1
|
Han P, Xu H, Yuan Y, Wen Z, Yang J, Han L, Zhang D. The role of growth hormone in assisted reproductive technology for patients with diminished ovarian reserve: from signaling pathways to clinical applications. Front Endocrinol (Lausanne) 2025; 16:1551126. [PMID: 40313485 PMCID: PMC12043450 DOI: 10.3389/fendo.2025.1551126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Diminished Ovarian Reserve (DOR) is a complex etiology disease that significantly impacts female fertility, endocrine function, and overall health status. In recent years, the incidence of DOR has been increasing, yet therapeutic methods remain relatively limited, particularly for patients with reproductive needs who often require Assisted Reproductive Technology (ART) treatments. Growth Hormone (GH), a peptide hormone secreted by the anterior pituitary, promotes growth in bones, viscera, and multiple organs and systems throughout the body, enhances protein synthesis, and influences fat and mineral metabolism, playing a crucial role in human growth and development. Its levels decrease with the aging of the organism. In recent years, studies have suggested that a decline in growth hormone levels may be one of the causes of decreased ovarian function, leading to the application of GH in assisted reproductive treatments for patients with DOR. An increasing body of research indicates that GH can improve ovarian function through mechanisms such as antioxidant stress, promotion of follicle development, and enhancement of oocyte quality, and it also shows potential to improve endometrial receptivity, making GH a promising safe and effective strategy in ART for DOR patients.
Collapse
Affiliation(s)
- Peina Han
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Huishu Xu
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Yuying Yuan
- Department of Obstetrics Medicine, Linquan County People’s Hospital, Fuyang, Anhui, China
| | - Zheling Wen
- Obstetrics and Gynecology of Binzhou Medical University, Binzhou, Shandong, China
| | - Jing Yang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Lei Han
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Dongmei Zhang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
2
|
Yang R, Ji CL, Zhang M, Zhang J, Yuan HJ, Luo MJ, Jiao GZ, Tan JH. Role of calcium-sensing receptor in regulating activation susceptibility of postovulatory aging mouse oocytes. J Reprod Dev 2023; 69:185-191. [PMID: 37245986 PMCID: PMC10435528 DOI: 10.1262/jrd.2023-026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
The mechanisms underlying postovulatory oocyte aging (POA) remain largely unknown. The expression of the calcium-sensing receptor (CaSR) in mouse oocytes and its role in POA need to be explored. Our objective was to observe CaSR expression and its role in the susceptibility to activating stimuli (STAS) in POA mouse oocytes. The results showed that, although none of the newly ovulated oocytes were activated, 40% and 94% of the oocytes recovered 19 and 25 h after human chorionic gonadotropin (hCG) injection were activated, respectively, after ethanol treatment. The level of the CaSR functional dimer protein in oocytes increased significantly from 13 to 25 h post hCG. Thus, the CaSR functional dimer level was positively correlated with the STAS of POA oocytes. Aging in vitro with a CaSR antagonist suppressed the elevation of STAS, and cytoplasmic calcium in oocytes recovered 19 h post hCG, whereas aging with a CaSR agonist increased STAS, and cytoplasmic calcium of oocytes recovered 13 h post hCG. Furthermore, the CaSR was more important than the Na-Ca2+ exchanger in regulating oocyte STAS, and T- and L-type calcium channels were inactive in aging oocytes. We conclude that the CaSR is involved in regulating STAS in POA mouse oocytes, and that it is more important than the other calcium channels tested in this connection.
Collapse
Affiliation(s)
- Rui Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
- Laboratory Animal Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, P. R. China
| | - Chang-Li Ji
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
- Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City 264000, Shandong Province, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| |
Collapse
|
3
|
Luo YY, Zeng X, Zhu L, Li C, Xie J, Dong Q, Sun QY, Huang GN, Li JY. Growth hormone reduces aneuploidy and improves oocytes quality by JAK2-MAPK3/1 pathway in aged mice. J Transl Med 2023; 21:426. [PMID: 37386516 PMCID: PMC10311773 DOI: 10.1186/s12967-023-04296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The global delay in women's reproductive age has raised concerns about age-related infertility. The decline in oocyte quality is a limiting factor of female fertility, yet there are currently no strategies to preserve oocyte quality in aged women. Here, we investigated the effects of growth hormone (GH) supplementation on aneuploidy of aged oocytes. METHODS For the in vivo experiments, the aged mice (8-month-old) were intraperitoneally injected with GH daily for 8 weeks. For the in vitro experiments, germinal vesicle oocytes from aged mice were treated with GH during oocyte maturation. The impacts of GH on ovarian reserve before superovulation was evaluated. Oocytes were retrieved to assess oocyte quality, aneuploidy and developmental potential characteristics. Quantitative proteomics analysis was applied to investigate the potential targets of GH in aged oocytes. RESULTS In this study, we demonstrated that GH supplementation in vivo not only alleviated the decline in oocyte number caused by aging, but also improved the quality and developmental potential of aged oocytes. Strikingly, we discovered that GH supplementation reduced aneuploidy in aged oocytes. Mechanically, in addition to improving mitochondrial function, our proteomic analysis indicated that the MAPK3/1 pathway may be involved in the reduction in aneuploidy of aged oocytes, as confirmed both in vivo and in vitro. In addition, JAK2 may also act as a mediator in how GH regulates MAPK3/1. CONCLUSIONS In conclusion, our research reveals that GH supplementation protects oocytes against aging-related aneuploidy and enhances the quality of aged oocytes, which has clinical significance for aged women undergoing assisted reproduction technology.
Collapse
Affiliation(s)
- Yun-Yao Luo
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Xi Zeng
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Qiang Dong
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510310, China.
| | - Guo-Ning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| | - Jing-Yu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| |
Collapse
|
4
|
Recurrent spontaneous oocyte activation causes female infertility. J Assist Reprod Genet 2022; 39:675-680. [PMID: 35156150 PMCID: PMC8995232 DOI: 10.1007/s10815-022-02435-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Spontaneous oocyte activation (SOA) is a recently classified phenomenon characterized by the presence of a single pronucleus immediately following oocyte retrieval, without the apparent involvement of sperm. SOA currently remains poorly understood in humans, with no clear genetic or pathological factor(s). Herein, we report two separate cases of recurrent spontaneous oocyte activation, investigating potential avenues to identify causative etiology. METHODS Two patients with several cycles with SOA have undergone further genetic and embryologic investigation to reveal underlying causes for SOA and provide a treatment if possible. RESULTS One case was a patient with recurrent pregnancy loss and the other was diagnosed as unexplained infertility. In the first case, 61 out of 69 oocytes retrieved exhibited SOA in five cycles while in the second case 44 out of 49 oocytes exhibited SOA in five cycles. Oocytes were injected with sperm; embryo development and presence of paternal contribution were investigated. No pregnancy is ensued following embryo transfer in both patients. Time-lapse imaging of embryogenesis from the second case did not reveal even momentary second pronucleus appearance. We also performed clinical whole exome sequencing for both patients but did not identify any disease-causing variant. CONCLUSION Patients with SOA suffer from infertility. Our results indicate that more investigation is required to understand the etiology of SOA in humans concentrating on the molecular mechanisms that underpin regulation of oocyte activation and calcium dynamics need to be investigated to fully understand, and perhaps in the future rectify, recurrent SOA.
Collapse
|
5
|
Nakagawa Y, Kaneko T. Treatment with MG132 prevents spontaneous activation of rat oocyte in culture and promotes embryonic development after intracytoplasmic sperm injection. Sci Rep 2022; 12:2706. [PMID: 35177721 PMCID: PMC8854420 DOI: 10.1038/s41598-022-06714-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) is an effective reproductive technique for obtaining rat offspring using preserved sperm with low or no motility. However, rat oocytes undergo spontaneous activation immediately after retrieval from the oviduct and poorly develop after ICSI unless it is performed quickly. Here, we evaluated whether treatment with MG132, the proteasome inhibitor, suppresses the spontaneous activation of oocytes before and during ICSI. After retrieval from the oviducts, the rate of development into morula and blastocyst from the oocytes cultured in vitro for 1 h prior to ICSI significantly decreased compared with that from the control oocytes subject to ICSI without culture (7% versus 36%). However, a higher proportion of oocytes treated with MG132 for 0, 1, and 3 h before and during ICSI developed into morulae and blastocysts (70%, 60%, and 52%, respectively). Offspring were obtained from oocytes treated with MG132 for 0 and 1 h before and during ICSI (percentage: 31%). Altogether, MG132 could suppress the spontaneous activation of rat oocytes and increase embryonic development after ICSI.
Collapse
Affiliation(s)
- Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka, Iwate, 020-8551, Japan
| | - Takehito Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka, Iwate, 020-8551, Japan.
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, 020-8551, Japan.
| |
Collapse
|
6
|
Zhang J, Yuan HJ, Zhu J, Gong S, Luo MJ, Tan JH. Topoisomerase II dysfunction causes metaphase I arrest by activating aurora B, SAC and MPF and prevents PB1 abscission in mouse oocytes†. Biol Reprod 2022; 106:900-909. [PMID: 35084021 DOI: 10.1093/biolre/ioac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
Oocyte aneuploidy is caused mainly by chromosome nondisjunction and/or unbalanced sister chromatid pre-division. Although studies in somatic cells have shown that topoisomerase II (TOP2) plays important roles in chromosome condensation and timely separation of centromeres, little is known about its role during oocyte meiosis. Furthermore, because VP-16, which is a TOP2 inhibitor and induces DNA double strand breaks, is often used for ovarian cancer chemotherapy, its effects on oocytes must be studied for ovarian cancer patients to recover ovarian function following chemotherapy. This study showed that inhibiting TOP2 with either ICRF-193 or VP-16 during meiosis I impaired chromatin condensation, chromosome alignment, TOP2α localization and caused metaphase I (MI) arrest and first polar body (PB1) abscission failure. Inhibiting or neutralizing either spindle assembly checkpoint (SAC), Aurora B or maturation-promoting factor (MPF) significantly abolished the effect of ICRF-193 or VP-16 on MI arrest. Treatment with ICRF-193 or VP-16 significantly activated MPF and SAC but the effect disappeared when Aurora B was inhibited. Most of the oocytes matured in the presence of ICRF-193 or VP-16 were arrested at MI, and only 11% to 27% showed PB1 protrusion. Furthermore, most of the PB1 protrusions formed in the presence of ICRF-193 or VP-16 were retracted after further culture for 7 h. In conclusion, TOP2 dysfunction causes MI arrest by activating Aurora B, SAC and MPF and it prevents PB1 abscission by promoting chromatin bridges.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jiang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Ming-Jiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
7
|
Cui W. Oocyte Spontaneous Activation: An Overlooked Cellular Event That Impairs Female Fertility in Mammals. Front Cell Dev Biol 2021; 9:648057. [PMID: 33763428 PMCID: PMC7982476 DOI: 10.3389/fcell.2021.648057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
In mammals, including humans, mature oocytes are ovulated into the oviduct for fertilization. Normally, these oocytes are arrested at metaphase of the second meiosis (MII), and this arrest can be maintained for a certain period, which is essential for fertilization in vivo and oocyte manipulations in vitro, such as assisted reproduction in clinics and nuclear/spindle transfer in laboratories. However, in some species and under certain circumstances, exit from MII occurs spontaneously without any obvious stimulation or morphological signs, which is so-called oocyte spontaneous activation (OSA). This mini-review summarizes two types of OSA. In the first type (e.g., most rat strains), oocytes can maintain MII arrest in vivo, but once removed out, oocytes undergo OSA with sister chromatids separated and eventually scattered in the cytoplasm. Because the stimulation is minimal (oocyte collection itself), this OSA is incomplete and cannot force oocytes into interphase. Notably, once re-activated by sperm or chemicals, those scattered chromatids will form multiple pronuclei (MPN), which may recapitulate certain MPN and aneuploidy cases observed in fertility clinics. The second type of OSA occurs in ovarian oocytes (e.g., certain mouse strains and dromedary camel). Without ovulation or fertilization, these OSA-oocytes can initiate intrafollicular development, but these parthenotes cannot develop to term due to aberrant genomic imprinting. Instead, they either degrade or give rise to ovarian teratomas, which have also been reported in female patients. Last but not the least, genetic models displaying OSA phenotypes and the lessons we can learn from animal OSA for human reproduction are also discussed.
Collapse
Affiliation(s)
- Wei Cui
- Department of Veterinary and Animal Sciences, Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
8
|
Wang X, Xiao Y, Sun Z, Zhen J, Yu Q. Effect of the time interval between oocyte retrieval and ICSI on embryo development and reproductive outcomes: a systematic review. Reprod Biol Endocrinol 2021; 19:34. [PMID: 33648503 PMCID: PMC7919304 DOI: 10.1186/s12958-021-00717-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intra-cytoplasmic sperm injection (ICSI) is used in assisted reproductive technology (ART) laboratories. However, there is no consensus regarding the precise time intervals within ICSI cycles [oocyte pick up (OPU), oocyte denudation (DN), and ICSI], and results are inconsistent and contradictory. Thus, we aim to evaluate whether there is a concordance regarding the time intervals used in different laboratories and a concrete time that gives better laboratory and reproductive results. METHODS A systematic review of the literature until July 25, 2020, was performed with the keywords "Oocyte Denudation/Denudation/Oocyte," "Intra-cytoplasmic Sperm Injection/ICSI," "Oocyte/Oocyte maturation/ cumulus," and "Cumulus removal/ removal." Articles and abstracts in English and involving human subjects referring to the effects of oocyte DN time on embryo development and clinical outcomes were included. RESULTS Of the 294 evaluated articles, 24 (including 20 full articles and 4 abstracts) were included in this review. Eighteen studies analysed the effect of OPU-DN time on embryo development and clinical outcomes. Most of these studies concluded that OPU-DN time did not influence ICSI outcomes, but some suggested that oocytes should be incubated for a short time before DN to improve oocyte maturity and enhance ICSI outcomes. In addition to reports on positive or negligible effects, adverse effects were reported in 12 studies on DN-ICSI timing. Neither OPU-DN nor DN-ICSI time could improve live birth rate. CONCLUSIONS Oocytes should be pre-incubated for a short duration (preferably < 4 h) before DN according to the ART laboratory schedule. More randomised controlled trials are warranted to clarify the effect of DN-ICSI timing on ICSI outcomes.
Collapse
Affiliation(s)
- Xue Wang
- Department of Gynecology Endocrine and Reproductive Center, Peking Union Medical College Hospital, Peking Union Medical College/Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - YaLing Xiao
- Department of Gynecology Endocrine and Reproductive Center, Peking Union Medical College Hospital, Peking Union Medical College/Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - ZhengYi Sun
- Department of Gynecology Endocrine and Reproductive Center, Peking Union Medical College Hospital, Peking Union Medical College/Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - JingRan Zhen
- Department of Gynecology Endocrine and Reproductive Center, Peking Union Medical College Hospital, Peking Union Medical College/Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qi Yu
- Department of Gynecology Endocrine and Reproductive Center, Peking Union Medical College Hospital, Peking Union Medical College/Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
9
|
Sun GY, Gong S, Kong QQ, Li ZB, Wang J, Xu MT, Luo MJ, Tan JH. Role of AMP-activated protein kinase during postovulatory aging of mouse oocytes†. Biol Reprod 2020; 103:534-547. [PMID: 32588041 DOI: 10.1093/biolre/ioaa081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/27/2020] [Accepted: 05/21/2020] [Indexed: 11/13/2022] Open
Abstract
Studies suggested that postovulatory oocyte aging might be prevented by maintaining a high maturation-promoting factor (MPF) activity. Whether AMP-activated protein kinase (AMPK) plays any role in postovulatory oocyte aging is unknown. Furthermore, while activation of AMPK stimulates meiotic resumption in mouse oocytes, it inhibits meiotic resumption in pig and bovine oocytes. Thus, the species difference in AMPK regulation of oocyte MPF activities is worth in-depth studies. This study showed that AMPK activation with metformin or 5-aminoimidazole- 4-carboxamide- 1-beta-d- ribofuranoside and inactivation with compound C significantly increased and decreased, respectively, the activation susceptibility (AS) and other aging parameters in aging mouse oocytes. While AMPK activity increased, MPF activity and cyclic adenosine monophosphate (cAMP) decreased significantly with time post ovulation. In vitro activation and inactivation of AMPK significantly decreased and increased the MPF activity, respectively. MPF upregulation with MG132 or downregulation with roscovitine completely abolished the effects of AMPK activation or inactivation on AS of aging oocytes, respectively. AMPK facilitated oocyte aging with increased reactive oxygen species (ROS) and cytoplasmic calcium. Furthermore, treatment with Ca2+/calmodulin-dependent protein kinase (CaMK) inhibitors significantly decreased AS and AMPK activation. Taken together, the results suggested that AMPK facilitated oocyte aging through inhibiting MPF activities, and postovulatory oocyte aging activated AMPK with decreased cAMP by activating CaMKs via increasing ROS and cytoplasmic calcium.
Collapse
Affiliation(s)
- Guang-Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Qiao-Qiao Kong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Zhi-Bin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Jia Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Ming-Tao Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Ming-Jiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| |
Collapse
|
10
|
Wang X, Jiang SW, Wang L, Sun Y, Xu F, He H, Wang S, Zhang Z, Pan X. Interfering effects of bisphenol A on in vitro growth of preantral follicles and maturation of oocyes. Clin Chim Acta 2018; 485:119-125. [DOI: 10.1016/j.cca.2018.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/29/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
|
11
|
Pitchayapipatkul J, Somfai T, Matoba S, Parnpai R, Nagai T, Geshi M, Vongpralub T. Microtubule stabilisers docetaxel and paclitaxel reduce spindle damage and maintain the developmental competence of in vitro-mature bovine oocytes during vitrification. Reprod Fertil Dev 2018; 29:2028-2039. [PMID: 28147214 DOI: 10.1071/rd16193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 12/10/2016] [Indexed: 11/23/2022] Open
Abstract
This study compared the efficacy of docetaxel (DT) and paclitaxel (PT) in reducing spindle damage during vitrification and maintaining the developmental competence of in vitro-matured (IVM) bovine oocytes after vitrification and warming. Pretreatment of IVM oocytes with 0.05µM DT for 30min before vitrification resulted in significantly higher (P<0.05) rates of oocyte survival and cleavage after IVF, as well as subsequent blastocyst rates on Days 7-9 and hatching on Days 8-9, compared with oocytes pretreated with 1.0µM PT before vitrification or those vitrified without pretreatment. When nuclear status and spindle morphology of vitrified oocytes were assess after warming by immunostaining, DT pretreatment before vitrification resulted in a significantly higher (P<0.05) percentage of oocytes at the MII stage with a normal, intact spindle compared with PT pretreatment or no pretreatment, but the percentage of MII oocytes was still significantly lower (P<0.05) than in the control group. Pretreatment of IVM bovine oocytes with 0.05µM DT or 1.0µM PT for 30min before vitrification reduces spindle damage to the same extent, without side effects on fertilisation and development. Pretreatment with 0.05µM DT improved the developmental competence of vitrified-warmed oocytes to a greater degree than 1.0µM PT pretreatment.
Collapse
Affiliation(s)
| | - Tamás Somfai
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organisation (NARO) Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Satoko Matoba
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organisation (NARO) Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Rangsan Parnpai
- Embryo Technology and Stem Cell Research Center, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Takashi Nagai
- Food and Fertilizer Technology Center, Taipei 10648, Taiwan
| | - Masaya Geshi
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organisation (NARO) Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Thevin Vongpralub
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
12
|
Zhang Y, Qu P, Ma X, Qiao F, Ma Y, Qing S, Zhang Y, Wang Y, Cui W. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One 2018; 13:e0196785. [PMID: 29718981 PMCID: PMC5931650 DOI: 10.1371/journal.pone.0196785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Serum starvation is a routine protocol for synchronizing nuclear donor cells to G0/G1 phase during somatic cell nuclear transfer (SCNT). However, abrupt serum deprivation can cause serious stress to the cells cultured in vitro, which might result in endoplasmic reticulum (ER) stress, chromosome damage, and finally reduce the success rate of SCNT. In the present study, the effects of tauroursodeoxycholic acid (TUDCA), an effective ER stress-relieving drug, on the nuclear donor cells under serum deprivation condition as well as following SCNT procedures were first assessed in the bovine. The results showed that TUDCA significantly reduced ER stress and cell apoptosis in those nuclear donor cells. Moreover, it significantly decreased the expression of Hdac1 and Dnmt1, and increased the level of H3K9 acetylation in nuclear donor cells compared with control group. SCNT reconstructed embryos cloned from TUDCA-treated donor cells showed significantly higher fusion, cleavage, blastocyst formation rate, total cell number in day 7 blastocysts, and lower apoptotic index than that from control group. In addition, the expression of Hdac1, Dnmt1 and Bax was significantly lower in blastocysts derived from TUDCA-treated donor cells than that from control group. In conclusion, TUDCA significantly reduced the ER stress of nuclear donor cells under serum starvation condition, and significantly improved the developmental competence of following SCNT reconstructed embryos when these TUDCA-treated cells were used as the nuclear donors.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Pengxiang Qu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaonan Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Fang Qiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yefei Ma
- Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shannxi Province, PR China
| | - Suzhu Qing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (YW); (WC)
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (YW); (WC)
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States of America
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, United States of America
- * E-mail: (YZ); (YW); (WC)
| |
Collapse
|
13
|
Lin FH, Zhang WL, Li H, Tian XD, Zhang J, Li X, Li CY, Tan JH. Role of autophagy in modulating post-maturation aging of mouse oocytes. Cell Death Dis 2018; 9:308. [PMID: 29472597 PMCID: PMC5833823 DOI: 10.1038/s41419-018-0368-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/30/2022]
Abstract
Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.
Collapse
Affiliation(s)
- Fei-Hu Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Wei-Ling Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Hong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Xiao-Dan Tian
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Xiao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Chuan-Yong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China.
| |
Collapse
|
14
|
Wang TY, Zhang J, Zhu J, Lian HY, Yuan HJ, Gao M, Luo MJ, Tan JH. Expression profiles and function analysis of microRNAs in postovulatory aging mouse oocytes. Aging (Albany NY) 2018; 9:1186-1201. [PMID: 28394765 PMCID: PMC5425121 DOI: 10.18632/aging.101219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/07/2023]
Abstract
In this study, microRNA (miRNA) profiles in postovulatory aging mouse oocytes were analyzed by microarray screening and RT-qPCR. Hierarchical cluster analysis on the microarray data and KEGG pathway enrichment analysis on the mRNAs targeted by differentially expressed (DE) miRNAs between two adjacent egg-ages suggest that while only a mild alteration in miRNA expression occurred from 13 to 18 h, a great change took place from 18 to 24 h post hCG injection. Theoretical exploration on functions of the predicted target genes suggest that KEGG pathways enriched by 13-18 h DE miRNAs are correlated with early events of oocyte aging while pathways most enriched by 18-24 h or 24-30 h DE miRNAs are correlated with the late symptoms of aged oocytes. Experimental verification on functions of the key proteins predicted by the KEGG analysis and injection of miR-98 mimics or inhibitors further confirmed that miRNAs played stimulatory/inhibitory roles in postovulatory oocyte aging. In conclusion, marked changes in miRNA expression are associated with significant alterations in function and morphology of postovulatory aging oocytes.
Collapse
Affiliation(s)
- Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Jiang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Hua-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Min Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| |
Collapse
|
15
|
He GF, Yang LL, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S, Sun QY. The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology 2017; 102:67-74. [PMID: 28750296 DOI: 10.1016/j.theriogenology.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/16/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
Abstract
Calcium ion fluctuation is closely related to the transformation of cell cycle. However, little is known about the function of L-type calcium channel in mammalian oocyte and embryo development. We thus studied the roles of L-type calcium channel in mouse oocyte meiotic maturation, parthenogenetic activation and early embryonic development. We used the antagonist Amlodipine to block L-type calcium channel. Oocytes or zygotes were cultured to different time points with 0 μM, 10 μM, 30 μM and 50 μM Amlodipine. Then we checked the rate of first polar body extrusion, spindle formation, asymmetric division parthenogenetic activation and early embryo cleavage. The results showed that Amlodipine treatment did not affect germinal vesicle breakdown, but caused disruption of cytoskeleton organization, symmetric division, formation of mature oocytes with a large polar body, or reduced the first polar body extrusion, depending on its concentrations. Amlodipine treatment also resulted in decreased parthenogenetic activation and arrested early embryonic development. Overall, these data suggest that proper function of L-type calcium channel is critical for oocyte maturation, activation, and early embryonic development.
Collapse
Affiliation(s)
- Gui-Fang He
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; College of Life Science, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Qing-Yuan Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Tiwari M, Chaube SK. Reduction of nitric oxide level results in maturation promoting factor destabilization during spontaneous meiotic exit from diplotene arrest in rat cumulus oocytes complexes cultured in vitro. Dev Growth Differ 2017; 59:615-625. [PMID: 28836261 DOI: 10.1111/dgd.12390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023]
Abstract
Nitric oxides (NO) act as one of the major signal molecules and modulate various cell functions including oocyte meiosis in mammals. The present study was designed to investigate the mechanism of NO action during spontaneous meiotic exit from diplotene arrest (EDA) in rat cumulus oocytes complexes (COCs) cultured in vitro. Diplotene-arrested COCs collected from ovary of immature female rats after 20 IU pregnant mare's serum gonadotropins (PMSG) for 48 h were exposed to various concentrations of NO donor, S-nitroso-N-acetyl penicillamine (SNAP) and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG) for 3 h in vitro and downstream factors were analyzed. Our results suggest that SNAP inhibited, while AG induced EDA in a concentration-dependent manner. The iNOS-mediated total NO, cyclic nucleotides and cell division cycle 25B (Cdc25B) levels were reduced significantly. The decreased Cdc25B was associated with the increased Thr14/Tyr15 phosphorylated cyclin-dependent kinase 1 (Cdk1) level and decreased Thr161 phosphorylated Cdk1 as well as cyclin B1 levels leading to maturation promoting factor (MPF) destabilization. The destabilized MPF finally induced spontaneous EDA. Taken together, these results suggest that reduction of iNOS-mediated NO level destabilizes MPF during spontaneous EDA in rat COCs cultured in vitro.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| |
Collapse
|
17
|
Tiwari M, Chaube SK. Maturation promoting factor destabilization mediates human chorionic gonadotropin induced meiotic resumption in rat oocytes. Dev Growth Differ 2017; 59:603-614. [PMID: 28815566 DOI: 10.1111/dgd.12387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3',5'-cyclic monophosphate (cAMP), guanosine 3',5'-cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase-promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin-dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M-II arrest in rat oocytes.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| |
Collapse
|
18
|
Tiwari M, Gupta A, Sharma A, Prasad S, Pandey AN, Yadav PK, Pandey AK, Shrivastav TG, Chaube SK. Role of Mitogen Activated Protein Kinase and Maturation Promoting Factor During the Achievement of Meiotic Competency in Mammalian Oocytes. J Cell Biochem 2017; 119:123-129. [DOI: 10.1002/jcb.26184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Anumegha Gupta
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Alka Sharma
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Shilpa Prasad
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Ashutosh N. Pandey
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Pramod K. Yadav
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Ajai K. Pandey
- Faculty of AyurvedaDepartment of KayachikitsaBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Tulsidas G. Shrivastav
- Department of Reproductive BiomedicineNational Institute of Health and Family WelfareBaba Gang Nath MargMunirkaNew Delhi 110067India
| | - Shail K. Chaube
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| |
Collapse
|
19
|
Wang L, Zhen YH, Liu XM, Cao J, Wang YL, Huo LJ. Inhibition of calcineurin by FK506 stimulates germinal vesicle breakdown of mouse oocytes in hypoxanthine-supplemented medium. PeerJ 2017; 5:e3032. [PMID: 28243539 PMCID: PMC5326542 DOI: 10.7717/peerj.3032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/26/2017] [Indexed: 11/22/2022] Open
Abstract
Calcineurin (CN) is a serine/threonine phosphatase which plays important roles in meiosis maturation in invertebrate oocytes; however, the role of CN in mouse oocytes is relatively unexplored. In this study, we examined the expression, localization and functional roles of CN in mouse oocytes and granulosa cells. The RT-PCR results showed that the β isoform of calcineurin A subunit (Cn A) expressed significantly higher than α and γ isoforms, and the expression of Cn Aβ mRNA obviously decreased in oocytes in which germinal vesicle breakdown (GVBD) occurred, while only B1 of calcineurin B subunit (Cn B) was detected in oocytes and stably expressed during oocytes maturation. The following fluorescence experiment showed that Cn A was mainly located in the nucleus of germinal vesicle (GV) stage oocytes and gruanlosa cells, and subsequently dispersed into the entire cytoplasm after GVBD. The decline of Cn A in oocytes suggested that it may play an important role in GVBD. To further clarify the role of calcineurin during meiotic maturation, FK506 (a calcineurin inhibitor) was used in the culture medium contained hypoxanthine (HX) which could keep mouse oocytes staying at GV stage. As expected, FK506 could induce a significant elevation of GVBD rate and increase the MPF level of denuded oocytes (DOs). Furthermore, FK506 could also play an induction role of GVBD of oocytes in COCs and follicles, and the process could be counteracted by MAPK kinase inhibitor (U0126). Above all, the results implied that calcineurin might play a crucial role in development of mouse oocytes and MPF and MAPK pathways are involved in this process.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, HuaZhong Agriculture University , Wu Han , Hu Bei Province , People's Republic of China
| | - Yan-Hong Zhen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, HuaZhong Agriculture University, Wu Han, Hu Bei Province, People's Republic of China; Department of Animal Husbandry and Veterinary, Wuhan Agricultural School, Wuhan, Hu Bei Province, People's Republic of China
| | - Xiao-Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, HuaZhong Agriculture University, Wu Han, Hu Bei Province, People's Republic of China; Reproductive Medicine Center, Second Affiliated Hospital of Wenzhou Medical College, Wen Zhou, People's Republic of China
| | - Jing Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, HuaZhong Agriculture University , Wu Han , Hu Bei Province , People's Republic of China
| | - Yan-Ling Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, HuaZhong Agriculture University , Wu Han , Hu Bei Province , People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, HuaZhong Agriculture University , Wu Han , Hu Bei Province , People's Republic of China
| |
Collapse
|
20
|
Weng Q, Liu Z, Li B, Liu K, Wu W, Liu H. Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway. PLoS One 2016; 11:e0167869. [PMID: 27936150 PMCID: PMC5148000 DOI: 10.1371/journal.pone.0167869] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/21/2016] [Indexed: 01/03/2023] Open
Abstract
The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs.
Collapse
Affiliation(s)
- Qiannan Weng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zequn Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Liaoning Province of Animal Product Safety Supervision, Shenyang, China
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
21
|
Prasad S, Chaube SK. Increased Telomerase Reverse Transcriptase Expression Associates with Spontaneous Exit from M-II Arrest in Rat Eggs. Cell Reprogram 2016; 19:27-34. [PMID: 27898217 DOI: 10.1089/cell.2016.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In mammals, postovulatory egg aging deteriorates egg quality possibly by mediating spontaneous exit from metaphase-II (M-II) arrest and/or inducing apoptosis. To test this possibility, present study was designed to investigate telomerase reverse transcriptase (TERT) expression, Bcl2 expression, and DNA fragmentation during postovulatory egg aging in vivo, as well as in vitro. Results suggest that postovulatory egg aging induced a time-dependent increase in the number of eggs undergoing spontaneous exit from M-II arrest in vivo, as well as in vitro. However, rate of spontaneous exit from M-II arrest was high in eggs cultured in vitro compared to in vivo aging. A time-dependent increase of TERT expression was associated with postovulatory aging-mediated spontaneous exit from M-II arrest in vivo, as well as in vitro. The Bcl2 level did not reduce and DNA fragmentation was not detected until 7 hours of in vivo, as well as in vitro, postovulatory egg aging. Taken together these data suggest that the eggs undergo postovulatory aging as evidenced by increased TERT expression without having any decrease of Bcl2 level or increase of DNA fragmentation until 7 hours of in vivo, as well as in vitro egg aging.
Collapse
Affiliation(s)
- Shilpa Prasad
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh, India
| |
Collapse
|
22
|
Presence of encircling granulosa cells protects against oxidative stress-induced apoptosis in rat eggs cultured in vitro. Apoptosis 2016; 22:98-107. [DOI: 10.1007/s10495-016-1324-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Wakayama S, Tanabe Y, Nagatomo H, Mizutani E, Kishigami S, Wakayama T. Effect of Long-Term Exposure of Donor Nuclei to the Oocyte Cytoplasm on Production of Cloned Mice Using Serial Nuclear Transfer. Cell Reprogram 2016; 18:382-389. [PMID: 27622855 DOI: 10.1089/cell.2016.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although animal cloning is becoming increasingly practicable, cloned embryos possess many abnormalities and so there has been a low success rate for producing live animals. This is most likely due to incomplete reprogramming of somatic cell nuclei before they start to develop as the donor nuclei are usually only exposed to the oocyte cytoplasm for 1-2 hours before reconstructed oocytes are activated to avoid oocyte aging. Therefore, in this study, we attempted to extend the exposure period of somatic cell nuclei to the oocyte cytoplasm to determine whether this could enhance reprogramming of donor nuclei. Donor nuclei were transferred into oocytes, following which pseudo-MII spindles (pMIIs) derived from these were extracted and injected into newly collected enucleated oocytes 24 hours after the first nuclear transfer (NT). These serial NT oocytes were then activated and their developmental potential was examined to full term. There was no obvious difference in the pMIIs of reconstructed oocytes at 6 and 24 hours after donor nucleus injection; however, in both of these, the chromosomes were more widely spread inside the spindle than in fresh intact oocytes. Furthermore, a few chromosomes remained in 25% and 47% of these enucleated oocytes at 6 and 24 hours after donor nucleus injection, respectively. When these pMIIs were injected into fresh enucleated oocytes, the developmental rate to blastocyst was significantly lower, but we could still obtain several healthy cloned offspring. Thus, serial NT at intervals of 24 hours using fresh oocytes is possible, but the success rate could not be improved due to loss of chromosomes during the second NT.
Collapse
Affiliation(s)
- Sayaka Wakayama
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Yoshiaki Tanabe
- 2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Hiroaki Nagatomo
- 3 COC Promotion Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Eiji Mizutani
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan .,2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Satoshi Kishigami
- 2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Teruhiko Wakayama
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan .,2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| |
Collapse
|
24
|
Fellmeth JE, Ghanaim EM, Schindler K. Characterization of macrozoospermia-associated AURKC mutations in a mammalian meiotic system. Hum Mol Genet 2016; 25:2698-2711. [PMID: 27106102 DOI: 10.1093/hmg/ddw128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
Aneuploidy is the leading genetic abnormality that leads to miscarriage, and it is caused by a failure of accurate chromosome segregation during gametogenesis or early embryonic divisions. Aurora kinase C (AURKC) is essential for formation of euploid sperm in humans because mutations in AURKC are correlated with macrozoospermia and these sperm are tetraploid. These mutations are currently the most frequent mutations that cause macrozoospermia and result from an inability to complete meiosis I (MI). Three of these mutations AURKC c.144delC (AURKC p.L49Wfs22), AURKC c.686G > A (AURKC p.C229Y) and AURKC c.744C > G (AURKC p.Y248*) occur in the coding region of the gene and are the focus of this study. By expressing these alleles in oocytes isolated from Aurkc-/- mice, we show that the mutations have different effects on AURKC function during MI. AURKC p.L49Wfs22 is a loss-of-function mutant that perturbs localization of the chromosomal passenger complex (CPC), AURKC p.C229Y is a hypomorph that cannot fully support cell-cycle progression, and AURKC p.Y248* fails to localize and function with the CPC to support chromosome segregation yet retains catalytic activity in the cytoplasm. Finally, we show that these variants of AURKC cause meiotic failure and polyploidy due to a failure in AURKC-CPC function that results in metaphase chromosome misalignment. This study is the first to assess the function of mutant alleles of AURKC that affect human fertility in a mammalian meiotic system.
Collapse
Affiliation(s)
| | - Elena M Ghanaim
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
25
|
Zhu J, Lin FH, Zhang J, Lin J, Li H, Li YW, Tan XW, Tan JH. The signaling pathways by which the Fas/FasL system accelerates oocyte aging. Aging (Albany NY) 2016; 8:291-303. [PMID: 26869336 PMCID: PMC4789583 DOI: 10.18632/aging.100893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.
Collapse
Affiliation(s)
- Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, P. R. China
- Department of Assisted Reproduction Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200011, P. R. China
| | - Fei-Hu Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Juan Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - You-Wei Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Xiu-Wen Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| | - Jing-He Tan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, P. R. China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, P. R. China
| |
Collapse
|
26
|
Jiao GZ, Cui W, Yang R, Lin J, Gong S, Lian HY, Sun MJ, Tan JH. Optimized Protocols for In Vitro Maturation of Rat Oocytes Dramatically Improve Their Developmental Competence to a Level Similar to That of Ovulated Oocytes. Cell Reprogram 2015; 18:17-29. [PMID: 26679437 DOI: 10.1089/cell.2015.0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The developmental capacity of in vitro-matured (IVM) oocytes is markedly lower than that of their in vivo-matured (IVO) counterparts, suggesting the need for optimization of IVM protocols in different species. There are few studies on IVM of rat oocytes, and there are even fewer attempts to improve ooplasmic maturation compared to those reported in other species. Furthermore, rat oocytes are well known to undergo spontaneous activation (SA) after leaving the oviduct; however, whether IVM rat oocytes have lower SA rates than IVO oocytes and can potentially be used for nuclear transfer is unknown. In this study, we investigated the effects of maturation protocols on cytoplasmic maturation of IVM rat oocytes and observed the possibility to reduce SA by using IVM rat oocytes. Ooplasmic maturation was assessed using multiple markers, including pre- and postimplantation development, meiotic progression, CG redistribution, redox state, and the expression of developmental potential- and apoptosis-related genes. The results showed that the best protocol consisting of modified Tissue Culture Medium-199 (TCM-199) supplemented with cysteamine/cystine and the cumulus cell monolayer dramatically improved the developmental competence of rat oocytes and supported both pre- and postimplantation development and other ooplasmic maturation makers to levels similar to that observed in ovulated oocytes. Rates of SA were significantly lower in IVM oocytes than in IVO oocytes when observed at the same intervals after nuclear maturation. In conclusion, we have optimized protocols for IVM of rat oocytes that sustain ooplasmic maturation to a level similar to ovulated oocytes. The results suggest that IVM rat oocytes might be used to reduce SA for rat cloning.
Collapse
Affiliation(s)
- Guang-Zhong Jiao
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018.,2 These authors contributed equally to this work.,3 Present address: Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University , Yuhuangding Hospital of Yantai, Yantai, Shandong, China . Post code: 264000
| | - Wei Cui
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018.,2 These authors contributed equally to this work
| | - Rui Yang
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Juan Lin
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Shuai Gong
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Hua-Yu Lian
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Ming-Ju Sun
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Jing-He Tan
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| |
Collapse
|
27
|
Zhang CX, Cui W, Zhang M, Zhang J, Wang TY, Zhu J, Jiao GZ, Tan JH. Role of Na+/Ca2+ exchanger (NCX) in modulating postovulatory aging of mouse and rat oocytes. PLoS One 2014; 9:e93446. [PMID: 24695407 PMCID: PMC3973580 DOI: 10.1371/journal.pone.0093446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
We studied the role of the Na+/Ca2+ exchanger (NCX) in modulating oocyte postovulatory aging by observing changes in NCX contents and activities in aging mouse and rat oocytes. Whereas the NCX activity was measured by observing oocyte activation following culture with NCX inhibitor or activator, the NCX contents were determined by immunohistochemical quantification. Although NCX was active in freshly-ovulated rat oocytes recovered 13 h post hCG injection and in aged oocytes recovered 19 h post hCG in both species, it was not active in freshly-ovulated mouse oocytes. However, NCX became active when the freshly-ovulated mouse oocytes were activated with ethanol before culture. Measurement of cytoplasmic Ca2+ revealed Ca2+ increases always before NCX activation. Whereas levels of the reactive oxygen species (ROS) and the activation susceptibility increased, the density of NCX member 1 (NCX1) decreased significantly with oocyte aging in both species. While culture with H2O2 decreased the density of NCX1 significantly, culture with NaCl supplementation sustained the NCX1 density in mouse oocytes. It was concluded that (a) the NCX activity was involved in the modulation of oocyte aging and spontaneous activation; (b) ROS and Na+ regulated the NCX activity in aging oocytes by altering its density as well as functioning; and (c) cytoplasmic Ca2+ elevation was essential for NCX activation in the oocyte.
Collapse
Affiliation(s)
- Chuan-Xin Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Wei Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jiang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
- * E-mail:
| |
Collapse
|
28
|
Wang TY, Li Q, Li Q, Li H, Zhu J, Cui W, Jiao GZ, Tan JH. Non-frozen preservation protocols for mature mouse oocytes dramatically extend their developmental competence by reducing oxidative stress. Mol Hum Reprod 2013; 20:318-29. [DOI: 10.1093/molehr/gat088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Zhang J, Cui W, Li Q, Wang TY, Sui HS, Wang JZ, Luo MJ, Tan JH. Mechanisms by which a Lack of Germinal Vesicle (GV) Material Causes Oocyte Meiotic Defects: A Study Using Oocytes Manipulated to Replace GV with Primary Spermatocyte Nuclei1. Biol Reprod 2013; 89:83. [DOI: 10.1095/biolreprod.113.111500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
30
|
Liang B, Wei DL, Cheng YN, Yuan HJ, Lin J, Cui XZ, Luo MJ, Tan JH. Restraint Stress Impairs Oocyte Developmental Potential in Mice: Role of CRH-Induced Apoptosis of Ovarian Cells1. Biol Reprod 2013; 89:64. [DOI: 10.1095/biolreprod.113.110619] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Premkumar KV, Chaube SK. An insufficient increase of cytosolic free calcium level results postovulatory aging-induced abortive spontaneous egg activation in rat. J Assist Reprod Genet 2012; 30:117-23. [PMID: 23239129 DOI: 10.1007/s10815-012-9908-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The present study was aimed to find out whether postovulatory aging-induced abortive spontaneous egg activation (SEA) is due to insufficient increase of cytosolic free Ca(2+) level. METHODS Immature female rats (22-24 days old) were subjected to superovulation induction protocol. Eggs were collected 14, 17 and 19 h post-hCG surge to induce in vivo egg aging. The eggs were collected 14 h post-hCG surge and cultured in vitro for 3, 5 and 7 h to induce in vitro egg aging. The morphological changes, rate of abortive SEA, chromosomal status and cytosolic free Ca(2+) levels were analyzed. RESULTS Postovulatory aging induced morphological features characteristics of abortive SEA in a time-dependent manner in vivo as well as in vitro. The extracellular Ca(2+) increased rate of abortive SEA during initial period of culture, while co-addition of a nifedipine (L-type Ca(2+) channel blocker) protected against postovulatory aging-induced abortive SEA. However, CI induced morphological features characteristics of egg activation (EA) in a dose-dependent manner. As compare to control, an increase of cytosolic free Ca(2+) level (1.42 times) induced abortive SEA, while further increase of cytosolic free Ca(2+) level (2.55 times) induced EA. CONCLUSION Our results show that an insufficient cytosolic free Ca(2+) level is associated with postovulatory aging -induced abortive SEA, while furthermore increase is required to induce EA in rat.
Collapse
Affiliation(s)
- Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|