1
|
Talundzic E, Scott S, Owino SO, Campo DS, Lucchi NW, Udhayakumar V, Moore JM, Peterson DS. Polymorphic Molecular Signatures in Variable Regions of the Plasmodium falciparum var2csa DBL3x Domain Are Associated with Virulence in Placental Malaria. Pathogens 2022; 11:520. [PMID: 35631041 PMCID: PMC9147263 DOI: 10.3390/pathogens11050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
The Plasmodium falciparum protein VAR2CSA allows infected erythrocytes to accumulate within the placenta, inducing pathology and poor birth outcomes. Multiple exposures to placental malaria (PM) induce partial immunity against VAR2CSA, making it a promising vaccine candidate. However, the extent to which VAR2CSA genetic diversity contributes to immune evasion and virulence remains poorly understood. The deep sequencing of the var2csa DBL3X domain in placental blood from forty-nine primigravid and multigravid women living in malaria-endemic western Kenya revealed numerous unique sequences within individuals in association with chronic PM but not gravidity. Additional analysis unveiled four distinct sequence types that were variably present in mixed proportions amongst the study population. An analysis of the abundance of each of these sequence types revealed that one was inversely related to infant gestational age, another was inversely related to placental parasitemia, and a third was associated with chronic PM. The categorization of women according to the type to which their dominant sequence belonged resulted in the segregation of types as a function of gravidity: two types predominated in multigravidae whereas the other two predominated in primigravidae. The univariate logistic regression analysis of sequence type dominance further revealed that gravidity, maternal age, placental parasitemia, and hemozoin burden (within maternal leukocytes), reported a lack of antimalarial drug use, and infant gestational age and birth weight influenced the odds of membership in one or more of these sequence predominance groups. Cumulatively, these results show that unique var2csa sequences differentially appear in women with different PM exposure histories and segregate to types independently associated with maternal factors, infection parameters, and birth outcomes. The association of some var2csa sequence types with indicators of pathogenesis should motivate vaccine efforts to further identify and target VAR2CSA epitopes associated with maternal morbidity and poor birth outcomes.
Collapse
Affiliation(s)
- Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.T.); (N.W.L.); (V.U.)
| | - Stephen Scott
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA;
| | - Simon O. Owino
- Boehringer Ingelheim Animal Health, Athens, GA 30601, USA;
| | - David S. Campo
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.T.); (N.W.L.); (V.U.)
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.T.); (N.W.L.); (V.U.)
| | - Julie M. Moore
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA
| | - David S. Peterson
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA;
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Mack EA, Tagliamonte MS, Xiao YP, Quesada S, Allred DR. Babesia bovis Rad51 ortholog influences switching of ves genes but is not essential for segmental gene conversion in antigenic variation. PLoS Pathog 2020; 16:e1008772. [PMID: 32866214 PMCID: PMC7485966 DOI: 10.1371/journal.ppat.1008772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
The tick-borne apicomplexan parasite, Babesia bovis, a highly persistent bovine pathogen, expresses VESA1 proteins on the infected erythrocyte surface to mediate cytoadhesion. The cytoadhesion ligand, VESA1, which protects the parasite from splenic passage, is itself protected from a host immune response by rapid antigenic variation. B. bovis relies upon segmental gene conversion (SGC) as a major mechanism to vary VESA1 structure. Gene conversion has been considered a form of homologous recombination (HR), a process for which Rad51 proteins are considered pivotal components. This could make BbRad51 a choice target for development of inhibitors that both interfere with parasite genome integrity and disrupt HR-dependent antigenic variation. Previously, we knocked out the Bbrad51 gene from the B. bovis haploid genome, resulting in a phenotype of sensitivity to methylmethane sulfonate (MMS) and apparent loss of HR-dependent integration of exogenous DNA. In a further characterization of BbRad51, we demonstrate here that ΔBbrad51 parasites are not more sensitive than wild-type to DNA damage induced by γ-irradiation, and repair their genome with similar kinetics. To assess the need for BbRad51 in SGC, RT-PCR was used to observe alterations to a highly variant region of ves1α transcripts over time. Mapping of these amplicons to the genome revealed a significant reduction of in situ transcriptional switching (isTS) among ves loci, but not cessation. By combining existing pipelines for analysis of the amplicons, we demonstrate that SGC continues unabated in ΔBbrad51 parasites, albeit at an overall reduced rate, and a reduction in SGC tract lengths was observed. By contrast, no differences were observed in the lengths of homologous sequences at which recombination occurred. These results indicate that, whereas BbRad51 is not essential to babesial antigenic variation, it influences epigenetic control of ves loci, and its absence significantly reduces successful variation. These results necessitate a reconsideration of the likely enzymatic mechanism(s) underlying SGC and suggest the existence of additional targets for development of small molecule inhibitors. B. bovis establishes highly persistent infections in cattle, in part by using cytoadhesion to avoid passage through the spleen. While protective, a host antibody response targeting the cytoadhesion ligand is quickly rendered ineffective by antigenic variation. In B. bovis, antigenic variation relies heavily upon segmental gene conversion (SGC), presumed to be a form of homologous recombination (HR), to generate variants. As Rad51 is generally considered essential to HR, we investigated its contribution to SGC. While diminishing the parasite’s capacity for HR-dependent integration of exogenous DNA, the loss of BbRad51 did not affect the parasite’s sensitivity to ionizing radiation, overall genome stability, or competence for SGC. Instead, loss of BbRad51 diminished the extent of in situ transcriptional switching (isTS) among ves gene loci, the accumulation of SGC recombinants, and the mean lengths of SGC sequence tracts. Given the overall reductions in VESA1 variability, compromise of the parasite’s capacity for in vivo persistence is predicted.
Collapse
Affiliation(s)
- Erin A. Mack
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
| | - Massimiliano S. Tagliamonte
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Yu-Ping Xiao
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
| | - Samantha Quesada
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
| | - David R. Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
3
|
Seitz J, Morales-Prieto DM, Favaro RR, Schneider H, Markert UR. Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne) 2019; 10:98. [PMID: 30930847 PMCID: PMC6405475 DOI: 10.3389/fendo.2019.00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Malaria in pregnancy still constitutes a particular medical challenge in tropical and subtropical regions. Of the five Plasmodium species that are pathogenic to humans, infection with Plasmodium falciparum leads to fulminant progression of the disease with massive impact on pregnancy. Severe anemia of the mother, miscarriage, stillbirth, preterm delivery and intrauterine growth restriction (IUGR) with reduced birth weight are frequent complications that lead to more than 10,000 maternal and 200,000 perinatal deaths annually in sub-Saharan Africa alone. P. falciparum can adhere to the placenta via the expression of the surface antigen VAR2CSA, which leads to sequestration of infected erythrocytes in the intervillous space. This process induces a placental inflammation with involvement of immune cells and humoral factors. Especially, monocytes get activated and change the release of soluble mediators, including a variety of cytokines. This proinflammatory environment contributes to disorders of angiogenesis, blood flow, autophagy, and nutrient transport in the placenta and erythropoiesis. Collectively, they impair placental functions and, consequently, fetal growth. The discovery that women in endemic regions develop a certain immunity against VAR2CSA-expressing parasites with increasing number of pregnancies has redefined the understanding of malaria in pregnancy and offers strategies for the development of vaccines. The following review gives an overview of molecular processes in P. falciparum infection in pregnancy which may be involved in the development of IUGR.
Collapse
Affiliation(s)
- Johanna Seitz
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | - Rodolfo R. Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Henning Schneider
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Udo Rudolf Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Dara A, Travassos MA, Adams M, Schaffer DeRoo S, Drábek EF, Agrawal S, Laufer MK, Plowe CV, Silva JC. A new method for sequencing the hypervariable Plasmodium falciparum gene var2csa from clinical samples. Malar J 2017; 16:343. [PMID: 28818101 PMCID: PMC5561619 DOI: 10.1186/s12936-017-1976-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/04/2017] [Indexed: 11/14/2022] Open
Abstract
Background VAR2CSA, a member of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, mediates the binding of P. falciparum-infected erythrocytes to chondroitin sulfate A, a surface-associated molecule expressed in placental cells, and plays a central role in the pathogenesis of placental malaria. VAR2CSA is a target of naturally acquired immunity and, as such, is a leading vaccine candidate against placental malaria. This protein is very polymorphic and technically challenging to sequence. Published var2csa sequences, mostly limited to specific domains, have been generated through the sequencing of cloned PCR amplicons using capillary electrophoresis, a method that is both time consuming and costly, and that performs poorly when applied to clinical samples that are commonly polyclonal. A next-generation sequencing platform, Pacific Biosciences (PacBio), offers an alternative approach to overcome these issues. Methods PCR primers were designed that target a 5 kb segment in the 5′ end of var2csa and the resulting amplicons were sequenced using PacBio sequencing. The primers were optimized using two laboratory strains and were validated on DNA from 43 clinical samples, extracted from dried blood spots on filter paper or from cryopreserved P. falciparum-infected erythrocytes. Sequence reads were assembled using the SMRT-analysis ConsensusTools module. Results Here, a PacBio sequencing-based approach for recovering a segment encoding the majority of VAR2CSA’s extracellular region is described; this segment includes the totality of the first four domains in the 5′ end of var2csa (~5 kb), from clinical malaria samples. The feasibility of the method is demonstrated, showing a high success rate from cryopreserved samples and more limited success from dried blood spots stored at room temperature, and characterized the genetic variation of the var2csa locus. Conclusions This method will facilitate a detailed analysis of var2csa genetic variation and can be adapted to sequence other hypervariable P. falciparum genes. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1976-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antoine Dara
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark A Travassos
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Schaffer DeRoo
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elliott F Drábek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Miriam K Laufer
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher V Plowe
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Doritchamou J, Sabbagh A, Jespersen JS, Renard E, Salanti A, Nielsen MA, Deloron P, Tuikue Ndam N. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA. PLoS One 2015; 10:e0137695. [PMID: 26393516 PMCID: PMC4579133 DOI: 10.1371/journal.pone.0137695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/19/2015] [Indexed: 01/18/2023] Open
Abstract
The VAR2CSA protein of Plasmodium falciparum is transported to and expressed on the infected erythrocyte surface where it plays a key role in placental malaria (PM). It is the current leading candidate for a vaccine to prevent PM. However, the antigenic polymorphism integral to VAR2CSA poses a challenge for vaccine development. Based on detailed analysis of polymorphisms in the sequence of its ligand-binding N-terminal region, currently the main focus for vaccine development, we assessed var2csa from parasite isolates infecting pregnant women. The results reveal for the first time the presence of a major dimorphic region in the functionally critical N-terminal ID1 domain. Parasite isolates expressing VAR2CSA with particular motifs present within this domain are associated with gravidity- and parasite density-related effects. These observations are of particular interest in guiding efforts with respect to optimization of the VAR2CSA-based vaccines currently under development.
Collapse
Affiliation(s)
- Justin Doritchamou
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France; UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Audrey Sabbagh
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Jakob S Jespersen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ali Salanti
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Philippe Deloron
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France; UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Nicaise Tuikue Ndam
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France; UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| |
Collapse
|
6
|
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 2014; 5:359. [PMID: 25120545 PMCID: PMC4112938 DOI: 10.3389/fimmu.2014.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/13/2014] [Indexed: 01/28/2023] Open
Abstract
After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.
Collapse
Affiliation(s)
- Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| | - Alicia Arnott
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
7
|
Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. INFECTION GENETICS AND EVOLUTION 2014; 25:81-92. [PMID: 24768682 DOI: 10.1016/j.meegid.2014.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/18/2022]
Abstract
In placental malaria (PM), sequestration of infected erythrocytes in the placenta is mediated by an interaction between VAR2CSA, a Plasmodium falciparum protein expressed on erythrocytes, and chondroitin sulfate A (CSA) on syncytiotrophoblasts. Recent works have identified ID1-DBL2Xb as the minimal CSA-binding region within VAR2CSA able to induce strong protective immunity, making it the leading candidate for the development of a vaccine against PM. Assessing the existence of population differences in the distribution of ID1-DBL2Xb polymorphisms is of paramount importance to determine whether geographic diversity must be considered when designing a candidate vaccine based on this fragment. In this study, we examined patterns of sequence variation of ID1-DBL2Xb in a large collection of P. falciparum field isolates (n=247) from different malaria-endemic areas, including Africa (Benin, Senegal, Cameroon and Madagascar), Asia (Cambodia), Oceania (Papua New Guinea), and Latin America (Peru). Detection of variants and estimation of their allele frequencies were performed using next-generation sequencing of DNA pools. A considerable amount of variation was detected along the whole gene segment, suggesting that several allelic variants may need to be included in a candidate vaccine to achieve broad population coverage. However, most sequence variants were common and extensively shared among worldwide parasite populations, demonstrating long term persistence of those polymorphisms, probably maintained through balancing selection. Therefore, a vaccine mixture including such stable antigen variants will be putatively applicable and efficacious in all world regions where malaria occurs. Despite similarity in ID1-DBL2Xb allele repertoire across geographic areas, several peaks of strong population differentiation were observed at specific polymorphic loci, pointing out putative targets of humoral immunity subject to positive immune selection.
Collapse
|
8
|
Ataíde R, Mayor A, Rogerson SJ. Malaria, primigravidae, and antibodies: knowledge gained and future perspectives. Trends Parasitol 2013; 30:85-94. [PMID: 24388420 DOI: 10.1016/j.pt.2013.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/08/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
Abstract
Pregnant women have an increased risk of malaria infection, independent of previously acquired immunity. Women in their first pregnancy and children under the age of five are the primary victims of malaria worldwide. Pregnant women develop antibodies against placenta-adhesive parasites in a parity-dependent manner. Various efforts to understand the targets, quality, and quantity of this antibody response could aid the design of an effective vaccine against placental malaria. This review focuses on the research that has led to the current understanding of the antibody response that primigravidae (PG) acquire to Plasmodium falciparum malaria and draws from this knowledge to suggest serology and PG as sentinels for malaria transmission.
Collapse
Affiliation(s)
- Ricardo Ataíde
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia.
| | - Alfredo Mayor
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde da Manhiça (CISM), Manhiça, Mozambique
| | - Stephen J Rogerson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Rovira-Vallbona E, Monteiro I, Bardají A, Serra-Casas E, Neafsey DE, Quelhas D, Valim C, Alonso P, Dobaño C, Ordi J, Menéndez C, Mayor A. VAR2CSA signatures of high Plasmodium falciparum parasitemia in the placenta. PLoS One 2013; 8:e69753. [PMID: 23936092 PMCID: PMC3723727 DOI: 10.1371/journal.pone.0069753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum infected erythrocytes (IE) accumulate in the placenta through the interaction between Duffy-binding like (DBL) domains of parasite-encoded ligand VAR2CSA and chondroitin sulphate-A (CSA) receptor. Polymorphisms in these domains, including DBL2X and DBL3X, may affect their antigenicity or CSA-binding affinity, eventually increasing parasitemia and its adverse effects on pregnancy outcomes. A total of 373 DBL2X and 328 DBL3X sequences were obtained from transcripts of 20 placental isolates infecting Mozambican women, resulting in 176 DBL2X and 191 DBL3X unique sequences at the protein level. Sequence alignments were divided in segments containing combinations of correlated polymorphisms and the association of segment sequences with placental parasite density was tested using Bonferroni corrected regression models, taking into consideration the weight of each sequence in the infection. Three DBL2X and three DBL3X segments contained signatures of high parasite density (P<0.003) that were highly prevalent in the parasite population (49-91%). Identified regions included a flexible loop that contributes to DBL3X-CSA interaction and two DBL3X motifs with evidence of positive natural selection. Limited antibody responses against signatures of high parasite density among malaria-exposed pregnant women could not explain the increased placental parasitemia. These results suggest that a higher binding efficiency to CSA rather than reduced antigenicity might provide a biological advantage to parasites with high parasite density signatures in VAR2CSA. Sequences contributing to high parasitemia may be critical for the functional characterization of VAR2CSA and the development of tools against placental malaria.
Collapse
MESH Headings
- Adolescent
- Amino Acid Sequence
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/metabolism
- Binding Sites
- Chondroitin Sulfates/chemistry
- Chondroitin Sulfates/metabolism
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Female
- Humans
- Malaria, Falciparum/immunology
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Molecular Docking Simulation
- Molecular Sequence Data
- Placenta/immunology
- Placenta/parasitology
- Placenta/pathology
- Plasmodium falciparum/chemistry
- Plasmodium falciparum/genetics
- Plasmodium falciparum/metabolism
- Pregnancy
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/metabolism
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/pathology
- Protein Binding
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Isadora Monteiro
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Azucena Bardají
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Elisa Serra-Casas
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | | | - Diana Quelhas
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clarissa Valim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro Alonso
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jaume Ordi
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Department of Pathology, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Clara Menéndez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- * E-mail:
| |
Collapse
|
10
|
Plasmodium falciparum variability and immune evasion proceed from antigenicity of consensus sequences from DBL6ε; generalization to all DBL from VAR2CSA. PLoS One 2013; 8:e54882. [PMID: 23372786 PMCID: PMC3555990 DOI: 10.1371/journal.pone.0054882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
We studied all consensus sequences within the four least ‘variable blocks’ (VB) present in the DBL6ε domain of VAR2CSA, the protein involved in the adhesion of infected red blood cells by Plasmodium falciparum that causes the Pregnancy-Associated Malaria (PAM). Characterising consensus sequences with respect to recognition of antibodies and percentage of responders among pregnant women living in areas where P. falciparum is endemic allows the identification of the most antigenic sequences within each VB. When combining these consensus sequences among four serotypes from VB1 or VB5, the most often recognized ones are expected to induce pan-reactive antibodies recognizing VAR2CSA from all plasmodial strains. These sequences are of main interest in the design of an immunogenic molecule. Using a similar approach than for DBL6ε, we studied the five other DBL and the CIDRpam from VAR2CSA, and again identified VB segments with highly conserved consensus sequences. In addition, we identified consensus sequences in other var genes expressed by non-PAM parasites. This finding paves the way for vaccine design against other pathologies caused by P. falciparum.
Collapse
|
11
|
Omosun YO, Blackstock AJ, Gatei W, Hightower A, van Eijk AM, Ayisi J, Otieno J, Lal RB, Steketee R, Nahlen B, ter Kuile FO, Slutsker L, Shi YP. Differential association of gene content polymorphisms of killer cell immunoglobulin-like receptors with placental malaria in HIV- and HIV+ mothers. PLoS One 2012; 7:e38617. [PMID: 22715396 PMCID: PMC3371008 DOI: 10.1371/journal.pone.0038617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/07/2012] [Indexed: 12/01/2022] Open
Abstract
Pregnant women have abundant natural killer (NK) cells in their placenta, and NK cell function is regulated by polymorphisms of killer cell immunoglobulin-like receptors (KIRs). Previous studies report different roles of NK cells in the immune responses to placental malaria (PM) and human immunodeficiency virus (HIV-1) infections. Given these references, the aim of this study was to determine the association between KIR gene content polymorphism and PM infection in pregnant women of known HIV-1 status. Sixteen genes in the KIR family were analyzed in 688 pregnant Kenyan women. Gene content polymorphisms were assessed in relation to PM in HIV-1 negative and HIV-1 positive women, respectively. Results showed that in HIV-1 negative women, the presence of the individual genes KIR2DL1 and KIR2DL3 increased the odds of having PM, and the KIR2DL2/KIR2DL2 homozygotes were associated with protection from PM. However, the reverse relationship was observed in HIV-1 positive women, where the presence of individual KIR2DL3 was associated with protection from PM, and KIR2DL2/KIR2DL2 homozygotes increased the odds for susceptibility to PM. Further analysis of the HIV-1 positive women stratified by CD4 counts showed that this reverse association between KIR genes and PM remained only in the individuals with high CD4 cell counts but not in those with low CD4 cell counts. Collectively, these results suggest that inhibitory KIR2DL2 and KIR2DL3, which are alleles of the same locus, play a role in the inverse effects on PM and PM/HIV co-infection and the effect of KIR genes on PM in HIV positive women is dependent on high CD4 cell counts. In addition, analysis of linkage disequilibrium (LD) of the PM relevant KIR genes showed strong LD in women without PM regardless of their HIV status while LD was broken in those with PM, indicating possible selection pressure by malaria infection on the KIR genes.
Collapse
Affiliation(s)
- Yusuf O. Omosun
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Atlanta Research and Education Foundation, Atlanta, Georgia, United States of America
| | - Anna J. Blackstock
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Atlanta Research and Education Foundation, Atlanta, Georgia, United States of America
| | - Wangeci Gatei
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Allen Hightower
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anne Maria van Eijk
- Center for Vector Biology and Control Research, Kenyan Medical Research Institute, Kisumu, Kenya
- Child and Reproductive Health Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John Ayisi
- Center for Vector Biology and Control Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | - Juliana Otieno
- New Nyanza Provincial General Hospital, Ministry of Health, Kisumu, Kenya
| | - Renu B. Lal
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Richard Steketee
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bernard Nahlen
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Feiko O. ter Kuile
- Child and Reproductive Health Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laurence Slutsker
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ya Ping Shi
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|