1
|
Liu S, Heumüller SE, Hossinger A, Müller SA, Buravlova O, Lichtenthaler SF, Denner P, Vorberg IM. Reactivated endogenous retroviruses promote protein aggregate spreading. Nat Commun 2023; 14:5034. [PMID: 37596282 PMCID: PMC10439213 DOI: 10.1038/s41467-023-40632-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Prion-like spreading of protein misfolding is a characteristic of neurodegenerative diseases, but the exact mechanisms of intercellular protein aggregate dissemination remain unresolved. Evidence accumulates that endogenous retroviruses, remnants of viral germline infections that are normally epigenetically silenced, become upregulated in neurodegenerative diseases such as amyotrophic lateral sclerosis and tauopathies. Here we uncover that activation of endogenous retroviruses affects prion-like spreading of proteopathic seeds. We show that upregulation of endogenous retroviruses drastically increases the dissemination of protein aggregates between cells in culture, a process that can be inhibited by targeting the viral envelope protein or viral protein processing. Human endogenous retrovirus envelopes of four different clades also elevate intercellular spreading of proteopathic seeds, including pathological Tau. Our data support a role of endogenous retroviruses in protein misfolding diseases and suggest that antiviral drugs could represent promising candidates for inhibiting protein aggregate spreading.
Collapse
Affiliation(s)
- Shu Liu
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | | | - André Hossinger
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oleksandra Buravlova
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Philip Denner
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany.
- Department of Neurology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Celauro L, Zattoni M, Legname G. Prion receptors, prion internalization, intra- and inter-cellular transport. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:15-41. [PMID: 36813357 DOI: 10.1016/bs.pmbts.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
3
|
Heumüller SE, Hornberger AC, Hebestreit AS, Hossinger A, Vorberg IM. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062909. [PMID: 35328330 PMCID: PMC8949484 DOI: 10.3390/ijms23062909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.
Collapse
Affiliation(s)
- Stefanie-Elisabeth Heumüller
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Annika C. Hornberger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Alina S. Hebestreit
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - André Hossinger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Ina M. Vorberg
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
4
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
5
|
Fehlinger A, Wolf H, Hossinger A, Duernberger Y, Pleschka C, Riemschoss K, Liu S, Bester R, Paulsen L, Priola SA, Groschup MH, Schätzl HM, Vorberg IM. Prion strains depend on different endocytic routes for productive infection. Sci Rep 2017; 7:6923. [PMID: 28761068 PMCID: PMC5537368 DOI: 10.1038/s41598-017-07260-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Prions are unconventional agents composed of misfolded prion protein that cause fatal neurodegenerative diseases in mammals. Prion strains induce specific neuropathological changes in selected brain areas. The mechanism of strain-specific cell tropism is unknown. We hypothesised that prion strains rely on different endocytic routes to invade and replicate within their target cells. Using prion permissive cells, we determined how impairment of endocytosis affects productive infection by prion strains 22L and RML. We demonstrate that early and late stages of prion infection are differentially sensitive to perturbation of clathrin- and caveolin-mediated endocytosis. Manipulation of canonical endocytic pathways only slightly influenced prion uptake. However, blocking the same routes had drastic strain-specific consequences on the establishment of infection. Our data argue that prion strains use different endocytic pathways for infection and suggest that cell type-dependent differences in prion uptake could contribute to host cell tropism.
Collapse
Affiliation(s)
- Andrea Fehlinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Hanna Wolf
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - André Hossinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Yvonne Duernberger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Catharina Pleschka
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Katrin Riemschoss
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Shu Liu
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Romina Bester
- Institut für Virologie, Technische Universität München, Trogerstr. 30, 81675, München, Germany
| | - Lydia Paulsen
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
| | - Hermann M Schätzl
- Dept. of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ina M Vorberg
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany. .,Department of Neurology, Rheinische Friedrich-Wilhelms-Universität, 53127, Bonn, Germany.
| |
Collapse
|
6
|
|
7
|
Klöhn PC, Castro-Seoane R, Collinge J. Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 2013; 67:359-68. [PMID: 23911964 DOI: 10.1016/j.jinf.2013.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022]
Abstract
Prion diseases are incurable transmissible neurological disorders. In many natural and experimental prion diseases, infectious prions can be detected in the lymphoreticular system (LRS) long before they reach the brain where they cause a fatal rapidly progressive degeneration. Although major cell types that contribute to prion accumulation have been identified, the mode of prion dissemination in the LRS remains elusive. Recent evidence of a remarkably fast splenic prion accumulation after peripheral infection of mice, resulting in high prion titers in dendritic cells (DCs) and a release of prions from infected DCs via exosomes suggest that intercellular dissemination may contribute to rapid prion colonization in the LRS. A vast body of evidence from retroviral infections shows that DCs and other antigen-presenting cells (APCs) share viral antigens by intercellular transfer to warrant immunity against viruses if APCs remain uninfected. Evolved to adapt the immune response to evading pathogens, these pathways may constitute a portal for unimpeded prion dissemination owing to the tolerance of the immune system against host-encoded prion protein. In this review we summarize current paradigms for antigen-sharing pathways which may be relevant to better understand dissemination of rogue neurotoxic proteins.
Collapse
Affiliation(s)
- Peter-Christian Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
8
|
Timmes AG, Moore RA, Fischer ER, Priola SA. Recombinant prion protein refolded with lipid and RNA has the biochemical hallmarks of a prion but lacks in vivo infectivity. PLoS One 2013; 8:e71081. [PMID: 23936256 PMCID: PMC3728029 DOI: 10.1371/journal.pone.0071081] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/24/2013] [Indexed: 11/21/2022] Open
Abstract
During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res.
Collapse
Affiliation(s)
- Andrew G. Timmes
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Roger A. Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Elizabeth R. Fischer
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Suzette A. Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|