1
|
Adhikashreni IS, Joseph AM, Phadke S, Badrinarayanan A. Live tracking of replisomes reveals nutrient-dependent regulation of replication elongation rates in Caulobacter crescentus. Curr Biol 2025; 35:1816-1827.e3. [PMID: 40168985 PMCID: PMC7617702 DOI: 10.1016/j.cub.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
In bacteria, commitment to genome replication (initiation) is intricately linked to nutrient availability. Whether growth conditions affect other stages of replication beyond initiation remains to be systematically studied. To address this, we assess the replication dynamics of Caulobacter crescentus, a bacterium that undergoes only a single round of replication per cell cycle, by tracking the replisome across various growth phases and nutrient conditions. We find that the replication elongation rates slow down as cells transition from exponential (high-nutrient) to stationary (low-nutrient) phase, and this contributes significantly to the overall cell-cycle delay. Although elongation rates are correlated with growth rates, both properties are differentially influenced by nutrient status. This slowdown in replication progression is reversed via supplementation with dNTPs and is not associated with increased mutagenesis or upregulation of the DNA damage responses. We conclude that growth conditions not only dictate the commitment to replication but also the rates of genome duplication. Such regulation appears to be distinct from stress-induced replication slowdown and likely serves as an adaptive mechanism to cope with fluctuations in nutrient availability in the environment.
Collapse
Affiliation(s)
| | - Asha Mary Joseph
- National Centre for Biological Sciences (TIFR), Bengaluru 560065, India.
| | - Sneha Phadke
- National Centre for Biological Sciences (TIFR), Bengaluru 560065, India
| | | |
Collapse
|
2
|
Abner K, Šverns P, Arold J, Lints T, Eller NA, Morell I, Seiman A, Adamberg K, Vilu R. The design of unit cells by combining the self-reproduction systems and metabolic cushioning loads. Commun Biol 2025; 8:241. [PMID: 39955448 PMCID: PMC11830011 DOI: 10.1038/s42003-025-07655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Recently, we published a comprehensive theoretical analysis of the self-reproduction processes in proto-cells (doubling of their components) composed of different combinations of cellular subsystems. In this paper, we extend the detailed analysis of structural and functional peculiarities of self-reproduction processes to unit cells of the Cooper-Helmstetter-Donachie cell cycle theory. We show that: 1. Our modelling framework allows to calculate physiological parameters (numbers of cell components, flux patterns, cellular composition, etc.) of unit cells, including also unit cell mass that determines the DNA replication initiation conditions. 2. Unit cells might have additional cell (cushioning) components that are responsible not only for carrying out various special functions, but also for regulating cell size and stabilizing the growth of cells. 3. The optimal productivity of the synthesis of cushioning components (useful cellular load) is observed at doubling time approximately two times longer than the minimal doubling time of the unit cells.
Collapse
Affiliation(s)
- Kristo Abner
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Peter Šverns
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Janar Arold
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Taivo Lints
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Neeme-Andreas Eller
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Indrek Morell
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Andrus Seiman
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kaarel Adamberg
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Raivo Vilu
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia.
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
3
|
Maciąg-Dorszyńska M, Morcinek-Orłowska J, Barańska S. Concise Overview of Methodologies Employed in the Study of Bacterial DNA Replication. Int J Mol Sci 2025; 26:446. [PMID: 39859162 PMCID: PMC11764726 DOI: 10.3390/ijms26020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
DNA replication is a fundamental process in the cell on which the functioning of the entire cell as well as the maintenance of the entire species depends. This process is synchronized with all other processes within the cell as well as with external, environmental factors. This complex network of interconnections presents significant challenges in the field of DNA replication research, both in terms of identifying an appropriate approach to a question posed and in terms of methodology. This article aims to provide a roadmap to assist in navigating (to help overcome) these challenges and in selecting an appropriate research methodology. It should help to establish a research pathway, starting with arranging the host genetic background for analysis at different cellular levels, which can be achieved using complex or simple single-purpose techniques.
Collapse
Affiliation(s)
- Monika Maciąg-Dorszyńska
- Department of Bacterial Molecular Genetics, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Morcinek-Orłowska
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Sylwia Barańska
- Department of Bacterial Molecular Genetics, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
4
|
Wu L, Zhang Y, Hong X, Wu M, Wang L, Yan X. Deciphering the Relationship between Cell Growth and Cell Cycle in Individual Escherichia coli Cells by Flow Cytometry. Anal Chem 2024. [PMID: 39015018 DOI: 10.1021/acs.analchem.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Accurate coordination of chromosome replication and cell division is essential for cellular processes, yet the regulatory mechanisms governing the bacterial cell cycle remain contentious. The lack of quantitative data connecting key cell cycle players at the single-cell level across large samples hinders consensus. Employing high-throughput flow cytometry, we quantitatively correlated the expression levels of key cell cycle proteins (FtsZ, MreB, and DnaA) with DNA content in individual bacteria. Our findings reveal distinct correlations depending on the chromosome number (CN), specifically whether CN ≤2 or ≥4, unveiling a mixed regulatory scenario in populations where CN of 2 or 4 coexist. We observed function-dependent regulations for these key proteins across nonoverlapping division cycles and various nutrient conditions. Notably, a logarithmic relationship between total protein content and replication origin number across nutrient conditions suggests a unified mechanism governing cell cycle progression, confirming the applicability of Schaechter's growth law to cells with CN ≥4. For the first time, we established a proportional relationship between the synthesis rates of key cell cycle proteins and chromosome dynamics in cells with CN ≥4. Drug experiments highlighted CN 2 and 4 as pivotal turning points influencing cellular resource allocation. This high-throughput, single-cell analysis provides interconnected quantitative insights into key molecular events, facilitating a predictive understanding of the relationship between cell growth and cell cycle.
Collapse
Affiliation(s)
- Lina Wu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuzhen Zhang
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xinyi Hong
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingkai Wu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Liangan Wang
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
5
|
Morcinek-Orłowska J, Walter B, Forquet R, Cysewski D, Carlier M, Mozolewski M, Meyer S, Glinkowska M. Interaction networks of Escherichia coli replication proteins under different bacterial growth conditions. Sci Data 2023; 10:788. [PMID: 37949936 PMCID: PMC10638427 DOI: 10.1038/s41597-023-02710-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
In this work we analyzed protein-protein interactions (PPIs) formed by E. coli replication proteins under three disparate bacterial growth conditions. The chosen conditions corresponded to fast exponential growth, slow exponential growth and growth cessation at the stationary phase. We performed affinity purification coupled with mass spectrometry (AP-MS) of chromosomally expressed proteins (DnaA, DnaB, Hda, SeqA, DiaA, DnaG, HolD, NrdB), tagged with sequential peptide affinity (SPA) tag. Composition of protein complexes was characterized using MaxQuant software. To filter out unspecific interactions, we employed double negative control system and we proposed qualitative and quantitative data analysis strategies that can facilitate hits identification in other AP-MS datasets. Our motivation to undertake this task was still insufficient understanding of molecular mechanisms coupling DNA replication to cellular growth. Previous works suggested that such control mechanisms could involve physical interactions of replication factors with metabolic or cell envelope proteins. However, the dynamic replication protein interaction network (PIN) obtained in this study can be used to characterize links between DNA replication and various cellular processes in other contexts.
Collapse
Affiliation(s)
- Joanna Morcinek-Orłowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Beata Walter
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Raphaël Forquet
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, PAS, Warsaw 02-106, Warszawa, Poland
| | - Maxime Carlier
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Michał Mozolewski
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Sam Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Monika Glinkowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland.
| |
Collapse
|
6
|
Soultanas P, Janniere L. The metabolic control of DNA replication: mechanism and function. Open Biol 2023; 13:230220. [PMID: 37582405 PMCID: PMC10427196 DOI: 10.1098/rsob.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolism and DNA replication are the two most fundamental biological functions in life. The catabolic branch of metabolism breaks down nutrients to produce energy and precursors used by the anabolic branch of metabolism to synthesize macromolecules. DNA replication consumes energy and precursors for faithfully copying genomes, propagating the genetic material from generation to generation. We have exquisite understanding of the mechanisms that underpin and regulate these two biological functions. However, the molecular mechanism coordinating replication to metabolism and its biological function remains mostly unknown. Understanding how and why living organisms respond to fluctuating nutritional stimuli through cell-cycle dynamic changes and reproducibly and distinctly temporalize DNA synthesis in a wide-range of growth conditions is important, with wider implications across all domains of life. After summarizing the seminal studies that founded the concept of the metabolic control of replication, we review data linking metabolism to replication from bacteria to humans. Molecular insights underpinning these links are then presented to propose that the metabolic control of replication uses signalling systems gearing metabolome homeostasis to orchestrate replication temporalization. The remarkable replication phenotypes found in mutants of this control highlight its importance in replication regulation and potentially genetic stability and tumorigenesis.
Collapse
Affiliation(s)
- Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
7
|
Holland A, Pitoulias M, Soultanas P, Janniere L. The Replicative DnaE Polymerase of Bacillus subtilis Recruits the Glycolytic Pyruvate Kinase (PykA) When Bound to Primed DNA Templates. Life (Basel) 2023; 13:life13040965. [PMID: 37109494 PMCID: PMC10143966 DOI: 10.3390/life13040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The glycolytic enzyme PykA has been reported to drive the metabolic control of replication through a mechanism involving PykA moonlighting functions on the essential DnaE polymerase, the DnaC helicase and regulatory determinants of PykA catalytic activity in Bacillus subtilis. The mutants of this control suffer from critical replication and cell cycle defects, showing that the metabolic control of replication plays important functions in the overall rate of replication. Using biochemical approaches, we demonstrate here that PykA interacts with DnaE for modulating its activity when the replication enzyme is bound to a primed DNA template. This interaction is mediated by the CAT domain of PykA and possibly allosterically regulated by its PEPut domain, which also operates as a potent regulator of PykA catalytic activity. Furthermore, using fluorescence microscopy we show that the CAT and PEPut domains are important for the spatial localization of origins and replication forks, independently of their function in PykA catalytic activity. Collectively, our data suggest that the metabolic control of replication depends on the recruitment of PykA by DnaE at sites of DNA synthesis. This recruitment is likely highly dynamic, as DnaE is frequently recruited to and released from replication machineries to extend the several thousand RNA primers generated from replication initiation to termination. This implies that PykA and DnaE continuously associate and dissociate at replication machineries for ensuring a highly dynamic coordination of the replication rate with metabolism.
Collapse
Affiliation(s)
- Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, CEDEX, France
| |
Collapse
|
8
|
Chen PJ, McMullin AB, Visser BJ, Mei Q, Rosenberg SM, Bates D. Interdependent progression of bidirectional sister replisomes in E. coli. eLife 2023; 12:e82241. [PMID: 36621919 PMCID: PMC9859026 DOI: 10.7554/elife.82241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Bidirectional DNA replication complexes initiated from the same origin remain colocalized in a factory configuration for part or all their lifetimes. However, there is little evidence that sister replisomes are functionally interdependent, and the consequence of factory replication is unknown. Here, we investigated the functional relationship between sister replisomes in Escherichia coli, which naturally exhibits both factory and solitary configurations in the same replication cycle. Using an inducible transcription factor roadblocking system, we found that blocking one replisome caused a significant decrease in overall progression and velocity of the sister replisome. Remarkably, progression was impaired only if the block occurred while sister replisomes were still in a factory configuration - blocking one fork had no significant effect on the other replisome when sister replisomes were physically separate. Disruption of factory replication also led to increased fork stalling and requirement of fork restart mechanisms. These results suggest that physical association between sister replisomes is important for establishing an efficient and uninterrupted replication program. We discuss the implications of our findings on mechanisms of replication factory structure and function, and cellular strategies of replicating problematic DNA such as highly transcribed segments.
Collapse
Affiliation(s)
- Po Jui Chen
- Molecular Virology and Microbiology, Baylor College of MedicineHoustonUnited States
| | - Anna B McMullin
- Molecular Virology and Microbiology, Baylor College of MedicineHoustonUnited States
| | - Bryan J Visser
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of MedicineHoustonUnited States
| | - Qian Mei
- Systems, Synthetic, and Physical Biology Program, Rice UniversityHoustonUnited States
| | - Susan M Rosenberg
- Molecular Virology and Microbiology, Baylor College of MedicineHoustonUnited States
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of MedicineHoustonUnited States
- Systems, Synthetic, and Physical Biology Program, Rice UniversityHoustonUnited States
- Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - David Bates
- Molecular Virology and Microbiology, Baylor College of MedicineHoustonUnited States
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of MedicineHoustonUnited States
- Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
9
|
Bhat D, Hauf S, Plessy C, Yokobayashi Y, Pigolotti S. Speed variations of bacterial replisomes. eLife 2022; 11:75884. [PMID: 35877175 PMCID: PMC9385209 DOI: 10.7554/elife.75884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Replisomes are multi-protein complexes that replicate genomes with remarkable speed and accuracy. Despite their importance, their dynamics is poorly characterized, especially in vivo. In this paper, we present an approach to infer the replisome dynamics from the DNA abundance distribution measured in a growing bacterial population. Our method is sensitive enough to detect subtle variations of the replisome speed along the genome. As an application, we experimentally measured the DNA abundance distribution in Escherichia coli populations growing at different temperatures using deep sequencing. We find that the average replisome speed increases nearly five-fold between 17°C and 37°C. Further, we observe wave-like variations of the replisome speed along the genome. These variations correlate with previously observed variations of the mutation rate, suggesting a common dynamical origin. Our approach has the potential to elucidate replication dynamics in E. coli mutants and in other bacterial species.
Collapse
Affiliation(s)
- Deepak Bhat
- Biological Complexity Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology, Onna, Japan
| |
Collapse
|
10
|
Escherichia coli cell factories with altered chromosomal replication scenarios exhibit accelerated growth and rapid biomass production. Microb Cell Fact 2022; 21:125. [PMID: 35729580 PMCID: PMC9210752 DOI: 10.1186/s12934-022-01851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background Generally, bacteria have a circular genome with a single replication origin for each replicon, whereas archaea and eukaryotes can have multiple replication origins in a single chromosome. In Escherichia coli, bidirectional DNA replication is initiated at the origin of replication (oriC) and arrested by the 10 termination sites (terA–J). Results We constructed E. coli derivatives with additional or ectopic replication origins, which demonstrate the relationship between DNA replication and cell physiology. The cultures of E. coli derivatives with multiple replication origins contained an increased fraction of replicating chromosomes and the cells varied in size. Without the original oriC, E. coli derivatives with double ectopic replication origins manifested impaired growth irrespective of growth conditions and enhanced cell size, and exhibited excessive and asynchronous replication initiation. The generation time of an E. coli strain with three replication origins decreased in a minimal medium supplemented with glucose as the sole carbon source. As well as cell growth, the introduction of additional replication origins promoted increased biomass production. Conclusions Balanced cell growth and physiological stability of E. coli under rapid growth condition are affected by changes in the position and number of replication origins. Additionally, we show that, for the first time to our knowledge, the introduction of replication initiation sites to the chromosome promotes cell growth and increases protein production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01851-z.
Collapse
|
11
|
Gelber I, Aranovich A, Feingold M, Fishov I. Stochastic nucleoid segregation dynamics as a source of the phenotypic variability in E. coli. Biophys J 2021; 120:5107-5123. [PMID: 34627765 PMCID: PMC8633714 DOI: 10.1016/j.bpj.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Segregation of the replicating chromosome from a single to two nucleoid bodies is one of the major processes in growing bacterial cells. The segregation dynamics is tuned by intricate interactions with other cellular processes such as growth and division, ensuring flexibility in a changing environment. We hypothesize that the internal stochasticity of the segregation process may be the source of cell-to-cell phenotypic variability, in addition to the well-established gene expression noise and uneven partitioning of low copy number components. We compare dividing cell lineages with filamentous cells, where the lack of the diffusion barriers is expected to reduce the impact of other factors on the variability of nucleoid segregation dynamics. The nucleoid segregation was monitored using time-lapse microscopy in live E. coli cells grown in linear grooves. The main characteristics of the segregation process, namely, the synchrony of partitioning, rates of separation, and final positions, as well as the variability of these characteristics, were determined for dividing and filamentous lineages growing under the same conditions. Indeed, the gene expression noise was considerably homogenized along filaments as determined from the distribution of CFP and YFP stochastically expressed from the chromosome. We find that 1) the synchrony of nucleoid partitioning is progressively decreasing during consecutive cell cycles, but to a significantly lesser degree in filamentous than in dividing cells; 2) the mean partitioning rate of nucleoids is essentially the same in dividing and filamentous cells, displaying a substantial variability in both; and 3) nucleoids segregate to the same distances in dividing and filamentous cells. Variability in distances is increasing during successive cell cycles, but to a much lesser extent in filamentous cells. Our findings indicate that the variability of the chromosome segregation dynamics is reduced upon removal of boundaries between nucleoids, whereas the remaining variability is essentially inherent to the nucleoid itself.
Collapse
Affiliation(s)
- Itay Gelber
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alexander Aranovich
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mario Feingold
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
12
|
Helgesen E, Sætre F, Skarstad K. Topoisomerase IV tracks behind the replication fork and the SeqA complex during DNA replication in Escherichia coli. Sci Rep 2021; 11:474. [PMID: 33436807 PMCID: PMC7803763 DOI: 10.1038/s41598-020-80043-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Topoisomerase IV (TopoIV) is a vital bacterial enzyme which disentangles newly replicated DNA and enables segregation of daughter chromosomes. In bacteria, DNA replication and segregation are concurrent processes. This means that TopoIV must continually remove inter-DNA linkages during replication. There exists a short time lag of about 10–20 min between replication and segregation in which the daughter chromosomes are intertwined. Exactly where TopoIV binds during the cell cycle has been the subject of much debate. We show here that TopoIV localizes to the origin proximal side of the fork trailing protein SeqA and follows the movement pattern of the replication machinery in the cell.
Collapse
Affiliation(s)
- Emily Helgesen
- Department of Microbiology, Molecular Microbiology, Oslo University Hospital, P.O. Box 4950, 0424, Oslo, Norway. .,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Frank Sætre
- Department of Microbiology, Molecular Microbiology, Oslo University Hospital, P.O. Box 4950, 0424, Oslo, Norway.,Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kirsten Skarstad
- Department of Microbiology, Molecular Microbiology, Oslo University Hospital, P.O. Box 4950, 0424, Oslo, Norway
| |
Collapse
|
13
|
Meunier A, Cornet F, Campos M. Bacterial cell proliferation: from molecules to cells. FEMS Microbiol Rev 2021; 45:fuaa046. [PMID: 32990752 PMCID: PMC7794046 DOI: 10.1093/femsre/fuaa046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial cell proliferation is highly efficient, both because bacteria grow fast and multiply with a low failure rate. This efficiency is underpinned by the robustness of the cell cycle and its synchronization with cell growth and cytokinesis. Recent advances in bacterial cell biology brought about by single-cell physiology in microfluidic chambers suggest a series of simple phenomenological models at the cellular scale, coupling cell size and growth with the cell cycle. We contrast the apparent simplicity of these mechanisms based on the addition of a constant size between cell cycle events (e.g. two consecutive initiation of DNA replication or cell division) with the complexity of the underlying regulatory networks. Beyond the paradigm of cell cycle checkpoints, the coordination between the DNA and division cycles and cell growth is largely mediated by a wealth of other mechanisms. We propose our perspective on these mechanisms, through the prism of the known crosstalk between DNA replication and segregation, cell division and cell growth or size. We argue that the precise knowledge of these molecular mechanisms is critical to integrate the diverse layers of controls at different time and space scales into synthetic and verifiable models.
Collapse
Affiliation(s)
- Alix Meunier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| |
Collapse
|
14
|
Hoff J, Daniel B, Stukenberg D, Thuronyi BW, Waldminghaus T, Fritz G. Vibrio natriegens
: an ultrafast‐growing marine bacterium as emerging synthetic biology chassis. Environ Microbiol 2020; 22:4394-4408. [DOI: 10.1111/1462-2920.15128] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Josef Hoff
- School of Molecular Sciences The University of Western Australia Perth Australia
- Center for Synthetic Microbiology Philipps‐Universität Marburg Marburg Germany
| | - Benjamin Daniel
- Center for Synthetic Microbiology Philipps‐Universität Marburg Marburg Germany
- Institute of Microbiology, ETH Zurich Zürich Switzerland
| | - Daniel Stukenberg
- Center for Synthetic Microbiology Philipps‐Universität Marburg Marburg Germany
| | | | - Torsten Waldminghaus
- Centre for Synthetic Biology Technische Universität Darmstadt Darmstadt Germany
- Department of Biology Technische Universität Darmstadt Darmstadt Germany
| | - Georg Fritz
- School of Molecular Sciences The University of Western Australia Perth Australia
| |
Collapse
|
15
|
Very rapid flow cytometric assessment of antimicrobial susceptibility during the apparent lag phase of microbial (re)growth. Microbiology (Reading) 2019; 165:439-454. [DOI: 10.1099/mic.0.000777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
16
|
Nouri H, Monnier AF, Fossum-Raunehaug S, Maciag-Dorszynska M, Cabin-Flaman A, Képès F, Wegrzyn G, Szalewska-Palasz A, Norris V, Skarstad K, Janniere L. Multiple links connect central carbon metabolism to DNA replication initiation and elongation in Bacillus subtilis. DNA Res 2019; 25:641-653. [PMID: 30256918 PMCID: PMC6289782 DOI: 10.1093/dnares/dsy031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
DNA replication is coupled to growth by an unknown mechanism. Here, we investigated this coupling by analyzing growth and replication in 15 mutants of central carbon metabolism (CCM) cultivated in three rich media. In about one-fourth of the condition tested, defects in replication resulting from changes in initiation or elongation were detected. This uncovered 11 CCM genes important for replication and showed that some of these genes have an effect in one, two or three media. Additional results presented here and elsewhere (Jannière, L., Canceill, D., Suski, C., et al. (2007), PLoS One, 2, e447.) showed that, in the LB medium, the CCM genes important for DNA elongation (gapA and ackA) are genetically linked to the lagging strand polymerase DnaE while those important for initiation (pgk and pykA) are genetically linked to the replication enzymes DnaC (helicase), DnaG (primase) and DnaE. Our work thus shows that the coupling between growth and replication involves multiple, medium-dependent links between CCM and replication. They also suggest that changes in CCM may affect initiation by altering the functional recruitment of DnaC, DnaG and DnaE at the chromosomal origin, and may affect elongation by altering the activity of DnaE at the replication fork. The underlying mechanism is discussed.
Collapse
Affiliation(s)
- Hamid Nouri
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| | | | | | | | | | - François Képès
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Vic Norris
- Laboratoire MERCI, AMMIS, Faculté des Sciences, Mont-Saint-Aignan, France
| | - Kirsten Skarstad
- Department of Cell Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Laurent Janniere
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| |
Collapse
|
17
|
Schavemaker PE, Boersma AJ, Poolman B. How Important Is Protein Diffusion in Prokaryotes? Front Mol Biosci 2018; 5:93. [PMID: 30483513 PMCID: PMC6243074 DOI: 10.3389/fmolb.2018.00093] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022] Open
Abstract
That diffusion is important for the proper functioning of cells is without question. The extent to which the diffusion coefficient is important is explored here for prokaryotic cells. We discuss the principles of diffusion focusing on diffusion-limited reactions, summarize the known values for diffusion coefficients in prokaryotes and in in vitro model systems, and explain a number of cases where diffusion coefficients are either limiting for reaction rates or necessary for the existence of phenomena. We suggest a number of areas that need further study including expanding the range of organism growth temperatures, direct measurements of diffusion limitation, expanding the range of cell sizes, diffusion limitation for membrane proteins, and taking into account cellular context when assessing the possibility of diffusion limitation.
Collapse
Affiliation(s)
- Paul E Schavemaker
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Arnold J Boersma
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
19
|
Sharma P, Melkania U. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:289-296. [PMID: 29426722 DOI: 10.1016/j.wasman.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In the present study, the effect of heavy metals (lead, mercury, copper, and chromium) on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. Heavy metals were applied at concentration range of 0.5, 1, 2, 5, 10, 20, 50 and 100 mg/L. The results revealed that lead, mercury, and chromium negatively affected hydrogen production for the range of concentrations applied. Application of copper slightly enhanced hydrogen production at low concentration and resulted in the hydrogen yield of 36.0 mLH2/gCarboinitial with 10 mg/L copper supplementation as compared to 24.2 mLH2/gCarboinitial in control. However, the higher concentration of copper (>10 mg/L) declined hydrogen production. Hydrogen production inhibition potential of heavy metals can be arranged in the following increasing order: Cu2+ < Cr6+ < Pb2+ < Hg2+. COD removal rate and volatile fatty acid generation efficiencies were also significantly affected by heavy metal addition. Thus, the present study reveals that the presence of heavy metals in the feedstock is detrimental for the hydrogen production. Therefore, it is essential to remove the toxic heavy metals prior to anaerobic digestion.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Environmental Science, GB Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India.
| | - Uma Melkania
- Department of Environmental Science, GB Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
20
|
Sinha AK, Possoz C, Durand A, Desfontaines JM, Barre FX, Leach DRF, Michel B. Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome. PLoS Genet 2018. [PMID: 29522563 PMCID: PMC5862497 DOI: 10.1371/journal.pgen.1007256] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It was recently reported that the recBC mutants of Escherichia coli, deficient for DNA double-strand break (DSB) repair, have a decreased copy number of their terminus region. We previously showed that this deficit resulted from DNA loss after post-replicative breakage of one of the two sister-chromosome termini at cell division. A viable cell and a dead cell devoid of terminus region were thus produced and, intriguingly, the reaction was transmitted to the following generations. Using genome marker frequency profiling and observation by microscopy of specific DNA loci within the terminus, we reveal here the origin of this phenomenon. We observed that terminus DNA loss was reduced in a recA mutant by the double-strand DNA degradation activity of RecBCD. The terminus-less cell produced at the first cell division was less prone to divide than the one produced at the next generation. DNA loss was not heritable if the chromosome was linearized in the terminus and occurred at chromosome termini that were unable to segregate after replication. We propose that in a recB mutant replication fork breakage results in the persistence of a linear DNA tail attached to a circular chromosome. Segregation of the linear and circular parts of this "σ-replicating chromosome" causes terminus DNA breakage during cell division. One daughter cell inherits a truncated linear chromosome and is not viable. The other inherits a circular chromosome attached to a linear tail ending in the chromosome terminus. Replication extends this tail, while degradation of its extremity results in terminus DNA loss. Repeated generation and segregation of new σ-replicating chromosomes explains the heritability of post-replicative breakage. Our results allow us to determine that in E. coli at each generation, 18% of cells are subject to replication fork breakage at dispersed, potentially random, chromosomal locations.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- Bacterial DNA stability, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (AKS); (BM)
| | - Christophe Possoz
- Evolution and maintenance of circular chromosomes, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Adeline Durand
- Bacterial DNA stability, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Michel Desfontaines
- Evolution and maintenance of circular chromosomes, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François-Xavier Barre
- Evolution and maintenance of circular chromosomes, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David R. F. Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bénédicte Michel
- Bacterial DNA stability, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (AKS); (BM)
| |
Collapse
|
21
|
Phenotypes of dnaXE145A Mutant Cells Indicate that the Escherichia coli Clamp Loader Has a Role in the Restart of Stalled Replication Forks. J Bacteriol 2017; 199:JB.00412-17. [PMID: 28947673 DOI: 10.1128/jb.00412-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022] Open
Abstract
The Escherichia colidnaXE145A mutation was discovered in connection with a screen for multicopy suppressors of the temperature-sensitive topoisomerase IV mutation parE10 The gene for the clamp loader subunits τ and γ, dnaX, but not the mutant dnaXE145A , was found to suppress parE10(Ts) when overexpressed. Purified mutant protein was found to be functional in vitro, and few phenotypes were found in vivo apart from problems with partitioning of DNA in rich medium. We show here that a large number of the replication forks that initiate at oriC never reach the terminus in dnaXE145A mutant cells. The SOS response was found to be induced, and a combination of the dnaXE145A mutation with recBC and recA mutations led to reduced viability. The mutant cells exhibited extensive chromosome fragmentation and degradation upon inactivation of recBC and recA, respectively. The results indicate that the dnaXE145A mutant cells suffer from broken replication forks and that these need to be repaired by homologous recombination. We suggest that the dnaX-encoded τ and γ subunits of the clamp loader, or the clamp loader complex itself, has a role in the restart of stalled replication forks without extensive homologous recombination.IMPORTANCE The E. coli clamp loader complex has a role in coordinating the activity of the replisome at the replication fork and loading β-clamps for lagging-strand synthesis. Replication forks frequently encounter obstacles, such as template lesions, secondary structures, and tightly bound protein complexes, which will lead to fork stalling. Some pathways of fork restart have been characterized, but much is still unknown about the actors and mechanisms involved. We have in this work characterized the dnaXE145A clamp loader mutant. We find that the naturally occurring obstacles encountered by a replication fork are not tackled in a proper way by the mutant clamp loader and suggest a role for the clamp loader in the restart of stalled replication forks.
Collapse
|
22
|
Abebe AH, Aranovich A, Fishov I. HU content and dynamics in Escherichia coli during the cell cycle and at different growth rates. FEMS Microbiol Lett 2017; 364:4157278. [PMID: 28961819 DOI: 10.1093/femsle/fnx195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/11/2017] [Indexed: 11/12/2022] Open
Abstract
DNA-binding proteins play an important role in maintaining bacterial chromosome structure and functions. Heat-unstable (HU) histone-like protein is one of the most abundant of these proteins and participates in all major chromosome-related activities. Owing to its low sequence specificity, HU fusions with fluorescent proteins were used for general staining of the nucleoid, aiming to reveal its morphology and dynamics. We have exploited a single chromosomal copy of hupA-egfp fusion under the native promoter and used quantitative microscopy imaging to investigate the amount and dynamics of HUα in Escherichia coli cells. We found that in steady-state growing populations the cellular HUα content is proportional to the cell size, whereas its concentration is size independent. Single-cell live microscopy imaging confirmed that the amount of HUα exponentially increases during the cell cycle, but its concentration is maintained constant. This supports the existence of an auto-regulatory mechanism underlying the HUα cellular level, in addition to reflecting the gene copy number. Both the HUα amount and concentration strongly increase with the cell growth rate in different culture media. Unexpectedly, the HU/DNA stoichiometry also remarkably increases with the growth rate. This last finding may be attributed to a higher requirement for maintaining the chromosome structure in nucleoids with higher complexity.
Collapse
Affiliation(s)
- Anteneh Hailu Abebe
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel.,Medical Biotechnology Unit, Institute of Biotechnology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Alexander Aranovich
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
23
|
du Lac M, Scarpelli AH, Younger AKD, Bates DG, Leonard JN. Predicting the Dynamics and Heterogeneity of Genomic DNA Content within Bacterial Populations across Variable Growth Regimes. ACS Synth Biol 2017; 6:1131-1139. [PMID: 27689718 DOI: 10.1021/acssynbio.5b00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For many applications in microbial synthetic biology, optimizing a desired function requires careful tuning of the degree to which various genes are expressed. One challenge for predicting such effects or interpreting typical characterization experiments is that in bacteria such as E. coli, genome copy number varies widely across different phases and rates of growth, which also impacts how and when genes are expressed from different loci. While such phenomena are relatively well-understood at a mechanistic level, our quantitative understanding of such processes is essentially limited to ideal exponential growth. In contrast, common experimental phenomena such as growth on heterogeneous media, metabolic adaptation, and oxygen restriction all cause substantial deviations from ideal exponential growth, particularly as cultures approach the higher densities at which industrial biomanufacturing and even routine screening experiments are conducted. To meet the need for predicting and explaining how gene dosage impacts cellular functions outside of exponential growth, we here report a novel modeling strategy that leverages agent-based simulation and high performance computing to robustly predict the dynamics and heterogeneity of genomic DNA content within bacterial populations across variable growth regimes. We show that by feeding routine experimental data, such as optical density time series, into our heterogeneous multiphasic growth simulator, we can predict genomic DNA distributions over a range of nonexponential growth conditions. This modeling strategy provides an important advance in the ability of synthetic biologists to evaluate the role of genomic DNA content and heterogeneity in affecting the performance of existing or engineered microbial functions.
Collapse
Affiliation(s)
- Melchior du Lac
- Warwick
Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | - Declan G. Bates
- Warwick
Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
24
|
Invariance of Initiation Mass and Predictability of Cell Size in Escherichia coli. Curr Biol 2017; 27:1278-1287. [PMID: 28416114 DOI: 10.1016/j.cub.2017.03.022] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
Abstract
It is generally assumed that the allocation and synthesis of total cellular resources in microorganisms are uniquely determined by the growth conditions. Adaptation to a new physiological state leads to a change in cell size via reallocation of cellular resources. However, it has not been understood how cell size is coordinated with biosynthesis and robustly adapts to physiological states. We show that cell size in Escherichia coli can be predicted for any steady-state condition by projecting all biosynthesis into three measurable variables representing replication initiation, replication-division cycle, and the global biosynthesis rate. These variables can be decoupled by selectively controlling their respective core biosynthesis using CRISPR interference and antibiotics, verifying our predictions that different physiological states can result in the same cell size. We performed extensive growth inhibition experiments, and we discovered that cell size at replication initiation per origin, namely the initiation mass or unit cell, is remarkably invariant under perturbations targeting transcription, translation, ribosome content, replication kinetics, fatty acid and cell wall synthesis, cell division, and cell shape. Based on this invariance and balanced resource allocation, we explain why the total cell size is the sum of all unit cells. These results provide an overarching framework with quantitative predictive power over cell size in bacteria.
Collapse
|
25
|
Galli E, Midonet C, Paly E, Barre FX. Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli. PLoS Genet 2017; 13:e1006702. [PMID: 28358835 PMCID: PMC5391129 DOI: 10.1371/journal.pgen.1006702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/13/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Homologous recombination between the circular chromosomes of bacteria can generate chromosome dimers. They are resolved by a recombination event at a specific site in the replication terminus of chromosomes, dif, by dedicated tyrosine recombinases. The reaction is under the control of a cell division protein, FtsK, which assembles into active DNA pumps at mid-cell during septum formation. Previous studies suggested that activation of Xer recombination at dif was restricted to chromosome dimers in Escherichia coli but not in Vibrio cholerae, suggesting that FtsK mainly acted on chromosome dimers in E. coli but frequently processed monomeric chromosomes in V. cholerae. However, recent microscopic studies suggested that E. coli FtsK served to release the MatP-mediated cohesion and/or cell division apparatus-interaction of sister copies of the dif region independently of chromosome dimer formation. Here, we show that these apparently paradoxical observations are not linked to any difference in the dimer resolution machineries of E. coli and V. cholerae but to differences in the timing of segregation of their chromosomes. V. cholerae harbours two circular chromosomes, chr1 and chr2. We found that whatever the growth conditions, sister copies of the V. cholerae chr1 dif region remain together at mid-cell until the onset of constriction, which permits their processing by FtsK and the activation of dif-recombination. Likewise, sister copies of the dif region of the E. coli chromosome only separate after the onset of constriction in slow growth conditions. However, under fast growth conditions the dif sites separate before constriction, which restricts XerCD-dif activity to resolving chromosome dimers.
Collapse
Affiliation(s)
- Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Caroline Midonet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Evelyne Paly
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| |
Collapse
|
26
|
Jin DJ, Mata Martin C, Sun Z, Cagliero C, Zhou YN. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells. Crit Rev Biochem Mol Biol 2016; 52:96-106. [PMID: 28006965 DOI: 10.1080/10409238.2016.1269717] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques. Co-imaging of RNA polymerase (RNA Pol) with DNA and transcription elongation factors involved in ribosomal RNA (rRNA) synthesis, and ribosome biogenesis has revealed similarities between bacteria and eukaryotes in the spatial organization of the transcription machinery for growth genes, most of which are rRNA genes. Evidence supports the notion that RNA Pol molecules are concentrated, forming foci at the clustering of rRNA operons resembling the eukaryotic nucleolus. RNA Pol foci are proposed to be active transcription factories for both rRNA genes expression and ribosome biogenesis to support maximal growth in optimal growing conditions. Thus, in fast-growing bacterial cells, RNA Pol foci mimic eukaryotic Pol I activity, and transcription factories resemble nucleolus-like compartmentation. In addition, the transcription and replication machineries are mostly segregated in space to avoid the conflict between the two major cellular functions in fast-growing cells.
Collapse
Affiliation(s)
- Ding Jun Jin
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Carmen Mata Martin
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Zhe Sun
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Cedric Cagliero
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Yan Ning Zhou
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| |
Collapse
|
27
|
Milbredt S, Farmani N, Sobetzko P, Waldminghaus T. DNA Replication in Engineered Escherichia coli Genomes with Extra Replication Origins. ACS Synth Biol 2016; 5:1167-1176. [PMID: 27268399 DOI: 10.1021/acssynbio.6b00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The standard outline of bacterial genomes is a single circular chromosome with a single replication origin. From the bioengineering perspective, it appears attractive to extend this basic setup. Bacteria with split chromosomes or multiple replication origins have been successfully constructed in the last few years. The characteristics of these engineered strains will largely depend on the respective DNA replication patterns. However, the DNA replication has not been investigated systematically in engineered bacteria with multiple origins or split replicons. Here we fill this gap by studying a set of strains consisting of (i) E. coli strains with an extra copy of the native replication origin (oriC), (ii) E. coli strains with an extra copy of the replication origin from the secondary chromosome of Vibrio cholerae (oriII), and (iii) a strain in which the E. coli chromosome is split into two linear replicons. A combination of flow cytometry, microarray-based comparative genomic hybridization (CGH), and modeling revealed silencing of extra oriC copies and differential timing of ectopic oriII copies compared to the native oriC. The results were used to derive construction rules for future multiorigin and multireplicon projects.
Collapse
Affiliation(s)
- Sarah Milbredt
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Neda Farmani
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| |
Collapse
|
28
|
Beyene GT, Balasingham SV, Frye SA, Namouchi A, Homberset H, Kalayou S, Riaz T, Tønjum T. Characterization of the Neisseria meningitidis Helicase RecG. PLoS One 2016; 11:e0164588. [PMID: 27736945 PMCID: PMC5063381 DOI: 10.1371/journal.pone.0164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis (Nm) is a Gram-negative oral commensal that opportunistically can cause septicaemia and/or meningitis. Here, we overexpressed, purified and characterized the Nm DNA repair/recombination helicase RecG (RecGNm) and examined its role during genotoxic stress. RecGNm possessed ATP-dependent DNA binding and unwinding activities in vitro on a variety of DNA model substrates including a Holliday junction (HJ). Database searching of the Nm genomes identified 49 single nucleotide polymorphisms (SNPs) in the recGNm including 37 non-synonymous SNPs (nsSNPs), and 7 of the nsSNPs were located in the codons for conserved active site residues of RecGNm. A transient reduction in transformation of DNA was observed in the Nm ΔrecG strain as compared to the wildtype. The gene encoding recGNm also contained an unusually high number of the DNA uptake sequence (DUS) that facilitate transformation in neisserial species. The differentially abundant protein profiles of the Nm wildtype and ΔrecG strains suggest that expression of RecGNm might be linked to expression of other proteins involved in DNA repair, recombination and replication, pilus biogenesis, glycan biosynthesis and ribosomal activity. This might explain the growth defect that was observed in the Nm ΔrecG null mutant.
Collapse
Affiliation(s)
| | | | - Stephan A. Frye
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Amine Namouchi
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | | | - Shewit Kalayou
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- * E-mail:
| |
Collapse
|
29
|
Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli. J Bacteriol 2016; 198:1305-16. [PMID: 26858102 DOI: 10.1128/jb.00919-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such conditions.
Collapse
|
30
|
Jiménez-Sánchez A. Chromosome replication status and DNA content at any cell age in a bacterial cell cycle. J Theor Biol 2015; 380:585-9. [DOI: 10.1016/j.jtbi.2015.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/23/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
|
31
|
Flåtten I, Fossum-Raunehaug S, Taipale R, Martinsen S, Skarstad K. The DnaA Protein Is Not the Limiting Factor for Initiation of Replication in Escherichia coli. PLoS Genet 2015; 11:e1005276. [PMID: 26047361 PMCID: PMC4457925 DOI: 10.1371/journal.pgen.1005276] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/14/2015] [Indexed: 11/29/2022] Open
Abstract
The bacterial replication cycle is driven by the DnaA protein which cycles between the active ATP-bound form and the inactive ADP-bound form. It has been suggested that DnaA also is the main controller of initiation frequency. Initiation is thought to occur when enough ATP-DnaA has accumulated. In this work we have performed cell cycle analysis of cells that contain a surplus of ATP-DnaA and asked whether initiation then occurs earlier. It does not. Cells with more than a 50% increase in the concentration of ATP-DnaA showed no changes in timing of replication. We suggest that although ATP-DnaA is the main actor in initiation of replication, its accumulation does not control the time of initiation. ATP-DnaA is the motor that drives the initiation process, but other factors will be required for the exact timing of initiation in response to the cell’s environment. We also investigated the in vivo roles of datA dependent DnaA inactivation (DDAH) and the DnaA-binding protein DiaA. Loss of DDAH affected the cell cycle machinery only during slow growth and made it sensitive to the concentration of DiaA protein. The result indicates that compromised cell cycle machines perform in a less robust manner. Cell cycle regulation of the bacterium Escherichia coli has been studied for many years, and its understanding is complicated by the fact that overlapping replication cycles occur during growth in rich media. Under such conditions cells initiate several copies of the chromosome. The active form of the CDC6-like DnaA protein is required for initiation of synchronous and well-timed replication cycles and is in a sense the motor of the cell cycle machine. It has long been debated whether it is the accumulation of enough ATP-DnaA that triggers initiation and determines the replication frequency. In this work we have constructed a strain where the “accumulation of ATP-DnaA triggers initiation” model could be tested. Our results indicate that this model requires some modification. We suggest that cell cycle regulation in E. coli has similarities to that of eukaryotes in that origins are “licensed” to initiate by a cell cycle motor and that the precise timing depends on other signaling.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Solveig Fossum-Raunehaug
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Riikka Taipale
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Silje Martinsen
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
32
|
Jin DJ, Cagliero C, Martin CM, Izard J, Zhou YN. The dynamic nature and territory of transcriptional machinery in the bacterial chromosome. Front Microbiol 2015; 6:497. [PMID: 26052320 PMCID: PMC4440401 DOI: 10.3389/fmicb.2015.00497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/06/2015] [Indexed: 11/16/2022] Open
Abstract
Our knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP) in Escherichia coli on the level of single cell, using wide-field fluorescence microscopy and state-of-the-art imaging techniques. Live-cell imaging using either an agarose-embedding procedure or a microfluidic system further underscores the dynamic nature of the distribution of RNAP in response to changes in the environment and highlights the challenges in the study. A general agreement between live-cell and fixed-cell images has validated the formaldehyde-fixing procedure, which is a technical breakthrough in the study of the cell biology of RNAP. In this review we use a systems biology perspective to summarize the advances in the cell biology of RNAP in E. coli, including the discoveries of the bacterial nucleolus, the spatial compartmentalization of the transcription machinery at the periphery of the nucleoid, and the segregation of the chromosome territories for the two major cellular functions of transcription and replication in fast-growing cells. Our understanding of the coupling of transcription and bacterial chromosome (or nucleoid) structure is also summarized. Using E. coli as a simple model system, co-imaging of RNAP with DNA and other factors during growth and stress responses will continue to be a useful tool for studying bacterial growth and adaptation in changing environment.
Collapse
Affiliation(s)
- Ding J Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Carmen M Martin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Jerome Izard
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Yan N Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| |
Collapse
|
33
|
Cagliero C, Zhou YN, Jin DJ. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells. Nucleic Acids Res 2015; 42:13696-705. [PMID: 25416798 PMCID: PMC4267616 DOI: 10.1093/nar/gku1103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes.
Collapse
Affiliation(s)
| | | | - Ding Jun Jin
- To whom correspondence should be addressed. Tel: +1 301 846 7684; Fax: +1 301 846 1489;
| |
Collapse
|
34
|
Helgesen E, Fossum-Raunehaug S, Sætre F, Schink KO, Skarstad K. Dynamic Escherichia coli SeqA complexes organize the newly replicated DNA at a considerable distance from the replisome. Nucleic Acids Res 2015; 43:2730-43. [PMID: 25722374 PMCID: PMC4357733 DOI: 10.1093/nar/gkv146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli SeqA protein binds to newly replicated, hemimethylated DNA behind replication forks and forms structures consisting of several hundred SeqA molecules bound to about 100 kb of DNA. It has been suggested that SeqA structures either direct the new sister DNA molecules away from each other or constitute a spacer that keeps the sisters together. We have developed an image analysis script that automatically measures the distance between neighboring foci in cells. Using this tool as well as direct stochastic optical reconstruction microscopy (dSTORM) we find that in cells with fluorescently tagged SeqA and replisome the sister SeqA structures were situated close together (less than about 30 nm apart) and relatively far from the replisome (on average 200–300 nm). The results support the idea that newly replicated sister molecules are kept together behind the fork and suggest the existence of a stretch of DNA between the replisome and SeqA which enjoys added stabilization. This could be important in facilitating DNA transactions such as recombination, mismatch repair and topoisomerase activity. In slowly growing cells without ongoing replication forks the SeqA protein was found to reside at the fully methylated origins prior to initiation of replication.
Collapse
Affiliation(s)
- Emily Helgesen
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Solveig Fossum-Raunehaug
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Frank Sætre
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Kay Oliver Schink
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
35
|
Gene regulation by H-NS as a function of growth conditions depends on chromosomal position in Escherichia coli. G3-GENES GENOMES GENETICS 2015; 5:605-14. [PMID: 25701587 PMCID: PMC4390576 DOI: 10.1534/g3.114.016139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular adaptation to changing environmental conditions requires the coordinated regulation of expression of large sets of genes by global regulatory factors such as nucleoid associated proteins. Although in eukaryotic cells genomic position is known to play an important role in regulation of gene expression, it remains to be established whether in bacterial cells there is an influence of chromosomal position on the efficiency of these global regulators. Here we show for the first time that genome position can affect transcription activity of a promoter regulated by the histone-like nucleoid-structuring protein (H-NS), a global regulator of bacterial transcription and genome organization. We have used as a local reporter of H-NS activity the level of expression of a fluorescent reporter protein under control of an H-NS−regulated promoter (Phns) at different sites along the genome. Our results show that the activity of the Phns promoter depends on whether it is placed within the AT-rich regions of the genome that are known to be bound preferentially by H-NS. This modulation of gene expression moreover depends on the growth phase and the growth rate of the cells, reflecting the changes taking place in the relative abundance of different nucleoid proteins and the inherent heterogeneous organization of the nucleoid. Genomic position can thus play a significant role in the adaptation of the cells to environmental changes, providing a fitness advantage that can explain the selection of a gene’s position during evolution.
Collapse
|
36
|
Messerschmidt SJ, Waldminghaus T. Dynamic Organization: Chromosome Domains in Escherichia coli. J Mol Microbiol Biotechnol 2015; 24:301-15. [DOI: 10.1159/000369098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Messerschmidt SJ, Kemter FS, Schindler D, Waldminghaus T. Synthetic secondary chromosomes in Escherichia coli based on the replication origin of chromosome II in Vibrio cholerae. Biotechnol J 2014; 10:302-14. [PMID: 25359671 DOI: 10.1002/biot.201400031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 01/25/2023]
Abstract
Recent developments in DNA-assembly methods make the synthesis of synthetic chromosomes a reachable goal. However, the redesign of primary chromosomes bears high risks and still requires enormous resources. An alternative approach is the addition of synthetic chromosomes to the cell. The natural secondary chromosome of Vibrio cholerae could potentially serve as template for a synthetic secondary chromosome in Escherichia coli. To test this assumption we constructed a replicon named synVicII based on the replication module of V. cholerae chromosome II (oriII). A new assay for the assessment of replicon stability was developed based on flow-cytometric analysis of unstable GFP variants. Application of this assay to cells carrying synVicII revealed an improved stability compared to a secondary replicon based on E. coli oriC. Cell cycle analysis and determination of cellular copy numbers of synVicII indicate that replication timing of the synthetic replicon in E. coli is comparable to the natural chromosome II (ChrII) in V. cholerae. The presented synthetic biology work provides the basis to use secondary chromosomes in E. coli to answer basic research questions as well as for several biotechnological applications.
Collapse
Affiliation(s)
- Sonja J Messerschmidt
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
38
|
Fossum-Raunehaug S, Helgesen E, Stokke C, Skarstad K. Escherichia coli SeqA structures relocalize abruptly upon termination of origin sequestration during multifork DNA replication. PLoS One 2014; 9:e110575. [PMID: 25333813 PMCID: PMC4204900 DOI: 10.1371/journal.pone.0110575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/22/2014] [Indexed: 01/23/2023] Open
Abstract
The Escherichia coli SeqA protein forms complexes with new, hemimethylated DNA behind replication forks and is important for successful replication during rapid growth. Here, E. coli cells with two simultaneously replicating chromosomes (multifork DNA replication) and YFP tagged SeqA protein was studied. Fluorescence microscopy showed that in the beginning of the cell cycle cells contained a single focus at midcell. The focus was found to remain relatively immobile at midcell for a period of time equivalent to the duration of origin sequestration. Then, two abrupt relocalization events occurred within 2-6 minutes and resulted in SeqA foci localized at each of the cell's quarter positions. Imaging of cells containing an additional fluorescent tag in the origin region showed that SeqA colocalizes with the origin region during sequestration. This indicates that the newly replicated DNA of first one chromosome, and then the other, is moved from midcell to the quarter positions. At the same time, origins are released from sequestration. Our results illustrate that newly replicated sister DNA is segregated pairwise to the new locations. This mode of segregation is in principle different from that of slowly growing bacteria where the newly replicated sister DNA is partitioned to separate cell halves and the decatenation of sisters a prerequisite for, and possibly a mechanistic part of, segregation.
Collapse
Affiliation(s)
- Solveig Fossum-Raunehaug
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Emily Helgesen
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway
| | - Caroline Stokke
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Khlebodarova TM, Likhoshvai VA. New evidence of an old problem: The coupling of genome replication to cell growth in bacteria. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541408002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Itsko M, Schaaper RM. dGTP starvation in Escherichia coli provides new insights into the thymineless-death phenomenon. PLoS Genet 2014; 10:e1004310. [PMID: 24810600 PMCID: PMC4014421 DOI: 10.1371/journal.pgen.1004310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Starvation of cells for the DNA building block dTTP is strikingly lethal (thymineless death, TLD), and this effect is observed in all organisms. The phenomenon, discovered some 60 years ago, is widely used to kill cells in anticancer therapies, but many questions regarding the precise underlying mechanisms have remained. Here, we show for the first time that starvation for the DNA precursor dGTP can kill E. coli cells in a manner sharing many features with TLD. dGTP starvation is accomplished by combining up-regulation of a cellular dGTPase with a deficiency of the guanine salvage enzyme guanine-(hypoxanthine)-phosphoribosyltransferase. These cells, when grown in medium without an exogenous purine source like hypoxanthine or adenine, display a specific collapse of the dGTP pool, slow-down of chromosomal replication, the generation of multi-branched nucleoids, induction of the SOS system, and cell death. We conclude that starvation for a single DNA building block is sufficient to bring about cell death.
Collapse
Affiliation(s)
- Mark Itsko
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Roel M. Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
Odsbu I, Skarstad K. DNA compaction in the early part of the SOS response is dependent on RecN and RecA. MICROBIOLOGY-SGM 2014; 160:872-882. [PMID: 24615185 DOI: 10.1099/mic.0.075051-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nucleoids of undamaged Escherichia coli cells have a characteristic shape and number, which is dependent on the growth medium. Upon induction of the SOS response by a low dose of UV irradiation an extensive reorganization of the nucleoids occurred. Two distinct phases were observed by fluorescence microscopy. First, the nucleoids were found to change shape and fuse into compact structures at midcell. The compaction of the nucleoids lasted for 10-20 min and was followed by a phase where the DNA was dispersed throughout the cells. This second phase lasted for ~1 h. The compaction was found to be dependent on the recombination proteins RecA, RecO and RecR as well as the SOS-inducible, SMC (structural maintenance of chromosomes)-like protein RecN. RecN protein is produced in high amounts during the first part of the SOS response. It is possible that the RecN-mediated 'compact DNA' stage at the beginning of the SOS response serves to stabilize damaged DNA prior to recombination and repair.
Collapse
Affiliation(s)
- Ingvild Odsbu
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
42
|
Likhoshvai VA, Khlebodarova TM. Mathematical modeling of bacterial cell cycle: the problem of coordinating genome replication with cell growth. J Bioinform Comput Biol 2014; 12:1450009. [PMID: 24969747 DOI: 10.1142/s0219720014500097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we perform an analysis of bacterial cell-cycle models implementing different strategies to coordinately regulate genome replication and cell growth dynamics. It has been shown that the problem of coupling these processes does not depend directly on the dynamics of cell volume expansion, but does depend on the type of cell growth law. Our analysis has distinguished two types of cell growth laws, "exponential" and "linear", each of which may include both exponential and linear patterns of cell growth. If a cell grows following a law of the "exponential" type, including the exponential V(t) = V(0) exp (kt) and linear V(t) = V(0)(1 + kt) dynamic patterns, then the cell encounters the problem of coupling growth rates and replication. It has been demonstrated that to solve the problem, it is sufficient for a cell to have a repressor mechanism to regulate DNA replication initiation. For a cell expanding its volume by a law of the "linear" type, including exponential V(t) = V(0) + V(1) exp (kt) and linear V(t) = V(0) + kt dynamic patterns, the problem of coupling growth rates and replication does not exist. In other words, in the context of the coupling problem, a repressor mechanism to regulate DNA replication, and cell growth laws of the "linear" type displays the attributes of universality. The repressor-type mechanism allows a cell to follow any growth dynamic pattern, while the "linear" type growth law allows a cell to use any mechanism to regulate DNA replication.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentieva 10, Novosibirsk 630090, Russia , Novosibirsk State University, av. Pirogova 2, Novosibirsk 630090, Russia
| | | |
Collapse
|
43
|
Thacker VV, Bromek K, Meijer B, Kotar J, Sclavi B, Lagomarsino MC, Keyser UF, Cicuta P. Bacterial nucleoid structure probed by active drag and resistive pulse sensing. Integr Biol (Camb) 2014; 6:184-91. [DOI: 10.1039/c3ib40147b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combine steerable optical trap and microcapillary Coulter counter experiments to detect global changes in bacterial nucleoid organization.
Collapse
Affiliation(s)
- Vivek V. Thacker
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Krystyna Bromek
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Benoit Meijer
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Jurij Kotar
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Bianca Sclavi
- CNRS/Ecole Normale Supérieure de Cachan
- Cachan, France
| | | | - Ulrich F. Keyser
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Pietro Cicuta
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| |
Collapse
|
44
|
Flåtten I, Skarstad K. The Fis protein has a stimulating role in initiation of replication in Escherichia coli in vivo. PLoS One 2013; 8:e83562. [PMID: 24358293 PMCID: PMC3865182 DOI: 10.1371/journal.pone.0083562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022] Open
Abstract
The Fis protein is a nucleoid associated protein that has previously been reported to act negatively in initiation of replication in Escherichia coli. In this work we have examined the influence of this protein on the initiation of replication under different growth conditions using flow cytometry. The Fis protein was found to be increasingly important with increasing growth rate. During multi-fork replication severe under-initiation occurred in cells lacking the Fis protein; the cells initiated at an elevated mass, had fewer origins per cell and the origins were not initiated in synchrony. These results suggest a positive role for the Fis protein in the initiation of replication.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
45
|
Abstract
The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | |
Collapse
|