induced by angiotensin II. Am J Transl Res 2017; 9:289-300. [PMID: 28337260 PMCID: PMC5340667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Curcumin (Cur) has multiple pharmacological effects including antitumor, anti-inflammatory, antioxidant and cardiovascular protective effects. This research aims to further explore whether the cardiovascular protective effects of Cur are mediated by the miR-590-3p/CD40 pathway. Endothelial cells (ECs) were cultivated with 10-7 mol/L angiotensin II (Ang II) to establish a damage model. Real-time PCR was used to determine the expression of CD40 and eNOS mRNA on ECs. The protein expressions of CD40 and eNOS were detected by Western blot analysis. The intracellular activities of SOD, CAT and MDA level were determined by corresponding detection kits, and the level of reactive oxygen species (ROS) in ECs was measured by ROS assay kit. Ang II increased both the mRNA and protein level of CD40, while it down-regulated the expression of eNOS at mRNA and protein level. These observations were accompanied by decreased activities of SOD and CAT with increased levels of intracellular MDA and ROS. Cur and miR-590-3p mimics inhibited the expressions of CD40 mRNA and protein induced by Ang II and alleviated the intracellular oxidative stress seen with increased levels of eNOS. However, these beneficial effects caused by Cur were partially reversed in the presence of miR-590-3p inhibitors. Our results indicate miR-590-3p is involved in the anti-inflammatory effects of Cur in ECs damaged by Ang II.
Collapse
Affiliation(s)
- Tian Wu
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yuanyuan Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yu Lv
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Dai Li
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Lijin Yu
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
12
|
Carbone M, Invernizzi P. Novel treatments targeting immune-related mechanisms in primary biliary cholangitis. Clin Liver Dis (Hoboken) 2016; 8:127-131. [PMID: 31041080 PMCID: PMC6490213 DOI: 10.1002/cld.587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/24/2016] [Accepted: 09/02/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marco Carbone
- Liver UnitHumanitas Clinical and Research InstituteRozzano (Milan)Italy,Academic Department of Medical GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Pietro Invernizzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and SurgeryUniversity of Milan‐BicoccaMilanItaly,Division of Rheumatology, Allergy, and Clinical ImmunologyUniversity of California at Davis School of MedicineDavisCA
| |
Collapse
|
13
|
Dunnill CJ, Ibraheem K, Mohamed A, Southgate J, Georgopoulos NT. A redox state-dictated signalling pathway deciphers the malignant cell specificity of CD40-mediated apoptosis. Oncogene 2016; 36:2515-2528. [PMID: 27869172 PMCID: PMC5422712 DOI: 10.1038/onc.2016.401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
Abstract
CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, has the capacity to cause extensive apoptosis in carcinoma cells, while sparing normal epithelial cells. Yet, apoptosis is only achieved by membrane-presented CD40 ligand (mCD40L), as soluble receptor agonists are but weakly pro-apoptotic. Here, for the first time we have identified the precise signalling cascade underpinning mCD40L-mediated death as involving sequential TRAF3 stabilisation, ASK1 phosphorylation, MKK4 (but not MKK7) activation and JNK/AP-1 induction, leading to a Bak- and Bax-dependent mitochondrial apoptosis pathway. TRAF3 is central in the activation of the NADPH oxidase (Nox)-2 component p40phox and the elevation of reactive oxygen species (ROS) is essential in apoptosis. Strikingly, CD40 activation resulted in down-regulation of Thioredoxin (Trx)-1 to permit ASK1 activation and apoptosis. Although soluble receptor agonist alone could not induce death, combinatorial treatment incorporating soluble CD40 agonist and pharmacological inhibition of Trx-1 was functionally equivalent to the signal triggered by mCD40L. Finally, we demonstrate using normal, ‘para-malignant' and tumour-derived cells that progression to malignant transformation is associated with increase in oxidative stress in epithelial cells, which coincides with increased susceptibility to CD40 killing, while in normal cells CD40 signalling is cytoprotective. Our studies have revealed the molecular nature of the tumour specificity of CD40 signalling and explained the differences in pro-apoptotic potential between soluble and membrane-bound CD40 agonists. Equally importantly, by exploiting a unique epithelial culture system that allowed us to monitor alterations in the redox-state of epithelial cells at different stages of malignant transformation, our study reveals how pro-apoptotic signals can elevate ROS past a previously hypothesised ‘lethal pro-apoptotic threshold' to induce death; an observation that is both of fundamental importance and carries implications for cancer therapy.
Collapse
Affiliation(s)
- C J Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - K Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - A Mohamed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - J Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - N T Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
14
|
Boghal RH, Stephenson B, Afford SC. Immune cell communication in liver disease and liver regeneration. SIGNALING PATHWAYS IN LIVER DISEASES 2015:110-129. [DOI: 10.1002/9781118663387.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
You JO, Rafat M, Almeda D, Maldonado N, Guo P, Nabzdyk CS, Chun M, LoGerfo FW, Hutchinson JW, Pradhan-Nabzdyk LK, Auguste DT. pH-responsive scaffolds generate a pro-healing response. Biomaterials 2015; 57:22-32. [DOI: 10.1016/j.biomaterials.2015.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
16
|
Abstract
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Collapse
|
17
|
Shimada S, Fukai M, Wakayama K, Ishikawa T, Kobayashi N, Kimura T, Yamashita K, Kamiyama T, Shimamura T, Taketomi A, Todo S. Hydrogen sulfide augments survival signals in warm ischemia and reperfusion of the mouse liver. Surg Today 2014; 45:892-903. [PMID: 25362520 DOI: 10.1007/s00595-014-1064-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2S) ameliorates hepatic ischemia and reperfusion injury (IRI), but the precise mechanism remains elusive. We investigated whether sodium hydrogen sulfide (NaHS), a soluble derivative of H2S, would ameliorate hepatic IRI, and if so, via what mechanism. METHODS Mice were subjected to partial warm ischemia for 75 min followed by reperfusion. Either NaHS or saline was administered intravenously 10 min before reperfusion. The liver and serum were collected 3, 6, and 24 h after reperfusion. RESULTS In the NaHS(-) group, severe IRI was apparent by the ALT leakage, tissue injury score, apoptosis, lipid peroxidation, and inflammation (higher plasma TNF-α, IL-6, IL-1β, IFN-γ, IL-23, IL-17, and CD40L), whereas IRI was significantly ameliorated in the NaHS(+) group. These effects could be explained by the augmented nuclear translocation of Nrf2, and the resulting up-regulation of HO-1 and thioredoxin-1. Phosphorylation of the PDK-1/Akt/mTOR/p70S6k axis, which is known to mediate pro-survival and anti-apoptotic signals, was significantly augmented in the NaHS(+) group, with a higher rate of PCNA-positive cells thereafter. CONCLUSION NaHS ameliorated hepatic IRI by direct and indirect anti-oxidant activities by augmenting pro-survival, anti-apoptotic, and anti-inflammatory signals via mechanisms involving Nrf-2, and by accelerating hepatic regeneration via mechanisms involving Akt-p70S6k.
Collapse
Affiliation(s)
- Shingo Shimada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Larson MC, Hillery CA, Hogg N. Circulating membrane-derived microvesicles in redox biology. Free Radic Biol Med 2014; 73:214-28. [PMID: 24751526 PMCID: PMC4465756 DOI: 10.1016/j.freeradbiomed.2014.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/20/2023]
Abstract
Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation.
Collapse
Affiliation(s)
- Michael Craig Larson
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA; Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl A Hillery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
19
|
Shuh M, Bohorquez H, Loss GE, Cohen AJ. Tumor Necrosis Factor-α: Life and Death of Hepatocytes During Liver Ischemia/Reperfusion Injury. Ochsner J 2013; 13:119-30. [PMID: 23531747 PMCID: PMC3603175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α) is a potent proinflammatory cytokine involved in a variety of disease pathologies, including ischemia/reperfusion (I/R) injuries in transplantation. The interaction of TNF-α with its cognate receptor TNF receptor I (TNFRI) results in the activation of signal transduction pathways that regulate either cell survival or cell death. Hepatocytes express TNFRI and respond to TNF-α released by resident Kupffer cells as well as leukocytes that migrate to the liver during I/R injury. Upon binding TNF-α, the hepatocyte proliferates or undergoes apoptosis or necroptosis. The decision by the cell to commit to one path or the other is not understood. The damaged tissue exhibits cell death and hemorrhaging from the influx of immune mediators. TNF-α inhibitors ameliorate the injury in animal models, suggesting that lowering (but not eliminating) TNF-α levels shifts the balance of TNF-α toward its beneficial functions. METHODS We review TNF-α signal transduction pathways and the role of TNF-α in liver I/R injury. CONCLUSIONS Because TNF-α plays an important role in hepatocyte proliferation, complete inhibition of TNF-α is not desirable in treating liver I/R injury. The strategy for developing pharmacological therapies may be the identification of specific intermediates in the TNF-α/TNFR1 signal transduction pathway and directed targeting of proapoptotic and pronecroptotic events.
Collapse
Affiliation(s)
- Maureen Shuh
- Laboratory of Transplant Research, Institute of Translational Research, and
| | - Humberto Bohorquez
- Multi-Organ Transplant Center, Ochsner Clinic Foundation, and
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| | - George E. Loss
- Multi-Organ Transplant Center, Ochsner Clinic Foundation, and
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| | - Ari J. Cohen
- Laboratory of Transplant Research, Institute of Translational Research, and
- Multi-Organ Transplant Center, Ochsner Clinic Foundation, and
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| |
Collapse
|