1
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. eLife 2025; 13:RP95629. [PMID: 40297980 PMCID: PMC12040321 DOI: 10.7554/elife.95629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Rana R Khankan
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Mahlet A Mekonnen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Giovanni Juarez
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | | | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| |
Collapse
|
2
|
Yuan X, Li W, Liu Q, Ou Y, Li J, Yan Q, Zhang P. Single-Cell RNA-Seq Reveals the Pseudo-temporal Dynamic Evolution Characteristics of ADSCs to Neuronal Differentiation. Cell Mol Neurobiol 2024; 45:5. [PMID: 39661257 PMCID: PMC11634962 DOI: 10.1007/s10571-024-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Adipose-derived stromal cells (ADSCs) are commonly used in regenerative medicine, but the genetic features of their development into neuronal cells are unknown. This study used single-cell RNA sequencing (scRNA-seq) to reveal gene expression changes during ADSCs to neuronal differentiation. Sequencing of the ADSCs group, the prei-1d group, and the induction 1 h, 3 h, 5 h, 6 h, and 8 h groups was performed using the BD Rhapsody platform. Sequence data were analyzed using t-SNE, Monocle2, GO, and KEGG algorithms. Results showed that a total of 38,453 cells were collected, which were divided into 0-13 clusters. Monocle2 structured analysis revealed that ADSCs were located at the beginning of the trajectory, and the cells after 5 h of induction were mainly distributed at the end of the trajectory in branches 1 and 2. Up-regulated differentially expressed genes (DEGs) at 5 h after induction enriched GO items including cellular protein metabolism, cell adhesion, endocytosis, and cell migration. KEGG analysis showed that induced 6 h and 8 h groups mainly enriched pathways were oxidative phosphorylation, glutathione metabolism, and expression of Parkinson's disease-related genes. In conclusion, two distinct cell state mechanisms stimulate ADSCs to develop into mature neurons. ADSCs induced for 5 h had developed into mature neurons. Later, the differentiated cells undergo degenerative changes associated with senescence.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China.
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China.
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China
| | - Qing Liu
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Jing Li
- Department of Radiology, Tangshan Maternal and Child Health Hospital, Tangshan, 063000, Hebei, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China.
- Department of Neurology, Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei, China.
| |
Collapse
|
3
|
Zheng YQ, Suo GH, Liu D, Li HY, Wu YJ, Ni H. Nexmifa Regulates Axon Morphogenesis in Motor Neurons in Zebrafish. Front Mol Neurosci 2022; 15:848257. [PMID: 35431796 PMCID: PMC9009263 DOI: 10.3389/fnmol.2022.848257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nexmif is mainly expressed in the central nervous system (CNS) and plays important roles in cell migration, cell to cell and cell-matrix adhesion, and maintains normal synaptic formation and function. Nevertheless, it is unclear how nexmif is linked to motor neuron morphogenesis. Here, we provided in situ hybridization evidence that nexmifa (zebrafish paralog) was localized to the brain and spinal cord and acted as a vital regulator of motor neuron morphogenesis. Nexmifa deficiency in zebrafish larvae generated abnormal primary motor neuron (PMN) development, including truncated Cap axons and decreased branches in Cap axons. Importantly, RNA-sequencing showed that nexmifa-depleted zebrafish embryos caused considerable CNS related gene expression alterations. Differentially expressed genes (DEGs) were mainly involved in axon guidance and several synaptic pathways, including glutamatergic, GABAergic, dopaminergic, cholinergic, and serotonergic synapse pathways, according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. In particular, when compared with other pathways, DEGs were highest (84) in the axon guidance pathway, according to Organismal Systems. Efna5b, bmpr2b, and sema6ba were decreased markedly in nexmifa-depleted zebrafish embryos. Moreover, both overexpression of efna5b mRNA and sema6ba mRNA could partially rescued motor neurons morphogenesis. These observations supported nexmifa as regulating axon morphogenesis of motor neurons in zebrafish. Taken together, nexmifa elicited crucial roles during motor neuron development by regulating the morphology of neuronal axons.
Collapse
Affiliation(s)
- Yu-qin Zheng
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Gui-hai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hai-ying Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - You-jia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
- You-jia Wu,
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Hong Ni,
| |
Collapse
|
4
|
Liu L, Hu J, Wang N, Liu Y, Wei X, Gao M, Ma Y, Wen D. A novel association of CCDC80 with gestational diabetes mellitus in pregnant women: a propensity score analysis from a case-control study. BMC Pregnancy Childbirth 2020; 20:53. [PMID: 31992220 PMCID: PMC6986032 DOI: 10.1186/s12884-020-2743-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is a growing global epidemic. Our study aims to confirm the association between circulatory coiled-coil domain-containing 80 (CCDC80) in pregnant women with GDM, to investigate the discriminatory power of CCDC80 on GDM, and to explore the relationships between this molecular level and clinical cardiometabolic parameters. Methods A 1:2 matched case-control study with 61 GDM patients and 122 controls was conducted using a propensity score matching protocol. All participants were screened from a multicenter prospective pre-birth cohort: Born in Shenyang Cohort Study (BISCS). During 24 and 28 weeks of gestation, follow-up individuals underwent an oral glucose tolerance test (OGTT) and blood sampling for cardiometabolic characterization. Results Following propensity score matching adjustment for clinical variables, including maternal age, gestational age, body mass index, SBP and DBP, plasma CCDC80 levels were significantly decreased in patients with GDM when compared with controls (0.25 ± 0.10 vs. 0.31 ± 0.12 ng/ml, P = 0.003). Conditional multi-logistic regression analyses after adjustments for potential confounding factors revealed that CCDC80 was a strong and independent protective factor for GDM (ORs < 1). In addition, the results of the ROC analysis indicated the CCDC80 exhibited the capability to identify pregnant women with GDM (AUC = 0.633). Finally, multivariate regression analyses showed that CCDC80 levels were positively associated with AST, monoamine oxidase, complement C1q, LDL-C, apolipoprotein A1and B, and negatively associated with blood glucose levels at 1 h post- OGTT. Conclusions Biomarker CCDC80 could be of great value for the development of prediction, diagnosis and therapeutic strategies against GDM in pregnant women.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning Province, 110122, People's Republic of China.,Research Center of China Medical University Birth Cohort, China medical university, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Ningning Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Xiaotong Wei
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Ming Gao
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning Province, 110122, People's Republic of China. .,Research Center of China Medical University Birth Cohort, China medical university, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
5
|
Mazzola M, Deflorian G, Pezzotta A, Ferrari L, Fazio G, Bresciani E, Saitta C, Ferrari L, Fumagalli M, Parma M, Marasca F, Bodega B, Riva P, Cotelli F, Biondi A, Marozzi A, Cazzaniga G, Pistocchi A. NIPBL: a new player in myeloid cell differentiation. Haematologica 2019; 104:1332-1341. [PMID: 30630974 PMCID: PMC6601076 DOI: 10.3324/haematol.2018.200899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.
Collapse
MESH Headings
- Adult
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Gene Expression Regulation, Neoplastic
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Nuclear Proteins/genetics
- Nucleophosmin
- Phenotype
- Wnt Signaling Pathway
- Zebrafish
- Cohesins
Collapse
Affiliation(s)
- Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | | | - Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Laura Ferrari
- Istituto FIRC di Oncologia Molecolare, IFOM, Milano, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Saitta
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Monica Fumagalli
- Clinica Ematologica e Centro Trapianti di Midollo Osseo, Ospedale San Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Matteo Parma
- Clinica Ematologica e Centro Trapianti di Midollo Osseo, Ospedale San Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| |
Collapse
|
6
|
Pei G, Lan Y, Lu W, Ji L, Hua ZC. The function of FAK/CCDC80/E-cadherin pathway in the regulation of B16F10 cell migration. Oncol Lett 2018; 16:4761-4767. [PMID: 30214608 DOI: 10.3892/ol.2018.9159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/16/2018] [Indexed: 12/23/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase involved in the development and progression of cancer. However, the regulatory role of FAK in cell migration remains unclear. The aim of the present study was to investigate the mechanism underlying the regulation of melanoma cell migration by FAK. The effect of FAK knockdown on gene expression in B16F10 cells was examined by gene chip analysis. The expression levels of coiled-coil domain containing 80 (CCDC80) and epithelial (E)-cadherin were analyzed by reverse transcription quantitative polymerase chain reaction and western blotting. Wound healing and transwell assays were used to monitor B16F10 cell migration. It was identified that the knockdown of FAK increased the expression levels of CCDC80 and E-cadherin, while the overexpression of CCDC80 elevated E-cadherin expression. Concurrently, upregulation of CCDC80 inhibited the migration of B16F10 cells, and downregulation of CCDC80 promoted the migration of B16F10 cells. The clinical data from the Oncomine database also revealed that the mRNA level of FAK was increased while the mRNA levels of CCDC80 and E-cadherin were decreased in patients with melanoma compared with normal controls. Taken together, the results of the present study suggest that the regulation of B16F10 melanoma cell migration by FAK is potentially mediated by CCDC80.
Collapse
Affiliation(s)
- Guoshun Pei
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Yan Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Weijie Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Lina Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories, Inc., Changzhou, Jiangsu 213164, P.R. China
| |
Collapse
|
7
|
Sasagawa S, Nishimura Y, Sawada H, Zhang E, Okabe S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Mitani Y, Maruyama K, Tanaka T. Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension. Front Pharmacol 2016; 7:142. [PMID: 27375481 PMCID: PMC4894905 DOI: 10.3389/fphar.2016.00142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a heterogeneous disorder associated with a progressive increase in pulmonary artery resistance and pressure. Although various therapies have been developed, the 5-year survival rate of PAH patients remains low. There is thus an important need to identify novel genes that are commonly dysregulated in PAH of various etiologies and could be used as biomarkers and/or therapeutic targets. In this study, we performed comparative transcriptome analysis of five mammalian PAH datasets downloaded from a public database. We identified 228 differentially expressed genes (DEGs) from a rat PAH model caused by inhibition of vascular endothelial growth factor receptor under hypoxic conditions, 379 DEGs from a mouse PAH model associated with systemic sclerosis, 850 DEGs from a mouse PAH model associated with schistosomiasis, 1598 DEGs from one cohort of human PAH patients, and 4260 DEGs from a second cohort of human PAH patients. Gene-by-gene comparison identified four genes that were differentially upregulated or downregulated in parallel in all five sets of DEGs. Expression of coiled-coil domain containing 80 (CCDC80) and anterior gradient two genes was significantly increased in the five datasets, whereas expression of SMAD family member six and granzyme A was significantly decreased. Weighted gene co-expression network analysis revealed a connection between CCDC80 and collagen type I alpha 1 (COL1A1) expression. To validate the function of CCDC80 in vivo, we knocked out ccdc80 in zebrafish using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. In vivo imaging of zebrafish expressing a fluorescent protein in endothelial cells showed that ccdc80 deletion significantly increased the diameter of the ventral artery, a vessel supplying blood to the gills. We also demonstrated that expression of col1a1 and endothelin-1 mRNA was significantly decreased in the ccdc80-knockout zebrafish. Finally, we examined Ccdc80 immunoreactivity in a rat PAHmodel and found increased expression in the hypertrophied media and adventitia of the pre-acinar pulmonary arteries (PAs) and in the thickened intima, media, and adventitia of the obstructed intra-acinar PAs. These results suggest that increased expression of CCDC80 may be involved in the pathogenesis of PAH, potentially by modulating the expression of endothelin-1 and COL1A1.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan
| |
Collapse
|
8
|
Fazio G, Gaston-Massuet C, Bettini LR, Graziola F, Scagliotti V, Cereda A, Ferrari L, Mazzola M, Cazzaniga G, Giordano A, Cotelli F, Bellipanni G, Biondi A, Selicorni A, Pistocchi A, Massa V. CyclinD1 Down-Regulation and Increased Apoptosis Are Common Features of Cohesinopathies. J Cell Physiol 2016. [PMID: 26206533 DOI: 10.1002/jcp.25106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic variants within components of the cohesin complex (NIPBL, SMC1A, SMC3, RAD21, PDS5, ESCO2, HDAC8) are believed to be responsible for a spectrum of human syndromes known as "cohesinopathies" that includes Cornelia de Lange Syndrome (CdLS). CdLS is a multiple malformation syndrome affecting almost any organ and causing severe developmental delay. Cohesinopathies seem to be caused by dysregulation of specific developmental pathways downstream of mutations in cohesin components. However, it is still unclear how mutations in different components of the cohesin complex affect the output of gene regulation. In this study, zebrafish embryos and SMC1A-mutated patient-derived fibroblasts were used to analyze abnormalities induced by SMC1A loss of function. We show that the knockdown of smc1a in zebrafish impairs neural development, increases apoptosis, and specifically down-regulates Ccnd1 levels. The same down-regulation of cohesin targets is observed in SMC1A-mutated patient fibroblasts. Previously, we have demonstrated that haploinsufficiency of NIPBL produces similar effects in zebrafish and in patients fibroblasts indicating a possible common feature for neurological defects and mental retardation in cohesinopathies. Interestingly, expression analysis of Smc1a and Nipbl in developing mouse embryos reveals a specific pattern in the hindbrain, suggesting a role for cohesins in neural development in vertebrates.
Collapse
Affiliation(s)
- Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK
| | - Laura Rachele Bettini
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Federica Graziola
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK
| | - Anna Cereda
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Mara Mazzola
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy.,Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Angelo Selicorni
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy.,Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Quintela I, Gomez-Guerrero L, Fernandez-Prieto M, Resches M, Barros F, Carracedo A. Female patient with autistic disorder, intellectual disability, and co-morbid anxiety disorder: Expanding the phenotype associated with the recurrent 3q13.2-q13.31 microdeletion. Am J Med Genet A 2015; 167A:3121-9. [PMID: 26332054 DOI: 10.1002/ajmg.a.37292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 08/02/2015] [Indexed: 01/13/2023]
Abstract
In recent years, the advent of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays and its use as a first genetic test for the diagnosis of patients with neurodevelopmental phenotypes has allowed the identification of novel submicroscopic chromosomal abnormalities (namely, copy number variants or CNVs), imperceptible by conventional cytogenetic techniques. The 3q13.31 microdeletion syndrome (OMIM #615433) has been defined as a genomic disorder mainly characterized by developmental delay, postnatal overgrowth, hypotonia, genital abnormalities in males, and characteristic craniofacial features. Although the 3q13.31 CNVs are variable in size, a 3.4 Mb recurrently altered region at 3q13.2-q13.31 has been recently described and non-allelic homologous recombination (NAHR) mediated by flanking human endogenous retrovirus (HERV-H) elements has been suggested as the mechanism of deletion formation. We expand the phenotypic spectrum associated with this recurrent deletion performing the clinical description of a 9-year-old female patient with autistic disorder, total absence of language, intellectual disability, anxiety disorder and disruptive, and compulsive eating behaviors. The array-based molecular karyotyping allowed the identification of a de novo recurrent 3q13.2-q13.31 deletion encompassing 25 genes. In addition, we compare her clinical phenotype with previous reports of patients with neurodevelopmental and behavioral disorders and proximal 3q microdeletions. Finally, we also review the candidate genes proposed so far for these phenotypes.
Collapse
Affiliation(s)
- Ines Quintela
- Grupo de Medicina Xenomica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado-Plataforma de Recursos Biomoleculares y Bioinformaticos-Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain
| | - Lorena Gomez-Guerrero
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain
| | - Montse Fernandez-Prieto
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain
| | - Mariela Resches
- Departamento de Psicologia Evolutiva y de la Educacion, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado-Plataforma de Recursos Biomoleculares y Bioinformaticos-Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain.,Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
|
11
|
Della Noce I, Carra S, Brusegan C, Critelli R, Frassine A, De Lorenzo C, Giordano A, Bellipanni G, Villa E, Cotelli F, Pistocchi A, Schepis F. The Coiled-Coil Domain Containing 80 (ccdc80) gene regulates gadd45β2 expression in the developing somites of zebrafish as a new player of the hedgehog pathway. J Cell Physiol 2015; 230:821-30. [PMID: 25205658 DOI: 10.1002/jcp.24810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/05/2014] [Indexed: 11/10/2022]
Abstract
The Coiled-Coil Domain Containing 80 (CCDC80) gene has been identified as strongly induced in rat thyroid PC CL3 cells immortalized by the adenoviral E1A gene. In human, CCDC80 is a potential oncosoppressor due to its down-regulation in several tumor cell lines and tissues and it is expressed in almost all tissues. CCDC80 has homologous in mouse, chicken, and zebrafish. We cloned the zebrafish ccdc80 and analyzed its expression and function during embryonic development. The in-silico translated zebrafish protein shares high similarity with its mammalian homologous, with nuclear localization signals and a signal peptide. Gene expression analysis demonstrates that zebrafish ccdc80 is maternally and zygotically expressed throughout the development. In particular, ccdc80 is strongly expressed in the notochord and it is under the regulation of the Hedgehog pathway. In this work we investigated the functional effects of ccdc80-loss-of-function during embryonic development and verified its interaction with gadd45β2 in somitogenesis.
Collapse
Affiliation(s)
- Isabella Della Noce
- Department of Gastroenterology, University of Modena and Reggio Emilia, Modena, Italy; Parco Tecnologico Padano, via Einstein, Lodi, Italia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Karavitakis E, Kitsiou-Tzeli S, Xaidara A, Kosma K, Makrythanasis P, Apazidou E, Kanavakis E, Tzetis M. Microduplication 3q13.2q13.31 identified in a male with dysmorphic features and multiple congenital anomalies. Am J Med Genet A 2013; 164A:666-70. [DOI: 10.1002/ajmg.a.36346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 10/06/2013] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sofia Kitsiou-Tzeli
- Department of Medical Genetics; Medical School; University of Athens; Greece
| | - Athena Xaidara
- First Department of Pediatrics, Medical School; “Aghia Sophia” Children's Hospital, University of Athens; Athens Greece
| | - Konstantina Kosma
- Department of Medical Genetics; Medical School; University of Athens; Greece
| | - Periklis Makrythanasis
- Department of Medical Genetics; Medical School; University of Athens; Greece
- Department of Genetic Medicine and Development; University of Geneva; Geneva Switzerland
| | - Eleni Apazidou
- Neonatal Special Care Unit; General Hospital of Chania; Crete Greece
| | - Emmanuel Kanavakis
- Department of Medical Genetics; Medical School; University of Athens; Greece
- Research Institute for the Study of Genetic and Malignant Disorders in Childhood; “Aghia Sophia, Children's Hospital”; Athens Greece
| | - Maria Tzetis
- Department of Medical Genetics; Medical School; University of Athens; Greece
| |
Collapse
|
13
|
Growth cone dynamics in the zebrafish embryonic forebrain are regulated by Brother of Cdo. Neurosci Lett 2013; 545:11-6. [DOI: 10.1016/j.neulet.2013.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/19/2013] [Accepted: 04/05/2013] [Indexed: 02/06/2023]
|