1
|
Jönsson M, Morin M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Sex-specific expression of pheromones and other signals in gravid starfish. BMC Biol 2022; 20:288. [PMID: 36528687 PMCID: PMC9759900 DOI: 10.1186/s12915-022-01491-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef. RESULTS: Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles-chemosensory organs at the distal tips of the starfish arms-uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. CONCLUSIONS Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.
Collapse
Affiliation(s)
- Mathias Jönsson
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Marie Morin
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Tsuchiya K, Zayasu Y, Nakajima Y, Arakaki N, Suzuki G, Satoh N, Shinzato C. Genomic analysis of a reef-building coral, Acropora digitifera, reveals complex population structure and a migration network in the Nansei Islands, Japan. Mol Ecol 2022; 31:5270-5284. [PMID: 36082782 DOI: 10.1111/mec.16665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022]
Abstract
Understanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, which make this region ideal for assessing genetic attributes of coral populations. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands. By merging newly obtained genome resequencing data with previously published data, we identified more than 4 million genome-wide SNPs in 303 colonies collected at 22 locations, with sequencing coverage ranging from 3.91× to 27.41×. While population structure analyses revealed genetic similarities between the southernmost and northernmost locations, separated by >1000 km, several subpopulations in intermediate locations suggested limited genetic admixture, indicating conflicting migration tendencies in the Nansei Islands. Although migration networks revealed a general tendency of northward migration along the Kuroshio Current, a substantial amount of southward migration was also detected, indicating important contributions of minor ocean currents to coral larval dispersal. Moreover, heterogeneity in the transition of effective population sizes among locations suggests different histories for individual subpopulations. The unexpected complexity of both past and present population dynamics in the Nansei Islands implies that heterogeneity of ocean currents and local environments, past and present, have influenced the population structure of this species, and similar unexpected population complexities may be expected for other marine species with similar reproductive modes.
Collapse
Affiliation(s)
- Kojin Tsuchiya
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuichi Nakajima
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
3
|
Xiao J, Wang W, Wang X, Tian P, Niu W. Recent deterioration of coral reefs in the South China Sea due to multiple disturbances. PeerJ 2022; 10:e13634. [PMID: 35910778 PMCID: PMC9332401 DOI: 10.7717/peerj.13634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/03/2022] [Indexed: 01/17/2023] Open
Abstract
More frequent global warming events, biological disasters, and anthropogenic activities have caused extensive damage to coral reefs around the world. Coral reefs in the Xisha Islands (also known as the Paracel Islands) have been damaged following rounds of heatwaves and crown-of-thorns starfish (CoTS) outbreaks over recent decades. Based on a comprehensive community survey in 2020, we determined a diagnosis for the present state of six coral regions in the Xisha Islands. The findings suggested that these regions had a total of 213 species of scleractinian corals belonging to 43 genera and 16 families. Living coral coverage across sites was widely divergent and ranged from 0.40% (IQR: 7.74-0.27%) in Panshi Yu to 38.20% (IQR: 43.00-35.90%) in Bei Jiao. Coral bleaching prevalence was 23.90% (IQR: 41.60-13.30%) overall and topped out at 49.30% (IQR: 50.60-48.10%) in Bei Jiao. Five of the coral regions (all but Yongxing Dao) were under threat of CoTS outbreaks. High mortality combined with excellent recruitment rates suggested potential rehabilitation after recent deterioration. We employed a quantifiable Deterioration Index (DI) to evaluate the intensity of deterioration of coral reefs in the Xisha Islands. The results showed that Yongxing Dao and Langhua Jiao had low recent deterioration (DIrecent = 0.05, IQR: 0.07-0.02 and 0.04, IQR: 0.11-0.01, respectively), while Bei Jiao, Yongle Atoll, Yuzhuo Jiao, and Panshi Yu had high recent deterioration (DIrecent > 0.16). Different monitoring sites within the same coral region were heterogeneous with regards to all above indexes. Moreover, we reviewed and discussed potential disturbances that threaten the health of the Xisha Islands' corals. It is crucial to identify severely afflicted areas and find successful methods to better manage coral reef health in this region.
Collapse
|
4
|
Crown of thorns starfish life-history traits contribute to outbreaks, a continuing concern for coral reefs. Emerg Top Life Sci 2022; 6:67-79. [PMID: 35225331 PMCID: PMC9023020 DOI: 10.1042/etls20210239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Crown of thorns starfish (COTS, Acanthaster sp.) are notorious for their destructive consumption of coral that decimates tropical reefs, an attribute unique among tropical marine invertebrates. Their populations can rapidly increase from 0–1 COTS ha−1 to more than 10–1000 COTS ha−1 in short order causing a drastic change to benthic communities and reducing the functional and species diversity of coral reef ecosystems. Population outbreaks were first identified to be a significant threat to coral reefs in the 1960s. Since then, they have become one of the leading causes of coral loss along with coral bleaching. Decades of research and significant investment in Australia and elsewhere, particularly Japan, have been directed towards identifying, understanding, and managing the potential causes of outbreaks and designing population control methods. Despite this, the drivers of outbreaks remain elusive. What is becoming increasingly clear is that the success of COTS is tied to their inherent biological traits, especially in early life. Survival of larval and juvenile COTS is likely to be enhanced by their dietary flexibility and resilience to variable food conditions as well as their phenotypically plastic growth dynamics, all magnified by the extreme reproductive potential of COTS. These traits enable COTS to capitalise on anthropogenic disturbances to reef systems as well as endure less favourable conditions.
Collapse
|
5
|
|
6
|
An Investigation into the Genetic History of Japanese Populations of Three Starfish, Acanthaster planci, Linckia laevigata, and Asterias amurensis, Based on Complete Mitochondrial DNA Sequences. G3-GENES GENOMES GENETICS 2020; 10:2519-2528. [PMID: 32471940 PMCID: PMC7341131 DOI: 10.1534/g3.120.401155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crown-of-thorns starfish, Acanthaster planci (COTS), are common in coral reefs of Indo-Pacific Ocean. Since they are highly fecund predators of corals, periodic outbreaks of COTS cause substantial loss of healthy coral reefs. Using complete mitochondrial DNA sequences, we here examined how COTS outbreaks in the Ryukyu Archipelago, Japan are reflected by the profile of their population genetics. Population genetics of the blue starfish, Linckia laevigata, which lives in the Ryukyu Archipelago, but not break out and the northern Pacific sea star, Asterias amurensis, which lives in colder seawater around the main Islands of Japan, were also examined as controls. Our results showed that As. amurensis has at least two local populations that diverged approximately 4.7 million years ago (MYA), and no genetic exchanges have occurred between the populations since then. Linckia laevigata shows two major populations in the Ryukyu Archipelago that likely diverged ∼6.8 MYA. The two populations, each comprised of individuals collected from coast of the Okinawa Island and those from the Ishigaki Island, suggest the presence of two cryptic species in the Ryukyu Archipelago. On the other hand, population genetics of COTS showed a profile quite different from those of Asterias and Linckia. At least five lineages of COTS have arisen since their divergence ∼0.7 MYA, and each of the lineages is present at the Okinawa Island, Miyako Island, and Ishigaki Island. These results suggest that COTS have experienced repeated genetic bottlenecks that may be associated with or caused by repeated outbreaks.
Collapse
|
7
|
Guerra V, Haynes G, Byrne M, Yasuda N, Adachi S, Nakamura M, Nakachi S, Hart MW. Nonspecific expression of fertilization genes in the crown-of-thorns Acanthaster cf. solaris: Unexpected evidence of hermaphroditism in a coral reef predator. Mol Ecol 2019; 29:363-379. [PMID: 31837059 DOI: 10.1111/mec.15332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
The characterization of gene expression in gametes has advanced our understanding of the molecular basis for ecological variation in reproductive success and the evolution of reproductive isolation. These advances are especially significant for ecologically important keystone predators such as the coral-eating crown-of-thorns sea stars (COTS, Acanthaster) which are the most influential predator species in Indo-Pacific coral reef ecosystems and the focus of intensive management efforts. We used RNA-seq and transcriptome assemblies to characterize the expression of genes in mature COTS gonads. We described the sequence and domain organization of eight genes with sex-specific expression and well known functions in fertilization in other echinoderms. We found unexpected expression of genes in one ovary transcriptome that are characteristic of males and sperm, including genes that encode the sperm-specific guanylate cyclase receptor for an egg pheromone, and the sperm acrosomal protein bindin. In a reassembly of previously published RNA-seq data from COTS testes, we found a complementary pattern: strong expression of four genes that are otherwise well known to encode egg-specific fertilization proteins, including the egg receptor for bindin (EBR1) and the acrosome reaction-inducing substance in the egg coat (ARIS1, ARIS2, ARIS3). We also found histological evidence of both eggs and sperm developing in the same gonad in several COTS individuals from a parallel study. These results suggest the occurrence of hermaphrodites, and the potential for reproductive assurance via self-fertilization. Our findings have implications for management of COTS populations, especially in consideration of the large size and massive fecundity of these sea stars.
Collapse
Affiliation(s)
- Vanessa Guerra
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Gwilym Haynes
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Department of Biology, Langara College, Vancouver, British Columbia, Canada
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, Australia
| | - Nina Yasuda
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Souta Adachi
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | - Masako Nakamura
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | | | - Michael W Hart
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
8
|
Condie SA, Plagányi ÉE, Morello EB, Hock K, Beeden R. Great Barrier Reef recovery through multiple interventions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:1356-1367. [PMID: 29956854 DOI: 10.1111/cobi.13161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 05/14/2023]
Abstract
The decline of coral cover on Australia's Great Barrier Reef (GBR) has largely been attributed to the cumulative pressures of tropical cyclones, temperature-induced coral bleaching, and predation by crown-of-thorns starfish (CoTS). In such a complex system, the effectiveness of any management intervention will become apparent only over decadal time scales. Systems modeling approaches are therefore essential to formulating and testing alternative management strategies. For a network of reefs, we developed a metacommunity model that incorporated the cumulative pressures of tropical cyclones, coral bleaching, predation, and competition between corals. We then tested the response of coral cover to management interventions including catchment restoration to reduce discharge onto the reef during cyclone-induced flood events and enhanced protection of trophic networks supporting predation of CoTS. Model results showed good agreement with long-term monitoring of the GBR, including cyclical outbreaks of CoTS driven by predator-prey dynamics on the network of reefs. Testing of intervention strategies showed that catchment restoration would likely improve coral cover. However, strategies that combined catchment restoration with enhanced CoTS predation were far more effective than catchment restoration alone.
Collapse
Affiliation(s)
- Scott A Condie
- CSIRO Oceans and Atmosphere, G.P.O. Box 1538, Hobart, Tasmania, 7001, Australia
| | - Éva E Plagányi
- CSIRO Oceans and Atmosphere, P.O. Box 2538, Brisbane, Queensland, 4001, Australia
| | - Elisabetta B Morello
- CSIRO Oceans and Atmosphere, P.O. Box 2538, Brisbane, Queensland, 4001, Australia
| | - Karlo Hock
- Marine Spatial Ecology Lab, School of Biological Sciences, University of Queensland, Goddard Building, St Lucia, Queensland, 4072, Australia
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority, 2-68 Flinders Street, Townsville, Queensland, 4810, Australia
| |
Collapse
|
9
|
Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016): Scientific Advances and Emerging Opportunities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040041] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Persistent Gaps of Knowledge for Naming and Distinguishing Multiple Species of Crown-of-Thorns-Seastar in the Acanthaster planci Species Complex. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9020022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Larval Survivorship and Settlement of Crown-of-Thorns Starfish (Acanthaster cf. solaris) at Varying Algal Cell Densities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 2016; 6:150224. [PMID: 26865025 PMCID: PMC4772807 DOI: 10.1098/rsob.150224] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
Collapse
Affiliation(s)
- Dean C Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olivier Mirabeau
- Institut Curie, Genetics and Biology of Cancers Unit, INSERM U830, PSL Research University, Paris 75005, France
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mahesh R Pancholi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
13
|
Garcia-Cisneros A, Palacín C, Ben Khadra Y, Pérez-Portela R. Low genetic diversity and recent demographic expansion in the red starfish Echinaster sepositus (Retzius 1816). Sci Rep 2016; 6:33269. [PMID: 27627860 PMCID: PMC5024105 DOI: 10.1038/srep33269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/23/2016] [Indexed: 12/31/2022] Open
Abstract
Understanding the phylogeography and genetic structure of populations and the processes responsible of patterns therein is crucial for evaluating the vulnerability of marine species and developing management strategies. In this study, we explore how past climatic events and ongoing oceanographic and demographic processes have shaped the genetic structure and diversity of the Atlanto-Mediterranean red starfish Echinaster sepositus. The species is relatively abundant in some areas of the Mediterranean Sea, but some populations have dramatically decreased over recent years due to direct extraction for ornamental aquariums and souvenir industries. Analyses across most of the distribution range of the species based on the mitochondrial cytochrome c oxidase subunit I gene and eight microsatellite loci revealed very low intraspecific genetic diversity. The species showed a weak genetic structure within marine basins despite the a priori low dispersal potential of its lecithotrophic larva. Our results also revealed a very recent demographic expansion across the distribution range of the species. The genetic data presented here indicate that the species might be highly vulnerable, due to its low intraspecific genetic diversity.
Collapse
Affiliation(s)
- Alex Garcia-Cisneros
- Animal Biology Department and Biodiversity Research Institute (IRBIO), Barcelona University, Avda. Diagonal, 643, Barcelona, Spain.,Center of Advanced Studies of Blanes (CSIC-CEAB), Accès cala St. Francesc, 14, Blanes, Spain
| | - Creu Palacín
- Animal Biology Department and Biodiversity Research Institute (IRBIO), Barcelona University, Avda. Diagonal, 643, Barcelona, Spain
| | - Yousra Ben Khadra
- Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Av. Tahar Haddad, 5000, Monastir, Tunisia
| | - Rocío Pérez-Portela
- Center of Advanced Studies of Blanes (CSIC-CEAB), Accès cala St. Francesc, 14, Blanes, Spain
| |
Collapse
|
14
|
Tusso S, Morcinek K, Vogler C, Schupp PJ, Caballes CF, Vargas S, Wörheide G. Genetic structure of the crown-of-thorns seastar in the Pacific Ocean, with focus on Guam. PeerJ 2016; 4:e1970. [PMID: 27168979 PMCID: PMC4860296 DOI: 10.7717/peerj.1970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 04/04/2016] [Indexed: 11/20/2022] Open
Abstract
Population outbreaks of the corallivorous crown-of-thorns seastar (COTS), Acanthaster 'planci' L., are among the most important biological disturbances of tropical coral reefs. Over the past 50 years, several devastating outbreaks have been documented around Guam, an island in the western Pacific Ocean. Previous analyses have shown that in the Pacific Ocean, COTS larval dispersal may be geographically restricted to certain regions. Here, we assess the genetic structure of Pacific COTS populations and compared samples from around Guam with a number of distant localities in the Pacific Ocean, and focused on determining the degree of genetic structure among populations previously considered to be isolated. Using microsatellites, we document substantial genetic structure between 14 localities from different geographical regions in the Pacific Ocean. Populations from the 14 locations sampled were found to be structured in three significantly differentiated groups: (1) all locations immediately around Guam, as well as Kingman Reef and Swains Island; (2) Japan, Philippines, GBR and Vanuatu; and (3) Johnston Atoll, which was significantly different from all other localities. The lack of genetic differentiation between Guam and extremely distant populations from Kingman Reef and Swains Island suggests potential long-distance dispersal of COTS in the Pacific.
Collapse
Affiliation(s)
- Sergio Tusso
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München , München , Germany
| | - Kerstin Morcinek
- Department of Anatomy (Neuroanatomy), University of Cologne , Köln , Germany
| | - Catherine Vogler
- Environment Department, Pöyry Switzerland Ltd. , Zurich , Switzerland
| | - Peter J Schupp
- Environmental Biochemistry, Carl-von-Ossietzky University Oldenburg, ICBM-Terramare , Wilhelmshaven , Germany
| | - Ciemon F Caballes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville, Queensland , Australia
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München , München , Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany; SNSB-Bavarian State Collections of Palaeontology and Geology, München, Germany; GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
15
|
Coleman RR, Eble JA, DiBattista JD, Rocha LA, Randall JE, Berumen ML, Bowen BW. Regal phylogeography: Range-wide survey of the marine angelfish Pygoplites diacanthus reveals evolutionary partitions between the Red Sea, Indian Ocean, and Pacific Ocean. Mol Phylogenet Evol 2016; 100:243-253. [PMID: 27068838 DOI: 10.1016/j.ympev.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
Abstract
The regal angelfish (Pygoplites diacanthus; family Pomacanthidae) occurs on reefs from the Red Sea to the central Pacific, with an Indian Ocean/Rea Sea color morph distinct from a Pacific Ocean morph. To assess population differentiation and evaluate the possibility of cryptic evolutionary partitions in this monotypic genus, we surveyed mtDNA cytochrome b and two nuclear introns (S7 and RAG2) in 547 individuals from 15 locations. Phylogeographic analyses revealed four mtDNA lineages (d=0.006-0.015) corresponding to the Pacific Ocean, the Red Sea, and two admixed lineages in the Indian Ocean, a pattern consistent with known biogeographic barriers. Christmas Island in the eastern Indian Ocean had both Indian and Pacific lineages. Both S7 and RAG2 showed strong population-level differentiation between the Red Sea, Indian Ocean, and Pacific Ocean (ΦST=0.066-0.512). The only consistent population sub-structure within these three regions was at the Society Islands (French Polynesia), where surrounding oceanographic conditions may reinforce isolation. Coalescence analyses indicate the Pacific (1.7Ma) as the oldest extant lineage followed by the Red Sea lineage (1.4Ma). Results from a median-joining network suggest radiations of two lineages from the Red Sea that currently occupy the Indian Ocean (0.7-0.9Ma). Persistence of a Red Sea lineage through Pleistocene glacial cycles suggests a long-term refuge in this region. The affiliation of Pacific and Red Sea populations, apparent in cytochrome b and S7 (but equivocal in RAG2) raises the hypothesis that the Indian Ocean was recolonized from the Red Sea, possibly more than once. Assessing the genetic architecture of this widespread monotypic genus reveals cryptic evolutionary diversity that merits subspecific recognition. We recommend P.d. diacanthus and P.d. flavescens for the Pacific and Indian Ocean/Red Sea forms.
Collapse
Affiliation(s)
- Richard R Coleman
- Hawai'i Institute of Marine Biology, University of Hawai'i, PO Box 1346, Kāne'ohe, HI 96744, USA; Department of Biology, University of Hawai'i, Mānoa, 2500 Campus Rd, Honolulu, HI 96822, USA.
| | - Jeffrey A Eble
- University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Joseph D DiBattista
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Department of Environment and Agriculture, Curtin University, PO Box U1987, Perth, WA 6845, Australia
| | - Luiz A Rocha
- Section of Ichthyology, California Academy of Sciences, 55 Music Concourse Dr, San Francisco, CA 94118, USA
| | - John E Randall
- Bernice Pauahi Bishop Museum, 1525 Bernice St, Honolulu, HI 96817, USA
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i, PO Box 1346, Kāne'ohe, HI 96744, USA
| |
Collapse
|
16
|
Detection of a High-Density Brachiolaria-Stage Larval Population of Crown-of-Thorns Sea Star (Acanthaster planci) in Sekisei Lagoon (Okinawa, Japan). DIVERSITY 2016. [DOI: 10.3390/d8020009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Davies SW, Treml EA, Kenkel CD, Matz MV. Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean. Mol Ecol 2014; 24:70-82. [DOI: 10.1111/mec.13005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/27/2022]
Affiliation(s)
- S. W. Davies
- Department of Integrative Biology; The University of Texas at Austin; 1 University Station C0990 Austin TX 78712 USA
| | - E. A. Treml
- Department of Zoology; University of Melbourne; Melbourne Vic. 3010 Australia
| | - C. D. Kenkel
- Department of Integrative Biology; The University of Texas at Austin; 1 University Station C0990 Austin TX 78712 USA
| | - M. V. Matz
- Department of Integrative Biology; The University of Texas at Austin; 1 University Station C0990 Austin TX 78712 USA
| |
Collapse
|
18
|
Sunday JM, Popovic I, Palen WJ, Foreman MGG, Hart MW. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer. Mol Ecol 2014; 23:5036-47. [DOI: 10.1111/mec.12924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023]
Affiliation(s)
- J. M. Sunday
- Biodiversity Research Centre; University of British Columbia; 2212 Main Mall Vancouver British Columbia Canada
- Department of Biological Sciences; Simon Fraser University; 8888 University Drive Burnaby British Columbia Canada
| | - I. Popovic
- Department of Biological Sciences; Simon Fraser University; 8888 University Drive Burnaby British Columbia Canada
| | - W. J. Palen
- Department of Biological Sciences; Simon Fraser University; 8888 University Drive Burnaby British Columbia Canada
| | - M. G. G. Foreman
- Institute of Ocean Sciences; Fisheries and Oceans Canada; 9860 West Saanich Road Sidney British Columbia Canada
| | - M. W. Hart
- Department of Biological Sciences; Simon Fraser University; 8888 University Drive Burnaby British Columbia Canada
| |
Collapse
|
19
|
Hock K, Wolff NH, Condie SA, Anthony KRN, Mumby PJ. Connectivity networks reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. J Appl Ecol 2014. [DOI: 10.1111/1365-2664.12320] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Karlo Hock
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St. Lucia Qld 4072 Australia
- Australian Institute for Marine Science; Townsville Qld 4810 Australia
| | - Nicholas H. Wolff
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St. Lucia Qld 4072 Australia
| | - Scott A. Condie
- CSIRO Wealth from Oceans Flagship; Hobart Tas 7004 Australia
| | | | - Peter J. Mumby
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St. Lucia Qld 4072 Australia
| |
Collapse
|
20
|
Silliman BR, McCoy MW, Angelini C, Holt RD, Griffin JN, van de Koppel J. Consumer Fronts, Global Change, and Runaway Collapse in Ecosystems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135753] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brian R. Silliman
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina 28516;
| | - Michael W. McCoy
- Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Christine Angelini
- Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Robert D. Holt
- Department of Biology, University of Florida, Gainesville, Florida 32611
| | - John N. Griffin
- Department of BioSciences, Swansea University, Swansea, SA2 8PP, Wales, United Kingdom
| | - Johan van de Koppel
- Spatial Ecology Department, Royal Netherlands Institute for Sea Research, 4401 NT Yerseke, The Netherlands
- Community and Conservation Ecology Group, University of Groningen, 9700 AB Groningen, The Netherlands
| |
Collapse
|
21
|
Barbosa SS, Klanten SO, Puritz JB, Toonen RJ, Byrne M. Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: influence of mating system and dispersal potential. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio S. Barbosa
- School of Medical Science; University of Sydney; Sydney; NSW; 2006; Australia
| | - Selma O. Klanten
- School of Medical Science; University of Sydney; Sydney; NSW; 2006; Australia
| | - Jonathan B. Puritz
- Hawaii Institute of Marine Biology; University of Hawai'i at Mānoa; Kaneohe; HI; 96744; USA
| | - Robert J. Toonen
- Hawaii Institute of Marine Biology; University of Hawai'i at Mānoa; Kaneohe; HI; 96744; USA
| | | |
Collapse
|
22
|
Haupt AJ, Micheli F, Palumbi SR. Dispersal at a snail's pace: historical processes affect contemporary genetic structure in the exploited wavy top snail (Megastraea undosa). ACTA ACUST UNITED AC 2013; 104:327-40. [PMID: 23450089 DOI: 10.1093/jhered/est002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used population genetics to assess historical and modern demography of the exploited wavy top snail, Megastraea undosa, which has a 5-10 day pelagic larval duration. Foot tissue was sampled from an average of 51 individuals at 17 sites across the range of M. undosa. Genetic structure at the mtDNA locus is strikingly high (ΦST of 0.19 across 1000 km), and a major cline occurs in northern Baja California (ΦCT of 0.29 between northern and southern populations). Genetic data indicate that the northern region is highly connected through larval dispersal, whereas the southern region exhibits low genetic structure. However, additional analyses based on patterns of haplotype diversity and relationships among haplotypes indicate that M. undosa has likely recently expanded into the Southern California Bight or expanded from a small refugial population, and analysis using isolation by distance to calculate dispersal distance indicates surprisingly short estimates of dispersal from 30 m to 3 km. This scenario of a northward expansion and limited larval dispersal is supported by coalescent-based simulations of genetic data. The different patterns of genetic variation between northern and southern populations are likely artifacts of evolutionary history rather than differences in larval dispersal and this may have applications to management of this species. Specifically, these data can help to inform the scale at which this species should be managed, and given the potentially very small dispersal distances, this species should be managed at local scales. Consideration of the evolutionary history of target species allows for a more accurate interpretation of genetic data for management.
Collapse
Affiliation(s)
- Alison J Haupt
- Hopkins Marine Station, Stanford University, 100 Oceanview Blvd, Pacific Grove, CA 93950, USA.
| | | | | |
Collapse
|
23
|
Semmens DC, Dane RE, Pancholi MR, Slade SE, Scrivens JH, Elphick MR. Discovery of a novel neurophysin-associated neuropeptide that triggers cardiac stomach contraction and retraction in starfish. J Exp Biol 2013; 216:4047-53. [DOI: 10.1242/jeb.092171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Feeding in starfish is a remarkable process in which the cardiac stomach is everted over prey and then retracted when prey tissue has been resorbed. Previous studies have revealed that SALMFamide-type neuropeptides trigger cardiac stomach relaxation and eversion in the starfish Asterias rubens. We hypothesised, therefore, that a counteracting neuropeptide system controls cardiac stomach contraction and retraction. Members of the NG peptide family cause muscle contraction in other echinoderms (e.g. NGFFFamide in sea urchins and NGIWYamide in sea cucumbers), so we investigated NG peptides as candidate regulators of cardiac stomach retraction in starfish. Generation and analysis of neural transcriptome sequence data from Asterias rubens revealed a precursor protein comprising two copies of a novel NG peptide, NGFFYamide, which was confirmed by mass spectrometry. A noteworthy feature of the NGFFYamide precursor is a C-terminal neurophysin domain, indicative of a common ancestry with vasopressin/oxytocin-type neuropeptide precursors. Interestingly, in precursors of other NG peptides the neurophysin domain has been retained (e.g. NGFFFamide) or lost (e.g. NGIWYamide and human neuropeptide S) and its functional significance remains to be determined. Investigation of the pharmacological actions of NGFFYamide in starfish revealed that it is a potent stimulator of cardiac stomach contraction in vitro and that it triggers cardiac stomach retraction in vivo. Thus, discovery of NGFFYamide provides a novel insight on neural regulation of cardiac stomach retraction as well as a rationale for chemically based strategies to control starfish that feed on economically important shellfish (e.g. mussels) or protected marine fauna (e.g. coral).
Collapse
|
24
|
Kayal M, Vercelloni J, Lison de Loma T, Bosserelle P, Chancerelle Y, Geoffroy S, Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS One 2012; 7:e47363. [PMID: 23056635 PMCID: PMC3466260 DOI: 10.1371/journal.pone.0047363] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.
Collapse
Affiliation(s)
- Mohsen Kayal
- Laboratoire d'Excellence "CORAIL", USR CNRS-EPHE, Centre de Recherches Insulaires et Observatoire de l'Environnement, Moorea, French Polynesia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|