1
|
Gao M, Kong Y, Yang G, Gao L, Shi J. Multiple myeloma cancer stem cells. Oncotarget 2018; 7:35466-77. [PMID: 27007154 PMCID: PMC5085244 DOI: 10.18632/oncotarget.8154] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment.
Collapse
Affiliation(s)
- Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Hansmann L, Han A, Penter L, Liedtke M, Davis MM. Clonal Expansion and Interrelatedness of Distinct B-Lineage Compartments in Multiple Myeloma Bone Marrow. Cancer Immunol Res 2017; 5:744-754. [PMID: 28768640 PMCID: PMC5590392 DOI: 10.1158/2326-6066.cir-17-0012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/05/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is characterized by the clonal expansion of malignant plasma cells in the bone marrow. But the phenotypic diversity and the contribution of less predominant B-lineage clones to the biology of this disease have been controversial. Here, we asked whether cells bearing the dominant multiple myeloma immunoglobulin rearrangement occupy phenotypic compartments other than that of plasma cells. To accomplish this, we combined 13-parameter FACS index sorting and t-Stochastic Neighbor Embedding (t-SNE) visualization with high-throughput single-cell immunoglobulin sequencing to track selected B-lineage clones across different stages of human B-cell development. As expected, the predominant clones preferentially mapped to aberrant plasma cell compartments, albeit phenotypically altered from wild type. Interestingly, up to 1.2% of cells of the predominant clones colocalized with B-lineage cells of a normal phenotype. In addition, minor clones with distinct immunoglobulin sequences were detected in up to 9% of sequenced cells, but only 2 out of 12 of these clones showed aberrant immune phenotypes. The majority of these minor clones showed intraclonal silent nucleotide differences within the CDR3s and varying frequencies of somatic mutations in the immunoglobulin genes. Therefore, the phenotypic range of multiple myeloma cells in the bone marrow is not confined to aberrant-phenotype plasma cells but extends to low frequencies of normal-phenotype B cells, in line with the recently reported success of B cell-targeting cellular therapies in some patients. The majority of minor clones result from parallel nonmalignant expansion. Cancer Immunol Res; 5(9); 744-54. ©2017 AACR.
Collapse
Affiliation(s)
- Leo Hansmann
- Department of Microbiology and Immunology, Stanford University, Stanford, California. .,Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Arnold Han
- Department of Microbiology and Immunology, Stanford University, Stanford, California
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Michaela Liedtke
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, California. .,Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California.,The Howard Hughes Medical Institute, Stanford University, Stanford, California
| |
Collapse
|
3
|
Wang S, Liu W. Paeoniflorin inhibits proliferation and promotes apoptosis of multiple myeloma cells via its effects on microRNA‑29b and matrix metalloproteinase‑2. Mol Med Rep 2016; 14:2143-9. [PMID: 27430753 DOI: 10.3892/mmr.2016.5498] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 10/29/2015] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma (MM) is a type of cancer characterized by the excessive proliferation of malignant plasma cells. In China, the incidence of MM has been increasing annually. Paeoniflorin exerts numerous functions, including coronary vessel expansion, and anti‑inflammation and anticancer activities. The present study aimed to investigate the effects of paeoniflorin on the proliferation and apoptosis of SKO‑007 MM cells, via its effects on the regulation of matrix metalloproteinase‑2 (MMP‑2) and microRNA (miR)‑29b. In the present study, an MTT assay was used to analyze the proliferation of SKO‑007 cells treated with paeoniflorin. Annexin V‑fluorescein isothiocyanate/propidium iodide apoptosis and caspase‑3 activation assays were used to detect the levels of cellular apoptosis. The expression levels of MMP‑2 and miR‑29b were detected using gelatin zymography and quantitative‑polymerase chain reaction, respectively. In addition, miR‑29b and anti‑miR‑29b plasmids were transfected into SKO‑007 cells, and the effects of paeoniflorin on cell proliferation and apoptosis were subsequently detected. The results of the present in vitro studies demonstrated that paeoniflorin was able to inhibit the proliferation of SKO‑007 cells in a dose‑ and time‑dependent manner. Furthermore, paeoniflorin effectively increased cell apoptosis, and augmented the activation of caspase‑3 and caspase‑9 in the SKO‑007 cells. The expression levels of MMP‑2 were suppressed following treatment of the SKO‑007 cells with paeoniflorin. In addition, paeoniflorin was able to induce the expression of miR‑29b. Notably, the results of the present study indicated that miR‑29b expression may control the expression of MMP‑2 in SKO‑007 cells. In conclusion, the present study demonstrated that paeoniflorin was able to inhibit cell proliferation and promote apoptosis of MM cells by suppressing the expression of MMP‑2, via the upregulation of miR‑29b.
Collapse
Affiliation(s)
- Shaofeng Wang
- Department of Orthopedics, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261031, P.R. China
| | - Wenhua Liu
- Department of Orthopedics, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
4
|
Schieferdecker A, Voigt M, Riecken K, Braig F, Schinke T, Loges S, Bokemeyer C, Fehse B, Binder M. Denosumab mimics the natural decoy receptor osteoprotegerin by interacting with its major binding site on RANKL. Oncotarget 2015; 5:6647-53. [PMID: 25138051 PMCID: PMC4196153 DOI: 10.18632/oncotarget.2160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bone homeostasis critically relies on the RANKL-RANK-OPG axis which can be targeted by the fully human monoclonal antibody denosumab in conditions with increased bone resporption such as bone metastases. The binding site and therefore the molecular mechanism by which this antibody inhibits RANKL has not been characterized so far. Here, we used random peptide phage display library screenings to identify the denosumab epitope on RANKL. Alignments of phage derived peptide sequences with RANKL suggested that this antibody recognized a linear epitope between position T233 and Y241. Mutational analysis confirmed the core residues as critical for this interaction. The spatial localization of this epitope on a 3-dimensional model of RANKL showed that it overlapped with the major binding sites of OPG and RANK on RANKL. We conclude that denosumab inhibits RANKL by both functional and molecular mimicry of the natural decoy receptor OPG.
Collapse
Affiliation(s)
- Aneta Schieferdecker
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Voigt
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Braig
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Mailankody S, Korde N, Lesokhin AM, Lendvai N, Hassoun H, Stetler-Stevenson M, Landgren O. Minimal residual disease in multiple myeloma: bringing the bench to the bedside. Nat Rev Clin Oncol 2015; 12:286-95. [PMID: 25622976 DOI: 10.1038/nrclinonc.2014.239] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Outcomes for patients with multiple myeloma (MM) have improved substantially in the past decade, with improvements in both progression-free survival and overall survival. Many patients are now achieving a complete response to treatment, and consequently highly sensitive assays are needed for detection of minimal residual disease (MRD) in patients with MM. Results of multicolour flow cytometry and deep-sequencing studies suggest that among patients achieving a complete response, MRD-negative status is associated with significant improvements in progression-free survival and overall survival. Despite the increasing need for MRD testing in patients with MM, considerable heterogeneity in techniques for MRD detection hinders the clinical interpretation of their results. The criteria used to define MRD, strengths and weaknesses of the major types of tests (flow cytometry versus molecular testing), and the optimal sample type (bone marrow aspirate versus peripheral blood) are all unresolved dilemmas in MRD testing. This Review presents an overview of the various techniques for MRD detection in patients with MM. In addition, this article discusses challenges and opportunities for the routine use of MRD testing, possible future directions for clinical trials and implications for drug approval processes.
Collapse
Affiliation(s)
- Sham Mailankody
- Multiple Myeloma Section, Lymphoid Malignancies Branch, Centre for Cancer Research, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Neha Korde
- Myeloma Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Alexander M Lesokhin
- Myeloma Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Nikoletta Lendvai
- Myeloma Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Hani Hassoun
- Myeloma Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maryalice Stetler-Stevenson
- Flow Cytometry Laboratory, Laboratory of Pathology, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ola Landgren
- Myeloma Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
6
|
Abe M, Harada T, Matsumoto T. Concise review: Defining and targeting myeloma stem cell-like cells. Stem Cells 2014; 32:1067-73. [PMID: 24449391 DOI: 10.1002/stem.1643] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/29/2013] [Indexed: 01/12/2023]
Abstract
Multiple myeloma (MM) remains incurable despite recent advances in the treatment of MM. Although the idea of MM cancer stem cells (CSCs) has been proposed for the drug resistance in MM, MM CSCs have not been properly defined yet. Besides clonotypic B cells, phenotypically distinct MM plasma cell fractions have been demonstrated to possess a clonogenic capacity, leading to long-lasting controversies regarding the cells of origin in MM or MM-initiating cells. However, MM CSCs may not be a static population and survive as phenotypically and functionally different cell types via the transition between stem-like and non-stem-like states in local microenvironments, as observed in other types of cancers. Targeting MM CSCs is clinically relevant, and different approaches have been suggested to target molecular, metabolic and epigenetic signatures, and the self-renewal signaling characteristic of MM CSC-like cells.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | | | | |
Collapse
|
7
|
Báez A, Piruat JI, Caballero-Velázquez T, Sánchez-Abarca LI, Álvarez-Laderas I, Barbado MV, García-Guerrero E, Millán-Uclés Á, Martín-Sánchez J, Medrano M, Pérez-Simón JA. Myelomatous plasma cells display an aberrant gene expression pattern similar to that observed in normal memory B cells. Am J Cancer Res 2014; 5:386-395. [PMID: 25628947 PMCID: PMC4300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023] Open
Abstract
Memory B cells (MBCs) remain in a quiescent state for years, expressing pro-survival and anti-apoptotic factors while repressing cell proliferation and activation genes. During their differentiation into plasma cells (PCs), their expression pattern is reversed, with a higher expression of genes related to cell proliferation and activation, and a lower expression of pro-survival genes. To determine whether myelomatous PCs (mPCs) share characteristics with normal PCs and MBCs and to identify genes involved in the pathophysiology of multiple myeloma (MM), we compared gene expression patterns in these three cell sub-types. We observed that mPCs had features intermediate between those of MBCs and normal PCs, and identified 3455 genes differentially expressed in mPCs relative to normal PCs but with a similar expression pattern to that in MBCs. Most of these genes are involved in cell death and survival, cell growth and proliferation and protein synthesis. According to our findings, mPCs have a gene expression pattern closer to a MBC than a PC with a high expression of genes involved in cell survival. These genes should be physiologically inactivated in the transit from MBC to PC, but remain overexpressed in mPCs and thus may play a role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Alicia Báez
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - José I Piruat
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - Luís I Sánchez-Abarca
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - Isabel Álvarez-Laderas
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - M Victoria Barbado
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - Estefanía García-Guerrero
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - África Millán-Uclés
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - Jesús Martín-Sánchez
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - Mayte Medrano
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBIS), CSIC, Universidad de Sevilla Seville, Spain
| |
Collapse
|
8
|
Wen J, Tao W, Kuiatse I, Lin P, Feng Y, Jones RJ, Orlowski RZ, Zu Y. Dynamic balance of multiple myeloma clonogenic side population cell percentages controlled by environmental conditions. Int J Cancer 2014; 136:991-1002. [PMID: 25042852 DOI: 10.1002/ijc.29078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/02/2014] [Indexed: 02/02/2023]
Abstract
Cancer stem cells are key drivers of tumor progression and disease recurrence in multiple myeloma (MM). However, little is known about the regulation of MM stem cells. Here, we show that a population of MM cells, known as the side population (SP), exhibits stem-like properties. Cells that constitute the SP in primary MM isolates are negative or seldom expressed for CD138 and CD20 markers. In addition, the SP population contains stem cells that belong to the same lineage as the mature neoplastic plasma cells. Importantly, our data indicate that the SP and nonside population (NSP) percentages in heterogeneous MM cells are balanced, and that this balance can be achieved through a prolonged in vitro culture. Furthermore, we show that SP cells, with confirmed molecular characteristics of MM stem cells, can be regenerated from purified NSP cell populations. We also show that the percentage of SP cells can be enhanced by the hypoxic stress, which is frequently observed within MM tumors. Finally, hypoxic stress enhanced the expression of transforming growth factor β1 (TGF-β1) and blocking the TGF-β1 signaling pathway inhibited the NSP dedifferentiation. Taken together, these findings indicate that the balance between MM SP and NSP is regulated by environmental factors and TGF-β1 pathway is involved in hypoxia-induced increase of SP population. Understanding the mechanisms that facilitate SP maintenance will accelerate the design of novel therapeutics aimed at controlling these cells in MM.
Collapse
Affiliation(s)
- Jianguo Wen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Next-generation sequencing of peripheral B-lineage cells pinpoints the circulating clonotypic cell pool in multiple myeloma. Blood 2014; 123:3618-21. [PMID: 24753536 DOI: 10.1182/blood-2014-02-556746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identity of the proliferative compartment of myeloma progenitor cells remains a matter of debate. Polymerase chain reaction-based studies suggested pre-switch "clonotypic" B cells sharing the immunoglobulin (Ig) rearrangement of the malignant plasma cell (M-PC), to circulate in the blood and possess stem cell-like properties. Here, we disprove this hypothesis. We screened peripheral blood IgM, IgG, and IgA repertoires of myeloma patients for the clonotypic rearrangement by next-generation sequencing. None of 12 cases showed pre-switch clonotypic transcripts. In the post-switch IgG/IgA repertoires, however, the clonotypic rearrangement was detected at high frequency in 6 of 8 patients with active disease, whereas it was undetectable after treatment, correlating with flow cytometric presence or absence of circulating M-PCs. Minor subclones with alternative post-switch isotypes suggested ongoing switch events and clonal evolution at the M-PC level. Our findings consistently show an absence of pre-switch clonotypic B cells, while M-PCs circulate in the peripheral blood and may contribute to spreading of the disease.
Collapse
|
10
|
Hajek R, Okubote SA, Svachova H. Myeloma stem cell concepts, heterogeneity and plasticity of multiple myeloma. Br J Haematol 2013; 163:551-64. [PMID: 24111932 DOI: 10.1111/bjh.12563] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/11/2013] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a haematological malignancy characterized by the accumulation of clonal plasma cells (PCs) in the bone marrow (BM). Although novel therapeutic strategies have prolonged survival of patients, the disease remains difficult to treat with a high risk of relapse. The failure of therapy is thought to be associated with a persistent population of the so-called MM stem cells or myeloma initiating cells (MIC) that exhibit tumour-initiating potential, self-renewal and resistance to chemotherapy. However, the population responsible for the origin and sustainability of tumour mass has not been clearly characterized so far. This review summarizes current myeloma stem cell concepts and suggests that high phenotypic and intra-clonal heterogeneity, together with plasticity potential of MM might be other contributing factors explaining discrepancies among particular concepts and contributing to the treatment failure.
Collapse
Affiliation(s)
- Roman Hajek
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic; Department of Clinical Haematology, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | | |
Collapse
|
11
|
Abstract
SUMMARY Although there have been advances in the field, multiple myeloma, the second most common hematological malignancy, remains an incurable disease characterized by ever-shortening cycles of treatment and relapse. Myriad experimental and observational studies over the last few decades have comprehensively documented a state of profound immune dysfunction, which is progressive and correlated with disease stage. Nonetheless, immune responses against the tumor have demonstrated efficacy ex vivo, in animal models and in human disease. In this review we examine the immune defects in multiple myeloma and consider current and future approaches toward correction and manipulation of immune responses to affect clinically useful antitumor effects.
Collapse
Affiliation(s)
- Christopher Parrish
- Transplant Immunology Group, Leeds Institute of Molecular Medicine, University of Leeds, Beckett Street, Leeds, LS9 7TF, UK
| | - Gina B Scott
- Transplant Immunology Group, Leeds Institute of Molecular Medicine, University of Leeds, Beckett Street, Leeds, LS9 7TF, UK
| | - Gordon Cook
- Transplant Immunology Group, Leeds Institute of Molecular Medicine, University of Leeds, Beckett Street, Leeds, LS9 7TF, UK
| |
Collapse
|
12
|
Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 2012; 5:70. [PMID: 23140144 PMCID: PMC3508879 DOI: 10.1186/1756-8722-5-70] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients.
Collapse
Affiliation(s)
- Michael A Firer
- Department of Chemical Engineering and Biotechnology, Ariel University Center, Ariel, Israel.
| | | |
Collapse
|