1
|
Zhang Y, Wu L, Wang J, Bai Y, Xiao J, Coutard B, Pei H, Deng F, Shen S. Latitude-driven patterns and dynamics in Jingmen group viral lineages: Spatial correlation, recombination, and phylogeography. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105744. [PMID: 40188900 DOI: 10.1016/j.meegid.2025.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/12/2025]
Abstract
The global emergence of Jingmen group viruses (JMVs), including Jingmen tick virus (JMTV), Alongshan virus (ALSV), and Yanggou tick virus (YGTV), has significantly broadened our perspective on the potential public health risks posed by segmented flaviviruses. However, the global evolutionary and genetic epidemiology of JMVs remains unclear. In this study, we conducted a comprehensive analysis of the spatial correlation, recombination, and phylogeography of JMVs. Our phylogenetic analysis identified three latitudinal lineages: (1) a mid-high-latitude group with YGTV and ALSV, prevalent in Europe and Asia; (2) a mid-latitude group with JMTV in Romania, Turkey, Kosovo, Trinidad, and Tobago; and (3) a mid-low-latitude group with JMTV and the Sichuan tick virus in Brazil, Japan, China, Kenya, and Uganda. The strong correlation between genetic distance and latitude also supports a latitude-dependent evolutionary pattern. Notably, concordance between the phylogenies of dominant tick species and JMVs underscores the pivotal role of tick species in the evolution of JMVs. Furthermore, the detection of frequent intra-lineage recombination and global migration events underscores the ecological pressures and tick-mediated evolutionary mechanisms that propel the global dissemination of emerging segmented flaviviruses. Additionally, the complex interplay of JMV recombination and migration events of JMVs identified here, particularly the recombination between JMTV and ALSV from disparate regions and viral migration across different regions and continents, complicates their evolutionary interrelationships and heightens potential health risks. Overall, our study provides valuable insights into ecological factors and tick species-mediated evolution and transmission that shape the global spread of emerging segmented flaviviruses.
Collapse
Affiliation(s)
- You Zhang
- Department of Medical laboratory, the Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - LvYing Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Jun Wang
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Yuan Bai
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jian Xiao
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Burno Coutard
- Unité des Virus émergents (UVE : Aix-Marseille Univ, Università di Corsica, Corte, IRD 190, Inserm 1207, IRBA), France
| | - Hua Pei
- Department of Medical laboratory, the Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Fei Deng
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| | - Shu Shen
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| |
Collapse
|
2
|
Zadra N, Rizzoli A, Rota-Stabelli O. Comprehensive phylogenomic analysis of Zika virus: Insights into its origin, past evolutionary dynamics, and global spread. Virus Res 2024; 350:199490. [PMID: 39489463 PMCID: PMC11583807 DOI: 10.1016/j.virusres.2024.199490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Zika virus (ZIKV), a Flaviviridae family member, has been linked to severe neurological disorders. Despite detailed studies on recent outbreaks, the early evolutionary history of ZIKV remains partially unclear. This study elucidates ZIKV origin and evolutionary dynamics, focusing on recombination events, early lineage diversification, and virus spread across continents. METHODS We assessed recombination using multiple methods. We conducted Bayesian phylogenetic analyses to understand the evolutionary relationships and timing of key diversification events. Model selection was carried out to determine the most appropriate evolutionary model for our dataset. RESULTS Our phylogenies revealed recent recombination between Singaporean and African lineages, indicating the co-circulation of diverse lineages during outbreaks. Thailand was identified as a crucial hub in the spread across Asia. The phylogenetic analysis suggests that the ZIKV lineage dates back to the eleventh century, with the first significant diversification occurring in the nineteenth century. The timing of the re-introduction of the Asian lineage into Africa and the delay between probable introduction and outbreak onset were also determined. CONCLUSIONS This study provides novel insights into ZIKV's origin and early evolutionary dynamics, highlighting Thailand's role in the spread of the virus in Asia and recent recombination events between distant lineages. These findings emphasize the need for continuous surveillance and a better understanding of ZIKV biology to forecast and mitigate future outbreaks.
Collapse
Affiliation(s)
- Nicola Zadra
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Annapaola Rizzoli
- Applied Ecology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
3
|
Gonzalo‐Nadal V, Kohl A, Rocchi M, Brennan B, Hughes J, Nichols J, Da Silva Filipe A, Dunlop JI, Fares M, Clark JJ, Tandavanitj R, Patel AH, Cloquell‐Miro A, Bongers J, Deacon J, Kaczmarska A, Stalin C, Liatis T, Irving J, Gutierrez‐Quintana R. Suspected tick-borne flavivirus meningoencephalomyelitis in dogs from the UK: six cases (2021). J Small Anim Pract 2024; 65:132-143. [PMID: 37956993 PMCID: PMC11497270 DOI: 10.1111/jsap.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/30/2023] [Accepted: 10/01/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Tick-borne encephalitis virus and louping ill virus are neurotropic flaviviruses transmitted by ticks. Epidemiologically, tick-borne encephalitis is endemic in Europe whereas louping ill's predominant geographical distribution is the UK. Rarely, these flaviviruses affect dogs causing neurological signs. This case series aimed to describe the clinical, clinicopathological, and imaging findings, as well as the outcomes in six dogs with meningoencephalitis and/or meningomyelitis caused by a flavivirus in the UK in 2021. MATERIALS AND METHODS Observational retrospective case-series study. Clinical data were retrieved from medical records of dogs with positive serological or immunohistochemical results from three different institutions from spring to winter 2021. RESULTS Six dogs were included in the study. All dogs presented an initial phase of pyrexia and/or lethargy followed by progressive signs of spinal cord and/or intracranial disease. Magnetic resonance imaging showed bilateral and symmetrical lesions affecting the grey matter of the thalamus, pons, medulla oblongata, and thoracic or lumbar intumescences with none or mild parenchymal and meningeal contrast enhancement. Serology for tick-borne encephalitis virus was positive in five dogs with the presence of seroconversion in two dogs. The viral distinction between flaviviruses was not achieved. One dog with negative serology presented positive immunohistochemistry at post-mortem examination. Three dogs survived but presented neurological sequelae. Three dogs were euthanased due to the rapid progression of the clinical signs or static neurological signs. CLINICAL SIGNIFICANCE These cases raise awareness of the presence of tick-borne encephalitis as an emergent disease or the increased prevalence of louping ill virus affecting dogs in the UK.
Collapse
Affiliation(s)
- V. Gonzalo‐Nadal
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - A. Kohl
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - M. Rocchi
- Moredun Research InstituteMidlothianUK
| | - B. Brennan
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - J. Hughes
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - J. Nichols
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | | | - J. I. Dunlop
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - M. Fares
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - J. J. Clark
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - R. Tandavanitj
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - A. H. Patel
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - A. Cloquell‐Miro
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - J. Bongers
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Moorview VetsCramlingtonUK
| | | | - A. Kaczmarska
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - C. Stalin
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Moorview VetsCramlingtonUK
| | - T. Liatis
- Queen Mother Hospital for Animals, Royal Veterinary CollegeUniversity of LondonLondonUK
| | - J. Irving
- Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldHertfordshireUK
- Harper & Keele Veterinary SchoolNewportShropshireUK
| | - R. Gutierrez‐Quintana
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Sukhorukov GA, Paramonov AI, Lisak OV, Kozlova IV, Bazykin GA, Neverov AD, Karan LS. The Baikal subtype of tick-borne encephalitis virus is evident of recombination between Siberian and Far-Eastern subtypes. PLoS Negl Trop Dis 2023; 17:e0011141. [PMID: 36972237 PMCID: PMC10079218 DOI: 10.1371/journal.pntd.0011141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/06/2023] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus which causes an acute or sometimes chronic infection that frequently has severe neurological consequences, and is a major public health threat in Eurasia. TBEV is genetically classified into three distinct subtypes; however, at least one group of isolates, the Baikal subtype, also referred to as “886-84-like”, challenges this classification. Baikal TBEV is a persistent group which has been repeatedly isolated from ticks and small mammals in the Buryat Republic, Irkutsk and Trans-Baikal regions of Russia for several decades. One case of meningoencephalitis with a lethal outcome caused by this subtype has been described in Mongolia in 2010. While recombination is frequent in Flaviviridae, its role in the evolution of TBEV has not been established. Here, we isolate and sequence four novel Baikal TBEV samples obtained in Eastern Siberia. Using a set of methods for inference of recombination events, including a newly developed phylogenetic method allowing for formal statistical testing for such events in the past, we find robust support for a difference in phylogenetic histories between genomic regions, indicating recombination at origin of the Baikal TBEV. This finding extends our understanding of the role of recombination in the evolution of this human pathogen.
Collapse
Affiliation(s)
- Grigorii A. Sukhorukov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- * E-mail: (GAS); (GAB); (ADN)
| | - Alexey I. Paramonov
- Laboratory of molecular Epidemiology and genetic diagnosis, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Oksana V. Lisak
- Laboratory of molecular Epidemiology and genetic diagnosis, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Irina V. Kozlova
- Laboratory of molecular Epidemiology and genetic diagnosis, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Georgii A. Bazykin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Laboratory of Molecular Evolution, Kharkevich Institute for Information Transmission Problems of the RAS, Moscow, Russia
- * E-mail: (GAS); (GAB); (ADN)
| | - Alexey D. Neverov
- HSE University, Moscow, Russia
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology, Moscow, Russia
- * E-mail: (GAS); (GAB); (ADN)
| | - Lyudmila S. Karan
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology, Moscow, Russia
| |
Collapse
|
5
|
Kawakubo S, Tomitaka Y, Tomimura K, Koga R, Matsuoka H, Uematsu S, Yamashita K, Ho SYW, Ohshima K. The Recombinogenic History of Turnip Mosaic Potyvirus Reveals its Introduction to Japan in the 19th Century. Virus Evol 2022; 8:veac060. [PMID: 35903148 PMCID: PMC9320297 DOI: 10.1093/ve/veac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Characterizing the detailed spatial and temporal dynamics of plant pathogens can provide
valuable information for crop protection strategies. However, the epidemiological
characteristics and evolutionary trajectories of pathogens can differ markedly from one
country to another. The most widespread and important virus of brassica vegetables, turnip
mosaic virus (TuMV), causes serious plant diseases in Japan. We collected 317 isolates of
TuMV from Raphanus and Brassica plants throughout Japan
over nearly five decades. Genomic sequences from these isolates were combined with
published sequences. We identified a total of eighty-eight independent recombination
events in Japanese TuMV genomes and found eighty-two recombination-type patterns in Japan.
We assessed the evolution of TuMV through space and time using whole and partial genome
sequences of both nonrecombinants and recombinants. Our results suggest that TuMV was
introduced into Japan after the country emerged from its isolationist policy (1639–1854)
in the Edo period and then dispersed to other parts of Japan in the 20th century. The
results of our analyses reveal the complex structure of the TuMV population in Japan and
emphasize the importance of identifying recombination events in the genome. Our study also
provides an example of surveying the epidemiology of a virus that is highly
recombinogenic.
Collapse
Affiliation(s)
- Shusuke Kawakubo
- Laboratory of Plant Virology, Department of Biological Resource Science, Faculty of Agriculture, Saga University , 1-banchi, Honjo-machi, Saga, Saga 840-8502, Japan
| | - Yasuhiro Tomitaka
- Laboratory of Plant Virology, Department of Biological Resource Science, Faculty of Agriculture, Saga University , 1-banchi, Honjo-machi, Saga, Saga 840-8502, Japan
- Institute for Plant Protection, National Agriculture and Food Research Organization , 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Kenta Tomimura
- Laboratory of Plant Virology, Department of Biological Resource Science, Faculty of Agriculture, Saga University , 1-banchi, Honjo-machi, Saga, Saga 840-8502, Japan
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization , 485-6 Okitsu Nakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Ryoko Koga
- Laboratory of Plant Virology, Department of Biological Resource Science, Faculty of Agriculture, Saga University , 1-banchi, Honjo-machi, Saga, Saga 840-8502, Japan
| | - Hiroki Matsuoka
- Laboratory of Plant Virology, Department of Biological Resource Science, Faculty of Agriculture, Saga University , 1-banchi, Honjo-machi, Saga, Saga 840-8502, Japan
| | - Seiji Uematsu
- Laboratory of Agro-Environmental Science, Warm Region Horticulture Institute, Chiba Prefectural Agriculture and Forestry Research Center , 1762 Yamamoto, Tateyama, Chiba 294-0014, Japan
- Laboratory of Molecular and Cellular Biology, Department of Bioregulation and Bio- interaction, Tokyo University of Agriculture and Technology , 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kazuo Yamashita
- Vegetable Research Institute, Aomori Prefectural Industrial Technology Research Center , 91 Yanagisawa, Inuotose, Rokunohe, Aomori 033-0071, Japan
- Fukuchi Garlic R&S, 4-92 Akane , Fukuda, Nanbu-machi, Aomori 039-0815, Japan
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney , Sydney, NSW 2006, Australia
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Department of Biological Resource Science, Faculty of Agriculture, Saga University , 1-banchi, Honjo-machi, Saga, Saga 840-8502, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University , 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
6
|
Delimitation of the Tick-Borne Flaviviruses. Resolving the Tick-Borne Encephalitis virus and Louping-Ill Virus Paraphyletic Taxa. Mol Phylogenet Evol 2022; 169:107411. [PMID: 35032647 DOI: 10.1016/j.ympev.2022.107411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
The tick-borne flavivirus (TBFV) group contains at least 12 members where five of them are important pathogens of humans inducing diseases with varying severity (from mild fever forms to acute encephalitis). The taxonomy structure of TBFV is not fully clarified at present. In particular, there is a number of paraphyletic issues of tick-borne encephalitis virus (TBEV) and louping-ill virus (LIV). In this study, we aimed to apply different bioinformatic approaches to analyze all available complete genome amino acid sequences to delineate TBFV members at the species level. Results showed that the European subtype of TBEV (TBEV-E) is a distinct species unit. LIV, in turn, should be separated into two species. Additional analysis of TBEV and LIV antigenic determinant diversity also demonstrate that TBEV-E and LIV are significantly different both from each other and from the other TBEV subtypes. The analysis of available literature provided data on other virus phenotypic particularities that supported our hypothesis. So, within the TBEV+LIV paraphyletic group, we offer to assign four species to get a more accurate understanding of the TBFV interspecies structure according to the modern monophyletic conception.
Collapse
|
7
|
Deviatkin AA, Karganova GG, Vakulenko YA, Lukashev AN. TBEV Subtyping in Terms of Genetic Distance. Viruses 2020; 12:E1240. [PMID: 33142676 PMCID: PMC7692686 DOI: 10.3390/v12111240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Currently, the lowest formal taxon in virus classification is species; however, unofficial lower-level units are commonly used in everyday work. Tick-borne encephalitis virus (TBEV) is a species of mammalian tick-borne flaviviruses that may cause encephalitis. Many known representatives of TBEV are grouped into subtypes, mostly according to their phylogenetic relationship. However, the emergence of novel sequences could dissolve this phylogenetic grouping; in the absence of strict quantitative criterion, it may be hard to define the borders of the first TBEV taxonomic unit below the species level. In this study, the nucleotide/amino-acid space of all known TBEV sequences was analyzed. Amino-acid sequence p-distances could not reliably distinguish TBEV subtypes. Viruses that differed by less than 10% of nucleotides in the polyprotein-coding gene belonged to the same subtype. At the same time, more divergent viruses were representatives of different subtypes. According to this distance criterion, TBEV species may be divided into seven subtypes: TBEV-Eur, TBEV-Sib, TBEV-FE, TBEV-2871 (TBEV-Ob), TBEV-Him, TBEV-178-79 (TBEV-Bkl-1), and TBEV-886-84 (TBEV-Bkl-2).
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
| | - Galina G. Karganova
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
8
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
9
|
Abstract
Because of their replication mode and segmented dsRNA genome, homologous recombination is assumed to be rare in the rotaviruses. We analyzed 23,627 complete rotavirus genome sequences available in the NCBI Virus Variation database, and found 109 instances of homologous recombination, at least eleven of which prevailed across multiple sequenced isolates. In one case, recombination may have generated a novel rotavirus VP1 lineage. We also found strong evidence for intergenotypic recombination in which more than one sequence strongly supported the same event, particularly between different genotypes of segment 9, which encodes the glycoprotein, VP7. The recombined regions of many putative recombinants showed amino acid substitutions differentiating them from their major and minor parents. This finding suggests that these recombination events were not overly deleterious, since presumably these recombinants proliferated long enough to acquire adaptive mutations in their recombined regions. Protein structural predictions indicated that, despite the sometimes substantial amino acid replacements resulting from recombination, the overall protein structures remained relatively unaffected. Notably, recombination junctions appear to occur nonrandomly with hot spots corresponding to secondary RNA structures, a pattern seen consistently across segments. In total, we found strong evidence for recombination in nine of eleven rotavirus A segments. Only segments 7 (NSP3) and 11 (NSP5) did not show strong evidence of recombination. Collectively, the results of our computational analyses suggest that, contrary to the prevailing sentiment, recombination may be a significant driver of rotavirus evolution and may influence circulating strain diversity.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
10
|
Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol 2018; 99:1345-1356. [PMID: 30156526 DOI: 10.1099/jgv.0.001142] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in positive-strand RNA viruses is a significant evolutionary mechanism that drives the creation of viral diversity by the formation of novel chimaeric genomes. The process and its consequences, for example the generation of viruses with novel phenotypes, has historically been studied by analysis of the end products. More recently, with an appreciation that there are both replicative and non-replicative mechanisms at work, and with new approaches and techniques to analyse intermediate products, the viral and cellular factors that influence the process are becoming understood. The major influence on replicative recombination is the fidelity of viral polymerase, although RNA structures and sequences may also have an impact. In replicative recombination the viral polymerase is necessary and sufficient, although roles for other viral or cellular proteins may exist. In contrast, non-replicative recombination appears to be mediated solely by cellular components. Despite these insights, the relative importance of replicative and non-replicative mechanisms is not clear. Using single-stranded positive-sense RNA viruses as exemplars, we review the current state of understanding of the processes and consequences of recombination.
Collapse
Affiliation(s)
- Kirsten Bentley
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| | - David J Evans
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
11
|
Mlera L, Bloom ME. The Role of Mammalian Reservoir Hosts in Tick-Borne Flavivirus Biology. Front Cell Infect Microbiol 2018; 8:298. [PMID: 30234026 PMCID: PMC6127651 DOI: 10.3389/fcimb.2018.00298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Small-to-medium sized mammals and large animals are lucrative sources of blood meals for ixodid ticks that transmit life-threatening tick-borne flaviviruses (TBFVs). TBFVs have been isolated from various organs obtained from wild-caught Myodes and Apodemus species in Europe and Asia. Thus, these rodents are well-established reservoirs of TBFVs. Wild-caught Peromyscus species have demonstrated seropositivity against Powassan virus, the only TBFV known to circulate in North America, suggesting that they may play an important role in the biology of the virus in this geographic region. However, virus isolation from Peromyscus species is yet to be demonstrated. Wild-caught medium-sized mammals, such as woodchucks (Marmota monax) and skunks (Mephitis mephitis) have also demonstrated seropositivity against POWV, and virus was isolated from apparently healthy animals. Despite the well-established knowledge that small-to-medium sized animals are TBFV reservoirs, specific molecular biology addressing host-pathogen interactions remains poorly understood. Elucidating these interactions will be critical for gaining insight into the mechanism(s) of viral pathogenesis and/or resistance.
Collapse
Affiliation(s)
- Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| |
Collapse
|
12
|
Klitting R, Fischer C, Drexler JF, Gould EA, Roiz D, Paupy C, de Lamballerie X. What Does the Future Hold for Yellow Fever Virus? (II). Genes (Basel) 2018; 9:E425. [PMID: 30134625 PMCID: PMC6162518 DOI: 10.3390/genes9090425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas with low vaccination coverage but that are suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization's initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately viral dissemination, and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more yellow fever (YF) cases in the upcoming years. Hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of a two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - Carlo Fischer
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.
| | - Ernest A Gould
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - David Roiz
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Christophe Paupy
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| |
Collapse
|
13
|
Bertrand YJK, Johansson M, Norberg P. Revisiting Recombination Signal in the Tick-Borne Encephalitis Virus: A Simulation Approach. PLoS One 2016; 11:e0164435. [PMID: 27760182 PMCID: PMC5070875 DOI: 10.1371/journal.pone.0164435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/26/2016] [Indexed: 12/02/2022] Open
Abstract
The hypothesis of wide spread reticulate evolution in Tick-Borne Encephalitis virus (TBEV) has recently gained momentum with several publications describing past recombination events involving various TBEV clades. Despite a large body of work, no consensus has yet emerged on TBEV evolutionary dynamics. Understanding the occurrence and frequency of recombination in TBEV bears significant impact on epidemiology, evolution, and vaccination with live vaccines. In this study, we investigated the possibility of detecting recombination events in TBEV by simulating recombinations at several locations on the virus' phylogenetic tree and for different lengths of recombining fragments. We derived estimations of rates of true and false positive for the detection of past recombination events for seven recombination detection algorithms. Our analytical framework can be applied to any investigation dealing with the difficult task of distinguishing genuine recombination signal from background noise. Our results suggest that the problem of false positives associated with low detection P-values in TBEV, is more insidious than generally acknowledged. We reappraised the recombination signals present in the empirical data, and showed that reliable signals could only be obtained in a few cases when highly genetically divergent strains were involved, whereas false positives were common among genetically similar strains. We thus conclude that recombination among wild-type TBEV strains may occur, which has potential implications for vaccination with live vaccines, but that these events are surprisingly rare.
Collapse
Affiliation(s)
- Yann J. K. Bertrand
- Science and Historical Investigations of Evolution Laboratory of Dubá, Dubá, Czech Rep
| | - Magnus Johansson
- School of Medical Sciences Örebro University, Örebro, Sweden
- School of Natural Science, Technology & Environmental Studies, Södertörn University, Huddinge, Sweden
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Peter Norberg
- Department of Clinical Microbiology, Sahlgrenska University, Gothenburg, Sweden
| |
Collapse
|
14
|
Ershova AS, Gra OA, Lyaschuk AM, Grunina TM, Tkachuk AP, Bartov MS, Savina DM, Sergienko OV, Galushkina ZM, Gudov VP, Kozlovskaya LI, Kholodilov IS, Gmyl LV, Karganova GG, Lunin VG, Karyagina AS, Gintsburg AL. Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice. BMC Infect Dis 2016; 16:544. [PMID: 27717318 PMCID: PMC5054610 DOI: 10.1186/s12879-016-1884-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/01/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND E protein of tick-borne encephalitis virus (TBEV) and other flaviviruses is located on the surface of the viral particle. Domain III of this protein seems to be a promising component of subunit vaccines for prophylaxis of TBE and kits for diagnostics of TBEV. METHODS Three variants of recombinant TBEV E protein domain III of European, Siberian and Far Eastern subtypes fused with dextran-binding domain of Leuconostoc citreum KM20 were expressed in E. coli and purified. The native structure of domain III was confirmed by ELISA antibody kit and sera of patients with tick-borne encephalitis. Immunogenic and protective properties of the preparation comprising these recombinant proteins immobilized on a dextran carrier with CpG oligonucleotides as an adjuvant were investigated on the mice model. RESULTS All 3 variants of recombinant proteins immobilized on dextran demonstrate specific interaction with antibodies from the sera of TBE patients. Thus, constructed recombinant proteins seem to be promising for TBE diagnostics. The formulation comprising the 3 variants of recombinant antigens immobilized on dextran and CpG oligonucleotides, induces the production of neutralizing antibodies against TBEV of different subtypes and demonstrates partial protectivity against TBEV infection. CONCLUSIONS Studied proteins interact with the sera of TBE patients, and, in combination with dextran and CPGs, demonstrate immunogenicity and limited protectivity on mice compared with reference "Tick-E-Vac" vaccine.
Collapse
Affiliation(s)
- Anna S Ershova
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia. .,Institute of Agricultural Biotechnology, Moscow, 127550, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Olga A Gra
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | | | - Tatyana M Grunina
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | - Artem P Tkachuk
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | - Mikhail S Bartov
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | - Darya M Savina
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | - Olga V Sergienko
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia.,Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - Zoya M Galushkina
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | - Vladimir P Gudov
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | - Liubov I Kozlovskaya
- Chumakov Institute of poliomyelitis and viral encephalitides, Moscow, 142782, Russia
| | - Ivan S Kholodilov
- Chumakov Institute of poliomyelitis and viral encephalitides, Moscow, 142782, Russia
| | - Larissa V Gmyl
- Chumakov Institute of poliomyelitis and viral encephalitides, Moscow, 142782, Russia
| | - Galina G Karganova
- Chumakov Institute of poliomyelitis and viral encephalitides, Moscow, 142782, Russia
| | - Vladimir G Lunin
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia.,Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - Anna S Karyagina
- Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia.,Institute of Agricultural Biotechnology, Moscow, 127550, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | |
Collapse
|
15
|
Beasley DWC, McAuley AJ, Bente DA. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Res 2014; 115:48-70. [PMID: 25545072 DOI: 10.1016/j.antiviral.2014.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
Yellow fever virus (YFV) is the prototypical hemorrhagic fever virus, yet our understanding of its phenotypic diversity and any molecular basis for observed differences in disease severity and epidemiology is lacking, when compared to other arthropod-borne and haemorrhagic fever viruses. This is, in part, due to the availability of safe and effective vaccines resulting in basic YFV research taking a back seat to those viruses for which no effective vaccine occurs. However, regular outbreaks occur in endemic areas, and the spread of the virus to new, previously unaffected, areas is possible. Analysis of isolates from endemic areas reveals a strong geographic association for major genotypes, and recent epidemics have demonstrated the emergence of novel sequence variants. This review aims to outline the current understanding of YFV genetic and phenotypic diversity and its sources, as well as the available animal models for characterizing these differences in vivo. The consequences of genetic diversity for detection and diagnosis of yellow fever and development of new vaccines and therapeutics are discussed.
Collapse
Affiliation(s)
- David W C Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| |
Collapse
|
16
|
Kovalev SY, Mukhacheva TA. Tick-borne encephalitis virus subtypes emerged through rapid vector switches rather than gradual evolution. Ecol Evol 2014; 4:4307-16. [PMID: 25540692 PMCID: PMC4267869 DOI: 10.1002/ece3.1301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis is the most important human arthropod-borne virus disease in Europe and Russia, with an annual incidence of about 13 thousand people. Tick-borne encephalitis virus (TBEV) is distributed in the natural foci of forest and taiga zones of Eurasia, from the Pacific to the Atlantic coast. Currently, there are three mutually exclusive hypotheses about the origin and distribution of TBEV subtypes, although they are based on the same assumption of gradual evolution. Recently, we have described the structure of TBEV populations in terms of a clusteron approach, a clusteron being a structural unit of viral population [Kovalev and Mukhacheva (2013) Infect. Genet. Evol., 14, 22–28]. This approach allowed us to investigate questions of TBEV evolution in a new way and to propose a hypothesis of quantum evolution due to a vector switch. We also consider a possible mechanism for this switch occurring in interspecific hybrids of ticks. It is necessarily accompanied by a rapid accumulation of mutations in the virus genome, which is contrary to the generally accepted view of gradual evolution in assessing the ages of TBEV populations. The proposed hypothesis could explain and predict not only the formation of new subtypes, but also the emergence of new vector-borne viruses.
Collapse
Affiliation(s)
- Sergey Y Kovalev
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University Lenin Avenue 51, Yekaterinburg, 620000, Russia
| | - Tatyana A Mukhacheva
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University Lenin Avenue 51, Yekaterinburg, 620000, Russia
| |
Collapse
|
17
|
Asghar N, Lindblom P, Melik W, Lindqvist R, Haglund M, Forsberg P, Överby AK, Andreassen Å, Lindgren PE, Johansson M. Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance. PLoS One 2014; 9:e103264. [PMID: 25058476 PMCID: PMC4110009 DOI: 10.1371/journal.pone.0103264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/25/2014] [Indexed: 01/10/2023] Open
Abstract
The increased distribution of the tick-borne encephalitis virus (TBEV) in Scandinavia highlights the importance of characterizing novel sequences within the natural foci. In this study, two TBEV strains: the Norwegian Mandal 2009 (questing nymphs pool) and the Swedish Saringe 2009 (blood-fed nymph) were sequenced and phylogenetically characterized. Interestingly, the sequence of Mandal 2009 revealed the shorter form of the TBEV genome, similar to the highly virulent Hypr strain, within the 3′ non-coding region (3′NCR). A different genomic structure was found in the 3′NCR of Saringe 2009, as in-depth analysis demonstrated TBEV variants with different lengths within the poly(A) tract. This shows that TBEV quasispecies exists in nature and indicates a putative shift in the quasispecies pool when the virus switches between invertebrate and vertebrate environments. This prompted us to further sequence and analyze the 3′NCRs of additional Scandinavian TBEV strains and control strains, Hypr and Neudoerfl. Toro 2003 and Habo 2011 contained mainly a short (A)3C(A)6 poly(A) tract. A similar pattern was observed for the human TBEV isolates 1993/783 and 1991/4944; however, one clone of 1991/4944 contained an (A)3C(A)11 poly(A) sequence, demonstrating that quasispecies with longer poly(A) could be present in human isolates. Neudoerfl has previously been reported to contain a poly(A) region, but to our surprise the re-sequenced genome contained two major quasispecies variants, both lacking the poly(A) tract. We speculate that the observed differences are important factors for the understanding of virulence, spread, and control of the TBEV.
Collapse
Affiliation(s)
- Naveed Asghar
- School of Natural Science, Technology & Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Pontus Lindblom
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Wessam Melik
- School of Natural Science, Technology & Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Mats Haglund
- Department of Infectious Diseases, County Hospital, Kalmar, Sweden
| | - Pia Forsberg
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Clinic of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Åshild Andreassen
- Division of Infectious Disease Control, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Per-Eric Lindgren
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Division of Medical Services, Department of Microbiology, County Hospital Ryhov, Jönköping, Sweden
| | - Magnus Johansson
- School of Natural Science, Technology & Environmental Studies, Södertörn University, Huddinge, Sweden
- School of Medicine, Örebro University, Örebro, Sweden
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| |
Collapse
|
18
|
Pettersson JHO, Fiz-Palacios O. Dating the origin of the genus Flavivirus in the light of Beringian biogeography. J Gen Virol 2014; 95:1969-1982. [PMID: 24914065 DOI: 10.1099/vir.0.065227-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Flavivirus includes some of the most important human viral pathogens, and its members are found in all parts of the populated world. The temporal origin of diversification of the genus has long been debated due to the inherent problems with dating deep RNA virus evolution. A generally accepted hypothesis suggests that Flavivirus emerged within the last 10 000 years. However, it has been argued that the tick-borne Powassan flavivirus was introduced into North America some time between the opening and closing of the Beringian land bridge that connected Asia and North America 15 000-11 000 years ago, indicating an even older origin for Flavivirus. To determine the temporal origin of Flavivirus, we performed Bayesian relaxed molecular clock dating on a dataset with high coverage of the presently available Flavivirus diversity by combining tip date calibrations and internal node calibration, based on the Powassan virus and Beringian land bridge biogeographical event. Our analysis suggested that Flavivirus originated ~85 000 (64 000-110 000) or 120 000 (87 000-159 000) years ago, depending on the circumscription of the genus. This is significantly older than estimated previously. In light of our results, we propose that it is likely that modern humans came in contact with several members of the genus Flavivirus much earlier than suggested previously, and that it is possible that the spread of several flaviviruses coincided with, and was facilitated by, the migration and population expansion of modern humans out of Africa.
Collapse
Affiliation(s)
- John H-O Pettersson
- Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Omar Fiz-Palacios
- Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Jeffries CL, Mansfield KL, Phipps LP, Wakeley PR, Mearns R, Schock A, Bell S, Breed AC, Fooks AR, Johnson N. Louping ill virus: an endemic tick-borne disease of Great Britain. J Gen Virol 2014; 95:1005-1014. [PMID: 24552787 DOI: 10.1099/vir.0.062356-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Europe and Asia, Ixodid ticks transmit tick-borne encephalitis virus (TBEV), a flavivirus that causes severe encephalitis in humans but appears to show no virulence for livestock and wildlife. In the British Isles, where TBEV is absent, a closely related tick-borne flavivirus, named louping ill virus (LIV), is present. However, unlike TBEV, LIV causes a febrile illness in sheep, cattle, grouse and some other species, that can progress to fatal encephalitis. The disease is detected predominantly in animals from upland areas of the UK and Ireland. This distribution is closely associated with the presence of its arthropod vector, the hard tick Ixodes ricinus. The virus is a positive-strand RNA virus belonging to the genus Flavivirus, exhibiting a high degree of genetic homology to TBEV and other mammalian tick-borne viruses. In addition to causing acute encephalomyelitis in sheep, other mammals and some avian species, the virus is recognized as a zoonotic agent with occasional reports of seropositive individuals, particularly those whose occupation involves contact with sheep. Preventative vaccination in sheep is effective although there is no treatment for disease. Surveillance for LIV in Great Britain is limited despite an increased awareness of emerging arthropod-borne diseases and potential changes in distribution and epidemiology. This review provides an overview of LIV and highlights areas where further effort is needed to control this disease.
Collapse
Affiliation(s)
- C L Jeffries
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - K L Mansfield
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - L P Phipps
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - P R Wakeley
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - R Mearns
- Animal Health and Veterinary Laboratories Agency - Penrith, Merrythought, Calthwaite, Penrith CA11 9RR, UK
| | - A Schock
- Animal Health and Veterinary Laboratories Agency - Lasswade, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK
| | - S Bell
- Animal Health and Veterinary Laboratories Agency -Shrewsbury Investigation Centre & Laboratory, Kendal Road, Harlscott, Shrewsbury, Shropshire SY1 4HD, UK
| | - A C Breed
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - A R Fooks
- University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, Liverpool, Merseyside L69 7BE, UK.,Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - N Johnson
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
20
|
Karan LS, Ciccozzi M, Yakimenko VV, Presti AL, Cella E, Zehender G, Rezza G, Platonov AE. The deduced evolution history of Omsk hemorrhagic fever virus. J Med Virol 2013; 86:1181-7. [DOI: 10.1002/jmv.23856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2013] [Indexed: 02/03/2023]
Affiliation(s)
| | - Massimo Ciccozzi
- Department of Infectious; Parasitic and Immunomediated Diseases; National Institute of Health; Rome Italy
| | | | - Alessandra Lo Presti
- Department of Infectious; Parasitic and Immunomediated Diseases; National Institute of Health; Rome Italy
| | - Eleonora Cella
- Department of Infectious; Parasitic and Immunomediated Diseases; National Institute of Health; Rome Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences; L. Sacco Hospital; University of Milan; Milan Italy
| | - Giovanni Rezza
- Department of Infectious; Parasitic and Immunomediated Diseases; National Institute of Health; Rome Italy
| | | |
Collapse
|
21
|
Norberg P, Roth A, Bergström T. Genetic recombination of tick-borne flaviviruses among wild-type strains. Virology 2013; 440:105-16. [PMID: 23510672 DOI: 10.1016/j.virol.2013.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 12/28/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022]
Abstract
Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses.
Collapse
Affiliation(s)
- Peter Norberg
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|