1
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Peng X, Li Y, Liu N, Xia S, Li X, Lai Y, He L, Sang C, Dong J, Ma C. Plasma Proteomic Insights for Identification of Novel Predictors and Potential Drug Targets in Atrial Fibrillation: A Prospective Cohort Study and Mendelian Randomization Analysis. Circ Arrhythm Electrophysiol 2024; 17:e013037. [PMID: 39355913 DOI: 10.1161/circep.124.013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Currently, there are no reliable methods for predicting and preventing atrial fibrillation (AF) in its early stages. This study aimed to identify plasma proteins associated with AF to discover biomarkers and potential drug targets. METHODS The UK Biobank Pharma Proteomics Project examined 2923 circulating proteins using the Olink platform, forming the basis of this prospective cohort study. The UK Biobank Pharma Proteomics Project included a randomly selected discovery cohort and the consortium-selected replication cohort. The study's end point was incident AF, identified using International Classification of Diseases, Tenth Revision codes. The association between plasma proteins and incident AF was evaluated using Cox proportional hazard models in both cohorts. Proteins present in both cohorts underwent Mendelian randomization analysis to delineate causal connections, utilizing cis-protein quantitative trait loci as genetic tools. The predictive efficacy of the identified proteins for AF was assessed using the area under the receiver operating characteristic curve, and their druggability was explored. RESULTS Data from 38 784 participants were included in this study. Incident AF cases were identified in the discovery cohort (1894; 5.5%) within a median follow-up of 14.5 years and in the replication cohort (451; 10.6%) within a median follow-up of 14.4 years. Twenty-one proteins linked to AF were identified in both cohorts. Specifically, COL4A1 (collagen IV α-1; odds ratio, 1.11 [95% CI, 1.04-1.19]; false discovery rate, 0.016) and RET (proto-oncogene tyrosine-protein kinase receptor Ret; odds ratio, 0.96 [95% CI, 0.94-0.98]; false discovery rate, 0.013) demonstrated a causal link with AF, and RET is druggable. COL4A1 improved the short- and long-term predictive performance of established AF models, as evidenced by significant enhancements in the area under the receiver operating characteristic, integrated discrimination improvement, and net reclassification index, all with P values below 0.05. CONCLUSIONS COL4A1 and RET are associated with the development of AF. RET is identified as a potential drug target for AF prevention, while COL4A1 serves as a biomarker for AF prediction. Future studies are needed to evaluate the effectiveness of targeting these proteins to reduce AF risk.
Collapse
Affiliation(s)
- Xiaodong Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Shijun Xia
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Xin Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | | | - Caihua Sang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| |
Collapse
|
3
|
Martins RS, Jesus TT, Cardoso L, Soares P, Vinagre J. Personalized Medicine in Medullary Thyroid Carcinoma: A Broad Review of Emerging Treatments. J Pers Med 2023; 13:1132. [PMID: 37511745 PMCID: PMC10381735 DOI: 10.3390/jpm13071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) arises from parafollicular cells in the thyroid gland, and although rare, it represents an aggressive type of thyroid cancer. MTC is recognized for its low mutational burden, with point mutations in RET or RAS genes being the most common oncogenic events. MTC can be resistant to cytotoxic chemotherapy, and multitarget kinase inhibitors (MKIs) have been considered a treatment option. They act by inhibiting the activities of specific tyrosine kinase receptors involved in tumor growth and angiogenesis. Several tyrosine kinase inhibitors are approved in the treatment of advanced MTC, including vandetanib and cabozantinib. However, due to the significant number of adverse events, debatable efficiency and resistance, there is a need for novel RET-specific TKIs. Newer RET-specific TKIs are expected to overcome previous limitations and improve patient outcomes. Herein, we aim to review MTC signaling pathways, the most recent options for treatment and the applications for personalized medicine.
Collapse
Affiliation(s)
- Rui Sousa Martins
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Luís Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Departamento de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Pecar G, Liu S, Hooda J, Atkinson JM, Oesterreich S, Lee AV. RET signaling in breast cancer therapeutic resistance and metastasis. Breast Cancer Res 2023; 25:26. [PMID: 36918928 PMCID: PMC10015789 DOI: 10.1186/s13058-023-01622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
RET, a single-pass receptor tyrosine kinase encoded on human chromosome 10, is well known to the field of developmental biology for its role in the ontogenesis of the central and enteric nervous systems and the kidney. In adults, RET alterations have been characterized as drivers of non-small cell lung cancer and multiple neuroendocrine neoplasms. In breast cancer, RET signaling networks have been shown to influence diverse functions including tumor development, metastasis, and therapeutic resistance. While RET is known to drive the development and progression of multiple solid tumors, therapeutic agents selectively targeting RET are relatively new, though multiple multi-kinase inhibitors have shown promise as RET inhibitors in the past; further, RET has been historically neglected as a potential therapeutic co-target in endocrine-refractory breast cancers despite mounting evidence for a key pathologic role and repeated description of a bi-directional relationship with the estrogen receptor, the principal driver of most breast tumors. Additionally, the recent discovery of RET enrichment in breast cancer brain metastases suggests a role for RET inhibition specific to advanced disease. This review assesses the status of research on RET in breast cancer and evaluates the therapeutic potential of RET-selective kinase inhibitors across major breast cancer subtypes.
Collapse
Affiliation(s)
- Geoffrey Pecar
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Simeng Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagmohan Hooda
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Mu JD, Ma LX, Zhang Z, Qian X, Zhang QY, Ma LH, Sun TY. The factors affecting neurogenesis after stroke and the role of acupuncture. Front Neurol 2023; 14:1082625. [PMID: 36741282 PMCID: PMC9895425 DOI: 10.3389/fneur.2023.1082625] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Stroke induces a state of neuroplasticity in the central nervous system, which can lead to neurogenesis phenomena such as axonal growth and synapse formation, thus affecting stroke outcomes. The brain has a limited ability to repair ischemic damage and requires a favorable microenvironment. Acupuncture is considered a feasible and effective neural regulation strategy to improve functional recovery following stroke via the benign modulation of neuroplasticity. Therefore, we summarized the current research progress on the key factors and signaling pathways affecting neurogenesis, and we also briefly reviewed the research progress of acupuncture to improve functional recovery after stroke by promoting neurogenesis. This study aims to provide new therapeutic perspectives and strategies for the recovery of motor function after stroke based on neurogenesis.
Collapse
Affiliation(s)
- Jie-Dan Mu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-Xiao Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China,The Key Unit of State Administration of Traditional Chines Medicine, Evaluation of Characteristic Acupuncture Therapy, Beijing, China,*Correspondence: Liang-Xiao Ma ✉
| | - Zhou Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Qian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qin-Yong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Hui Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Yi Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Chernov AV, Shubayev VI. Sexual dimorphism of early transcriptional reprogramming in degenerating peripheral nerves. Front Mol Neurosci 2022; 15:1029278. [DOI: 10.3389/fnmol.2022.1029278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism is a powerful yet understudied factor that influences the timing and efficiency of gene regulation in axonal injury and repair processes in the peripheral nervous system. Here, we identified common and distinct biological processes in female and male degenerating (distal) nerve stumps based on a snapshot of transcriptional reprogramming 24 h after axotomy reflecting the onset of early phase Wallerian degeneration (WD). Females exhibited transcriptional downregulation of a larger number of genes than males. RhoGDI, ERBB, and ERK5 signaling pathways increased activity in both sexes. Males upregulated genes and canonical pathways that exhibited robust baseline expression in females in both axotomized and sham nerves, including signaling pathways controlled by neuregulin and nerve growth factors. Cholesterol biosynthesis, reelin signaling, and synaptogenesis signaling pathways were downregulated in females. Signaling by Rho Family GTPases, cAMP-mediated signaling, and sulfated glycosaminoglycan biosynthesis were downregulated in both sexes. Estrogens potentially influenced sex-dependent injury response due to distinct regulation of estrogen receptor expression. A crosstalk of cytokines and growth hormones could promote sexually dimorphic transcriptional responses. We highlighted prospective regulatory activities due to protein phosphorylation, extracellular proteolysis, sex chromosome-specific expression, major urinary proteins (MUPs), and genes involved in thyroid hormone metabolism. Combined with our earlier findings in the corresponding dorsal root ganglia (DRG) and regenerating (proximal) nerve stumps, sex-specific and universal early phase molecular triggers of WD enrich our knowledge of transcriptional regulation in peripheral nerve injury and repair.
Collapse
|
7
|
Chernov AV, Shubayev VI. Sexually dimorphic transcriptional programs of early-phase response in regenerating peripheral nerves. Front Mol Neurosci 2022; 15:958568. [PMID: 35983069 PMCID: PMC9378824 DOI: 10.3389/fnmol.2022.958568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.
Collapse
Affiliation(s)
- Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
- *Correspondence: Andrei V. Chernov,
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
8
|
Komuro Y, Galas L, Morozov YM, Fahrion JK, Raoult E, Lebon A, Tilot AK, Kikuchi S, Ohno N, Vaudry D, Rakic P, Komuro H. The Role of Galanin in Cerebellar Granule Cell Migration in the Early Postnatal Mouse during Normal Development and after Injury. J Neurosci 2021; 41:8725-8741. [PMID: 34462307 PMCID: PMC8528496 DOI: 10.1523/jneurosci.0900-15.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
Galanin, one of the most inducible neuropeptides, is widely present in developing brains, and its expression is altered by pathologic events (e.g., epilepsy, ischemia, and axotomy). The roles of galanin in brain development under both normal and pathologic conditions have been hypothesized, but the question of how galanin is involved in fetal and early postnatal brain development remains largely unanswered. In this study, using granule cell migration in the cerebellum of early postnatal mice (both sexes) as a model system, we examined the role of galanin in neuronal cell migration during normal development and after brain injury. Here we show that, during normal development, endogenous galanin participates in accelerating granule cell migration via altering the Ca2+ and cAMP signaling pathways. Upon brain injury induced by the application of cold insults, galanin levels decrease at the lesion sites, but increase in the surroundings of lesion sites. Granule cells exhibit the following corresponding changes in migration: (1) slowing down migration at the lesion sites; and (2) accelerating migration in the surroundings of lesion sites. Experimental manipulations of galanin signaling reduce the lesion site-specific changes in granule cell migration, indicating that galanin plays a role in such deficits in neuronal cell migration. The present study suggests that manipulating galanin signaling may be a potential therapeutic target for acutely injured brains during development.SIGNIFICANCE STATEMENT Deficits in neuronal cell migration caused by brain injury result in abnormal development of cortical layers, but the underlying mechanisms remain to be determined. Here, we report that on brain injury, endogenous levels of galanin, a neuropeptide, are altered in a lesion site-specific manner, decreasing at the lesion sites but increasing in the surroundings of lesion sites. The changes in galanin levels positively correlate with the migration rate of immature neurons. Manipulations of galanin signaling ameliorate the effects of injury on neuronal migration and cortical layer development. These results shed a light on galanin as a potential therapeutic target for acutely injured brains during development.
Collapse
Affiliation(s)
- Yutaro Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ludovic Galas
- Regional Platform for Cell Imaging of Normandy, INSERM, Université de Rouen Normandie, 76000 Rouen, France
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Jennifer K Fahrion
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Emilie Raoult
- Regional Platform for Cell Imaging of Normandy, INSERM, Université de Rouen Normandie, 76000 Rouen, France
| | - Alexis Lebon
- Regional Platform for Cell Imaging of Normandy, INSERM, Université de Rouen Normandie, 76000 Rouen, France
| | - Amanda K Tilot
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Shin Kikuchi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Nobuhiko Ohno
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - David Vaudry
- Regional Platform for Cell Imaging of Normandy, INSERM, Université de Rouen Normandie, 76000 Rouen, France
- Neuropeptides, Neuronal Death and Cell Plasticity Team, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, INSERM U1239, Université de Rouen Normandie, 76000 Rouen, France
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510
| | - Hitoshi Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
9
|
Marchi S, Giorgi C, Galluzzi L, Pinton P. Ca 2+ Fluxes and Cancer. Mol Cell 2020; 78:1055-1069. [PMID: 32559424 DOI: 10.1016/j.molcel.2020.04.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| | - Paolo Pinton
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
10
|
Kawai K, Takahashi M. Intracellular RET signaling pathways activated by GDNF. Cell Tissue Res 2020; 382:113-123. [PMID: 32816064 DOI: 10.1007/s00441-020-03262-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
Activation of REarranged during Transfection (RET) proto-oncogene is responsible for various human cancers such as papillary and medullary thyroid carcinomas and non-small cell lung carcinomas. RET activation in these tumors is caused by point mutations or gene rearrangements, resulting in constitutive activation of RET tyrosine kinase. Physiologically, RET is activated by glial cell line-derived neurotrophic factor (GDNF) ligands that bind to coreceptor GDNF family receptor alphas (GFRαs), leading to RET dimerization. GDNF-GFRα1-RET signaling plays crucial roles in the development of the enteric nervous system, kidney and lower urinary tract as well as in spermatogenesis. Intracellular tyrosine phosphorylation in RET and recruitment of adaptor proteins to phosphotyrosines are essential for various biological functions. Significance of intracellular RET signaling pathways activated by GDNF is discussed and summarized in this review.
Collapse
Affiliation(s)
- Kumi Kawai
- Department of Pathology, Fujita Health University, 1-98 Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, 1-98 Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Japan. .,Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
11
|
Kang DS, Kim IS, Baik JH, Kim D, Cocco L, Suh PG. The function of PLCγ1 in developing mouse mDA system. Adv Biol Regul 2019; 75:100654. [PMID: 31558431 DOI: 10.1016/j.jbior.2019.100654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023]
Abstract
During neural development, growing neuronal cells consistently sense and communicate with their surroundings through the use of signaling molecules. In this process, spatiotemporally well-coordinated intracellular signaling is a prerequisite for proper neuronal network formation. Thus, intense interest has focused on investigating the signaling mechanisms in neuronal structure formation that link the activation of receptors to the control of cell shape and motility. Recent studies suggest that Phospholipase C gamma1 (PLCγ1), a signal transducer, plays key roles in nervous system development by mediating specific ligand-receptor systems. In this overview of the most recent advances in the field, we discuss the mechanisms by which extracellular stimuli trigger PLCγ1 signaling and, the role PLCγ1 in nervous system development.
Collapse
Affiliation(s)
- Du-Seock Kang
- College of Life Science & Bioengineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea.
| | - Il Shin Kim
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, South Korea.
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, South Korea.
| | - Daesoo Kim
- College of Life Science & Bioengineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea.
| | - Lucio Cocco
- Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, South Korea; Korea Brain Research Institute, Daegu, 41062, South Korea.
| |
Collapse
|
12
|
Dehnisch Ellström I, Spulber S, Hultin S, Norlin N, Ceccatelli S, Hultling C, Uhlén P. Spinal cord injury in zebrafish induced by near-infrared femtosecond laser pulses. J Neurosci Methods 2019; 311:259-266. [DOI: 10.1016/j.jneumeth.2018.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/09/2022]
|
13
|
Park SY, Han JS. Phospholipase D1 Signaling: Essential Roles in Neural Stem Cell Differentiation. J Mol Neurosci 2018; 64:333-340. [PMID: 29478139 PMCID: PMC5874277 DOI: 10.1007/s12031-018-1042-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase D1 (PLD1) is generally accepted as playing an important role in the regulation of multiple cell functions, such as cell growth, survival, differentiation, membrane trafficking, and cytoskeletal organization. Recent findings suggest that PLD1 also plays an important role in the regulation of neuronal differentiation of neuronal cells. Moreover, PLD1-mediated signaling molecules dynamically regulate the neuronal differentiation of neural stem cells (NSCs). Rho family GTPases and Ca2+-dependent signaling, in particular, are closely involved in PLD1-mediated neuronal differentiation of NSCs. Moreover, PLD1 has a significant effect on the neurogenesis of NSCs via the regulation of SHP-1/STAT3 activation. Therefore, PLD1 has now attracted significant attention as an essential neuronal signaling molecule in the nervous system. In the current review, we summarize recent findings on the regulation of PLD1 in neuronal differentiation and discuss the potential role of PLD1 in the neurogenesis of NSCs.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
14
|
Yuzwa SA, Yang G, Borrett MJ, Clarke G, Cancino GI, Zahr SK, Zandstra PW, Kaplan DR, Miller FD. Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks. Neuron 2016; 91:988-1004. [PMID: 27545711 DOI: 10.1016/j.neuron.2016.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/29/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
Abstract
The neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance, while cortical neurons secrete factors that promote differentiation. To define factors important for these activities, we used transcriptome profiling to identify ligands produced by NPCs and neurons, cell-surface mass spectrometry to identify receptors on these cells, and computational modeling to integrate these data. The resultant model predicts a complex growth factor environment with multiple autocrine and paracrine interactions. We tested this communication model, focusing on neurogenesis, and identified IFNγ, Neurturin (Nrtn), and glial-derived neurotrophic factor (GDNF) as ligands with unexpected roles in promoting neurogenic differentiation of NPCs in vivo.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Guang Yang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Michael J Borrett
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Geoff Clarke
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Gonzalo I Cancino
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Siraj K Zahr
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5G 1A8, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5G 1A8, Canada; McEwen Centre for Regenerative Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada; Departments of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada.
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5G 1A8, Canada; McEwen Centre for Regenerative Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
15
|
Kang DS, Yang YR, Lee C, Kim S, Ryu SH, Suh PG. Roles of phosphoinositide-specific phospholipase Cγ1 in brain development. Adv Biol Regul 2016; 60:167-173. [PMID: 26588873 DOI: 10.1016/j.jbior.2015.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Over the past decade, converging evidence suggests that PLCγ1 signaling has key roles in controlling neural development steps. PLCγ1 functions as a signal transducer that converts an extracellular stimulus into intracellular signals by generating second messengers such as DAG and IP3. DAG functions as an activator of either PKC or transient receptor potential cation channels (TRPCs), while IP3 induces the calcium release from intracellular calcium stores. These second messengers regulate the morphological change of neuron, such as neurite outgrowth, migration, axon pathfinding, and synapse formation. These morphological changes depend on finely tuned calcium signaling following receptor tyrosine kinase-mediated PLCγ1 signaling. Thus, deregulation of PLCγ1 signaling causes various abnormalities of neuronal development and it may be associated with diverse neurological disorders. Herein, we discuss the current understanding of the PLCγ1 signaling pathway in neural development and provide recent advances of how PLCγ1 signaling is involved in the formation of neuronal processes for functionally faithful brain development.
Collapse
Affiliation(s)
- Du-Seock Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Yong Ryoul Yang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Cheol Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - SaetByeol Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
16
|
Yoon H, Kwak Y, Choi S, Cho H, Kim ND, Sim T. A Pyrazolo[3,4-d]pyrimidin-4-amine Derivative Containing an Isoxazole Moiety Is a Selective and Potent Inhibitor of RET Gatekeeper Mutants. J Med Chem 2015; 59:358-73. [PMID: 26652860 DOI: 10.1021/acs.jmedchem.5b01522] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aberrant RET kinase signaling plays critical roles in several human cancers such as thyroid carcinoma. The gatekeeper mutants (V804L or V804M) of RET are resistant to currently approved RET inhibitors such as cabozantinib and vandetanib. We, for the first time, report a highly selective and extremely potent RET inhibitor, 6i rationally designed. Compound 6i inhibits strongly RET gatekeeper mutants and other clinically relevant RET mutants as well as wt-RET. This substance also significantly suppresses growth of thyroid cancer-derived TT cell lines and Ba/F3 cells transformed with various RET mutants. Docking studies reveal that the isoxazole moiety in 6i is responsible for binding affinity improvement by providing additional site for H-bonding with Lys758. Also, 6i not only substantially blocks cellular RET autophosphorylation and its downstream pathway, it markedly induces apoptosis and anchorage-independent growth inhibition in TT cell lines while having no effect on normal thyroid Nthy ori-3-1 cells.
Collapse
Affiliation(s)
- Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Yeonui Kwak
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145, Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Seunghye Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145, Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145, Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu, Daegu 706-010, Republic of Korea
| | - Taebo Sim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University , 145, Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| |
Collapse
|
17
|
Prescott JD, Zeiger MA. TheREToncogene in papillary thyroid carcinoma. Cancer 2015; 121:2137-46. [DOI: 10.1002/cncr.29044] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Jason D. Prescott
- Endocrine Surgery, Department of Surgery; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Martha A. Zeiger
- Endocrine Surgery, Department of Surgery; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
18
|
Uhlén P, Fritz N, Smedler E, Malmersjö S, Kanatani S. Calcium signaling in neocortical development. Dev Neurobiol 2015; 75:360-8. [DOI: 10.1002/dneu.22273] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Per Uhlén
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Nicolas Fritz
- The Science for Life Laboratory; The Royal Institute of Technology; SE-171 77 Stockholm Sweden
| | - Erik Smedler
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Seth Malmersjö
- Department of Chemical and Systems Biology; School of Medicine, Stanford University; Stanford California 94305
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| |
Collapse
|
19
|
Abstract
The RET receptor tyrosine kinase is crucial for normal development but also contributes to pathologies that reflect both the loss and the gain of RET function. Activation of RET occurs via oncogenic mutations in familial and sporadic cancers - most notably, those of the thyroid and the lung. RET has also recently been implicated in the progression of breast and pancreatic tumours, among others, which makes it an attractive target for small-molecule kinase inhibitors as therapeutics. However, the complex roles of RET in homeostasis and survival of neural lineages and in tumour-associated inflammation might also suggest potential long-term pitfalls of broadly targeting RET.
Collapse
Affiliation(s)
- Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
20
|
Zhou L, Too HP. GDNF family ligand dependent STAT3 activation is mediated by specific alternatively spliced isoforms of GFRα2 and RET. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2789-2802. [PMID: 23872421 DOI: 10.1016/j.bbamcr.2013.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/16/2022]
Abstract
Neurturin (NRTN), a member of the GDNF family of ligands (GFL), is currently investigated in a series of clinical trials for Parkinson's disease. NRTN signals through its cognate receptor GFRα2 and co-receptor RET to induce neurite outgrowth, but the underlying mechanism remains to be better understood. STAT3 was previously shown to be activated by oncogenic RET, independent of ligand and GFRα. In this study, we demonstrated that NRTN induced serine(727) but not tyrosine(705) phosphorylation of STAT3 in primary cortical neuron and neuronal cell lines. Remarkably, STAT3 phosphorylation was found to be mediated specifically by GFRα2c and RET9 isoforms. Furthermore, serine but not tyrosine dominant negative mutant of STAT3 impaired NRTN induced neurite outgrowth, indicative of the role of STAT3 as a downstream mediator of NRTN function. Similar to NGF, the NRTN induced P-Ser-STAT3 was localized to the mitochondria but not to the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NRTN induced neurite outgrowth. Collectively, these findings demonstrated the hitherto unrecognized and novel role of specific GFRα2 and RET isoforms in mediating NRTN activation of STAT3 and the transcription independent mechanism whereby the mitochondria localized P-Ser-STAT3 mediated NRTN induced neurite outgrowth.
Collapse
Affiliation(s)
- Lihan Zhou
- Department of Biochemistry, National University of Singapore, Singapore; Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore; Chemical Pharmaceutical Engineering, Singapore-Massachusetts Institute of Technology Alliance, Singapore; Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore.
| |
Collapse
|
21
|
Jang HJ, Yang YR, Kim JK, Choi JH, Seo YK, Lee YH, Lee JE, Ryu SH, Suh PG. Phospholipase C-γ1 involved in brain disorders. Adv Biol Regul 2013; 53:51-62. [PMID: 23063587 DOI: 10.1016/j.jbior.2012.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Phosphoinositide-specific phospholipase C-γ1 (PLC-γ1) is an important signaling regulator involved in various cellular processes. In brain, PLC-γ1 is highly expressed and participates in neuronal cell functions mediated by neurotrophins. Consistent with essential roles of PLC-γ1, it is involved in development of brain and synaptic transmission. Significantly, abnormal expression and activation of PLC-γ1 appears in various brain disorders such as epilepsy, depression, Huntington's disease and Alzheimer's disease. Thus, PLC-γ1 has been implicated in brain functions as well as related brain disorders. In this review, we discuss the roles of PLC-γ1 in neuronal functions and its pathological relevance to diverse brain diseases.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|