1
|
Guo Y, Zhao Y, Cong YS. Met1-linked ubiquitination in cell signaling regulation. BIOPHYSICS REPORTS 2024; 10:230-240. [PMID: 39281196 PMCID: PMC11399889 DOI: 10.52601/bpr.2024.230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 09/18/2024] Open
Abstract
Met1-linked ubiquitination (Met1-Ub), also known as linear ubiquitination, is a newly identified atypical type of polyubiquitination that is assembled via the N-terminal methionine (Met1) rather than an internal lysine (Lys) residue of ubiquitin. The linear ubiquitin chain assembly complex (LUBAC) composed of HOIP, HOIL-1L and SHARPIN is the sole E3 ubiquitin ligase that specifically generates Met1-linked ubiquitin chains. The physiological role of LUBAC-mediated Met1-Ub has been first described as activating NF-κB signaling through the Met1-Ub modification of NEMO. However, accumulating evidence shows that Met1-Ub is broadly involved in other cellular pathways including MAPK, Wnt/β-Catenin, PI3K/AKT and interferon signaling, and participates in various cellular processes including angiogenesis, protein quality control and autophagy, suggesting that Met1-Ub harbors a potent signaling capacity. Here, we review the formation and cellular functions of Met1-linked ubiquitin chains, with an emphasis on the recent advances in the cellular mechanisms by which Met1-Ub controls signaling transduction.
Collapse
Affiliation(s)
- Yanmin Guo
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China
| | - Yuqin Zhao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China
| |
Collapse
|
2
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Campbell AN, Choi WJ, Chi ES, Orun AR, Poland JC, Stivison EA, Kubina JN, Hudson KL, Loi MNC, Bhatia JN, Gilligan JW, Quintanà AA, Blind RD. Steroidogenic Factor-1 form and function: From phospholipids to physiology. Adv Biol Regul 2024; 91:100991. [PMID: 37802761 PMCID: PMC10922105 DOI: 10.1016/j.jbior.2023.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Steroidogenic Factor-1 (SF-1, NR5A1) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors, consisting of a DNA-binding domain (DBD) connected to a transcriptional regulatory ligand binding domain (LBD) via an unstructured hinge domain. SF-1 is a master regulator of development and adult function along the hypothalamic pituitary adrenal and gonadal axes, with strong pathophysiological association with endometriosis and adrenocortical carcinoma. SF-1 was shown to bind and be regulated by phospholipids, one of the most interesting aspects of SF-1 regulation is the manner in which SF-1 interacts with phospholipids: SF-1 buries the phospholipid acyl chains deep in the hydrophobic core of the SF-1 protein, while the lipid headgroups remain solvent-exposed on the exterior of the SF-1 protein surface. Here, we have reviewed several aspects of SF-1 structure, function and physiology, touching on other transcription factors that help regulate SF-1 target genes, non-canonical functions of SF-1, the DNA-binding properties of SF-1, the use of mass spectrometry to identify lipids that associate with SF-1, how protein phosphorylation regulates SF-1 and the structural biology of the phospholipid-ligand binding domain. Together this review summarizes the form and function of Steroidogenic Factor-1 in physiology and in human disease, with particular emphasis on adrenal cancer.
Collapse
Affiliation(s)
- Alexis N Campbell
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Woong Jae Choi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ethan S Chi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Abigail R Orun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James C Poland
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Elizabeth A Stivison
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jakub N Kubina
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kimora L Hudson
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mong Na Claire Loi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jay N Bhatia
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Joseph W Gilligan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Adrian A Quintanà
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Raymond D Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Lalli E. A reappraisal of transcriptional regulation by NR5A1 and beta-catenin in adrenocortical carcinoma. Front Endocrinol (Lausanne) 2023; 14:1303332. [PMID: 38155952 PMCID: PMC10753177 DOI: 10.3389/fendo.2023.1303332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Overexpression of the transcription factor NR5A1 and constitutive activation of canonical Wnt signalling leading to nuclear translocation of beta-catenin are hallmarks of malignancy in adrenocortical carcinoma (ACC). Based on the analysis of genomic profiles in H295R ACC cells, Mohan et al. (Cancer Res. 2023; 83: 2123-2141) recently suggested that a major determinant driving proliferation and differentiation in malignant ACC is the interaction of NR5A1 and beta-catenin on chromatin to regulate gene expression. METHODS I reanalyzed the same set of data generated by Mohan et al. and other published data of knockdown-validated NR5A1 and beta-catenin target genes. RESULTS Beta-catenin is mainly found in association to canonical T cell factor/lymphoid enhancer factor (TCF/LEF) motifs in genomic DNA. NR5A1 and beta-catenin regulate distinct target gene sets in ACC cells. CONCLUSION Overall, my analysis suggests a model where NR5A1 overexpression and beta-catenin activation principally act independently, rather than functionally interacting, to drive ACC malignancy.
Collapse
Affiliation(s)
- Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Université Côte d’Azur, Valbonne, France
- Inserm, Valbonne, France
| |
Collapse
|
5
|
Jimbo K, Hattori A, Koide S, Ito T, Sasaki K, Iwai K, Nannya Y, Iwama A, Tojo A, Konuma T. Genetic deletion and pharmacologic inhibition of E3 ubiquitin ligase HOIP impairs the propagation of myeloid leukemia. Leukemia 2023; 37:122-133. [PMID: 36352193 DOI: 10.1038/s41375-022-01750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
We investigated the role of Hoip, a catalytic subunit of linear ubiquitin chain assembly complex (LUBAC), in adult hematopoiesis and myeloid leukemia by using both conditional deletion of Hoip and small-molecule chemical inhibitors of Hoip. Conditional deletion of Hoip led to significantly longer survival and marked depletion of leukemia burden in murine myeloid leukemia models. Nevertheless, a competitive transplantation assay showed the reduction of donor-derived cells in the bone marrow of recipient mice was relatively mild after conditional deletion of Hoip. Although both Hoip-deficient hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) impaired the maintenance of quiescence, conditional deletion of Hoipinduced apoptosis in LSCs but not HSCs in vivo. Structure-function analysis revealed that LUBAC ligase activity and the interaction of LUBAC subunits were critical for the propagation of leukemia. Hoip regulated oxidative phosphorylation pathway independently of nuclear factor kappa B pathway in leukemia, but not in normal hematopoietic cells. Finally, the administration of thiolutin, which inhibits the catalytic activity of Hoip, improved the survival of recipients in murine myeloid leukemia and suppressed propagation in the patient-derived xenograft model of myeloid leukemia. Collectively, these data indicate that inhibition of LUBAC activity may be a valid therapeutic target for myeloid leukemia.
Collapse
Affiliation(s)
- Koji Jimbo
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ayuna Hattori
- Laboratory of Cell Fate Dynamics and Therapeutics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Ito
- Laboratory of Cell Fate Dynamics and Therapeutics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Katsuhiro Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Konuma
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Karsa M, Ronca E, Bongers A, Mariana A, Moles E, Failes TW, Arndt GM, Cheung LC, Kotecha RS, Kavallaris M, Haber M, Norris MD, Henderson MJ, Xiao L, Somers K. Systematic In Vitro Evaluation of a Library of Approved and Pharmacologically Active Compounds for the Identification of Novel Candidate Drugs for KMT2A-Rearranged Leukemia. Front Oncol 2022; 11:779859. [PMID: 35127484 PMCID: PMC8811472 DOI: 10.3389/fonc.2021.779859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
Patients whose leukemias harbor a rearrangement of the Mixed Lineage Leukemia (MLL/KMT2A) gene have a poor prognosis, especially when the disease strikes in infants. The poor clinical outcome linked to this aggressive disease and the detrimental treatment side-effects, particularly in children, warrant the urgent development of more effective and cancer-selective therapeutics. The aim of this study was to identify novel candidate compounds that selectively target KMT2A-rearranged (KMT2A-r) leukemia cells. A library containing 3707 approved drugs and pharmacologically active compounds was screened for differential activity against KMT2A-r leukemia cell lines versus KMT2A-wild type (KMT2A-wt) leukemia cell lines, solid tumor cells and non-malignant cells by cell-based viability assays. The screen yielded SID7969543, an inhibitor of transcription factor Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1), that limited the viability of 7 out of 11 KMT2A-r leukemia cell lines including 5 out of 7 lines derived from infants, without affecting KMT2A-wt leukemia cells, solid cancer lines, non-malignant cell lines, or peripheral blood mononuclear cells from healthy controls. The compound also significantly inhibited growth of leukemia cell lines with a CALM-AF10 translocation, which defines a highly aggressive leukemia subtype that shares common underlying leukemogenic mechanisms with KMT2A-r leukemia. SID7969543 decreased KMT2A-r leukemia cell viability by inducing caspase-dependent apoptosis within hours of treatment and demonstrated synergy with established chemotherapeutics used in the treatment of high-risk leukemia. Thus, SID7969543 represents a novel candidate agent with selective activity against CALM-AF10 translocated and KMT2A-r leukemias that warrants further investigation.
Collapse
Affiliation(s)
- Mawar Karsa
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Emma Ronca
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Angelika Bongers
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Anna Mariana
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Ernest Moles
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Timothy W. Failes
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Greg M. Arndt
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Murray D. Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- University of New South Wales (UNSW) Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Michelle J. Henderson
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Lin Xiao
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Klaartje Somers
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- *Correspondence: Klaartje Somers,
| |
Collapse
|
7
|
Zhou J, Wang Y, Wu D, Wang S, Chen Z, Xiang S, Chan FL. Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Oncogene 2021; 40:2625-2634. [PMID: 33750894 PMCID: PMC8049868 DOI: 10.1038/s41388-021-01737-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023]
Abstract
Castration-resistant prostate cancer (CRPC) almost invariably occurs after androgen-deprivation therapy (ADT) for the advanced metastatic disease. It is generally believed that among multiple mechanisms and signaling pathways, CRPC is significantly driven by the reactivation of androgen receptor (AR) signaling in ADT-treated patients with castrate levels of androgen, partially at least mediated by the androgen biosynthesis within the tumor, also known as intratumoral or intraprostatic androgen biosynthesis. Steroidogenic enzymes, such as CYP11A1, CYP17A1, HSD3B1, AKR1C3 and SRD5A, are essential to catalyze the conversion of the initial substrate cholesterol into potent androgens that confers the CRPC progression. Accumulating evidences indicate that many steroidogenic enzymes are upregulated in the progression setting; however, little is known about the dysregulation of these enzymes in CRPC. Orphan nuclear receptors (ONRs) are members of the nuclear receptor superfamily, of which endogenous physiological ligands are unknown and which are constitutively active independent of any physiological ligands. Studies have validated that besides AR, ONRs could be the potential therapeutic targets for prostate cancer, particularly the lethal CRPC progression. Early studies reveal that ONRs play crucial roles in the transcriptional regulation of steroidogenic enzyme genes. Notably, we and others show that three distinct ONRs, including liver receptor homolog-1 (LRH-1, NR5A2), steroidogenic factor 1 (SF-1, AD4BP, NR5A1) and estrogen-related receptor α (ERRα, NR3B1), can contribute to the CRPC progression by promotion of the intratumoral androgen synthesis via their direct transcriptional regulation on multiple steroidogenic enzymes. This review presents an overview of the current understanding on the intratumoral androgen biosynthesis in CRPC, with a special focus on the emerging roles of ONRs in this process.
Collapse
Affiliation(s)
- Jianfu Zhou
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.411866.c0000 0000 8848 7685The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuliang Wang
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- grid.488521.2Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shusheng Wang
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songtao Xiang
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Franky Leung Chan
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
9
|
Qiu P, Xu TJ, Lu XD, Yang W, Zhang YB, Xu GM. MicroRNA-378 regulates cell proliferation and migration by repressing RNF31 in pituitary adenoma. Oncol Lett 2018; 15:789-794. [PMID: 29399147 PMCID: PMC5772874 DOI: 10.3892/ol.2017.7431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/07/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNA-378 (miR-378) is dysregulated in multiple malignancies and is associated with tumor progression. However, the expression and mechanism of miR-378 in pituitary adenoma (PA) remains to be elucidated. In the present study, the role and mechanism of miR-378 in PA tumorigenesis and development was investigated. It was revealed that the levels of miR-378 expression were markedly downregulated in PA tissues. CCK-8 and wound healing assays revealed that transfection with miR-378 mimics was able to markedly inhibit the proliferation and migration of GH3 cells. Furthermore, quantitative polymerase chain reaction analysis demonstrated that ring finger protein 31 (RNF31) was upregulated in PA specimens and the levels of RNF31 expression was negatively regulated by miR-378. In addition, knockdown of RNF31 markedly suppressed cell proliferation and migration in GH3 cells. In conclusion, the present study provides a molecular basis for the function of miR-378/RNF31 in the progression of human PA, indicating a potential novel target for the treatment of PA.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Tong-Jiang Xu
- Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Xiang-Dong Lu
- Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Wei Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yu-Bao Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Guang-Ming Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
10
|
Mwapagha LM, Tiffin N, Parker MI. Delineation of the HPV11E6 and HPV18E6 Pathways in Initiating Cellular Transformation. Front Oncol 2017; 7:258. [PMID: 29164058 PMCID: PMC5672010 DOI: 10.3389/fonc.2017.00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022] Open
Abstract
Although high-risk human papillomaviruses (HPVs) are the major risk factors for cervical cancer they have been associated with several other cancers, such as head and neck and oral cancers. Since integration of low-risk HPV11 DNA has been demonstrated in esophageal tumor genomes, this study compared the effects of low-risk HPV11E6 and high-risk HPV18E6 on cellular gene expression. The HPV11E6 and HPV18E6 genes were cloned into an adenoviral vector and expressed in human keratinocytes (HaCaT) in order to investigate early events and to eliminate possible artifacts introduced by selective survival of fast growing cells in stable transfection experiments. HPV11E6 had very little effect on p21 and p53 gene expression, while HPV18E6 resulted in a marked reduction in both these proteins. Both HPV11E6 and HPV18E6 enabled growth of colonies in soft agar, but the level of colony formation was higher in HPV18E6 infected cells. DNA microarray analysis identified significantly differentially regulated genes involved in the cellular transformation signaling pathways. These findings suggest that HPV11E6 and HPV18E6 are important in initiating cellular transformation via deregulation of signaling pathways such as PI3K/AKT and pathways that are directly involved in DNA damage repair, cell survival, and cell proliferation. This study shows that the low-risk HPV11E6 may have similar effects as the high-risk HPV18E6 during the initial stages of infection, but at a much reduced level.
Collapse
Affiliation(s)
- Lamech M. Mwapagha
- Faculty of Health Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| | - Nicki Tiffin
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - M. Iqbal Parker
- Faculty of Health Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| |
Collapse
|
11
|
Stigliano A, Cerquetti L, Lardo P, Petrangeli E, Toscano V. New insights and future perspectives in the therapeutic strategy of adrenocortical carcinoma (Review). Oncol Rep 2017; 37:1301-1311. [PMID: 28184938 DOI: 10.3892/or.2017.5427] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/20/2016] [Indexed: 11/06/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with an incidence ranging from 0.7 to 2.0 cases/million people per year. Hypercortisolism represents the most common clinical presentation in many patients although, less frequently, some ACC secreting androgens and estrogens are even more pathognomonic compared to cortisol secretion. Currently, radical surgery, when feasible, is still the only curative therapy. Mitotane, an adrenolytic drug, is used in the adjuvant setting and in combination with chemotherapy drugs in metastatic disease. The use of radiotherapy remains controversial, being indicated only in selected cases. New targeted therapies, such as insulin growth factor-1 (IGF-1), mammalian-target of rapamycin (m-TOR), vascular endothelial growth factor (VEGF) inhibitors and others, have recently been investigated with disappointing clinical results. The partial effectiveness of current treatments mandates the need for new therapeutic strategies against this tumor.
Collapse
Affiliation(s)
- Antonio Stigliano
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Lidia Cerquetti
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Pina Lardo
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Elisa Petrangeli
- CNR, Institute of Molecular Biology and Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Vincenzo Toscano
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
12
|
Bashamboo A, McElreavey K. Mechanism of Sex Determination in Humans: Insights from Disorders of Sex Development. Sex Dev 2016; 10:313-325. [DOI: 10.1159/000452637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
|
13
|
Sarcomatoid adrenocortical carcinoma: a comprehensive pathological, immunohistochemical, and targeted next-generation sequencing analysis. Hum Pathol 2016; 58:113-122. [DOI: 10.1016/j.humpath.2016.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
|
14
|
Abstract
Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways.
Collapse
Affiliation(s)
- Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| |
Collapse
|
15
|
Ruggiero C, Doghman M, Lalli E. How genomic studies have improved our understanding of the mechanisms of transcriptional regulation by NR5A nuclear receptors. Mol Cell Endocrinol 2015; 408:138-144. [PMID: 25449416 DOI: 10.1016/j.mce.2014.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/27/2014] [Indexed: 02/03/2023]
Abstract
SF-1 and LRH-1 are transcription factors that belong to the NR5A family of nuclear receptors that both have an essential role during development. Recent studies at the genome-wide scale have enabled the characterization of the cistrome and transcriptome regulated by SF-1 and LRH-1 in different cell lines and tissues. Those studies have allowed us to make a significant leap forward in our understanding of the mechanisms of transcriptional regulation of NR5A nuclear receptors in stem cells and cancer.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Sophia Antipolis, Valbonne, France; Laboratoire International Associé (LIA) CNRS NEOGENEX, Sophia Antipolis, Valbonne, France; Université de Nice, Sophia Antipolis, Valbonne, France
| | - Mabrouka Doghman
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Sophia Antipolis, Valbonne, France; Laboratoire International Associé (LIA) CNRS NEOGENEX, Sophia Antipolis, Valbonne, France; Université de Nice, Sophia Antipolis, Valbonne, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Sophia Antipolis, Valbonne, France; Laboratoire International Associé (LIA) CNRS NEOGENEX, Sophia Antipolis, Valbonne, France; Université de Nice, Sophia Antipolis, Valbonne, France.
| |
Collapse
|
16
|
Mizutani T, Kawabe S, Ishikane S, Imamichi Y, Umezawa A, Miyamoto K. Identification of novel steroidogenic factor 1 (SF-1)-target genes and components of the SF-1 nuclear complex. Mol Cell Endocrinol 2015; 408:133-7. [PMID: 25463758 DOI: 10.1016/j.mce.2014.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022]
Abstract
Steroidogenic factor 1 (SF-1) is a master regulator of adrenal and reproductive development and function. Although SF-1 was identified as a transcriptional regulator for steroid metabolic enzymes, it has been shown that SF-1 also regulates other genes that are involved in various cellular processes. Previously, we showed that introduction of SF-1 into mesenchymal stem cells resulted in the differentiation of these cells to the steroidogenic lineage. By using this method of differentiation, we performed comprehensive analyses to identify the novel SF-1-target genes and components of the SF-1 nuclear complex. Genome-wide analyses with promoter tiling array and DNA microarray identified 10 genes as novel SF-1-target genes including glutathione S-transferase A family, 5-aminolevulinic acid synthase 1 and ferredoxin reductase. Using SF-1 immuno-affinity chromatography of nuclear proteins followed by MS/MS analysis, we identified 24 proteins including CCAAT/enhancer-binding protein β as components of SF-1 nuclear complex. In this review, we will describe novel roles of the newly identified genes for steroidogenesis.
Collapse
Affiliation(s)
- Tetsuya Mizutani
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Translational Research Center, Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan.
| | - Shinya Kawabe
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Translational Research Center, Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| | - Shin Ishikane
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yoshitaka Imamichi
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Translational Research Center, Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| | - Akihiro Umezawa
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kaoru Miyamoto
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Translational Research Center, Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
17
|
Drelon C, Berthon A, Mathieu M, Martinez A, Val P. Adrenal cortex tissue homeostasis and zonation: A WNT perspective. Mol Cell Endocrinol 2015; 408:156-64. [PMID: 25542843 DOI: 10.1016/j.mce.2014.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022]
Abstract
The adrenal cortex plays essential roles in the control of sodium and water homeostasis, stress response, inflammation and metabolism, through secretion of glucocorticoids and mineralocorticoids. Coordinated production of these hormones relies on functional zonation of the cortex, characterised by expression of Cyp11b2 under the control of angiotensin II and plasma potassium level in zona glomerulosa (ZG) and Cyp11b1 under the control of ACTH in zona fasciculata (ZF). The mechanisms involved in the establishment of functional zonation and its maintenance during centripetal cortex cell renewal are still poorly understood. Here, we hypothesise that the hormonal and signalling pathways that control adrenal cortex function are also involved in cortical zonation. In particular, we summarise evidence on the role of WNT/β-catenin signalling in ZG differentiation and how tight control of its activity is required to shape the adult cortex. In this context, we discuss the potential role of known WNT regulators and the possibility of a reciprocal cross-talk between PKA and WNT signalling.
Collapse
Affiliation(s)
- Coralie Drelon
- Laboratoire Génétique Reproduction et Développement -GReD- CNRS UMR 6293, Inserm U1103, Clermont Université, 24 Avenue des Landais, Aubière Cedex 63171, France
| | - Annabel Berthon
- Laboratoire Génétique Reproduction et Développement -GReD- CNRS UMR 6293, Inserm U1103, Clermont Université, 24 Avenue des Landais, Aubière Cedex 63171, France; Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892-1103, USA
| | - Mickael Mathieu
- Laboratoire Génétique Reproduction et Développement -GReD- CNRS UMR 6293, Inserm U1103, Clermont Université, 24 Avenue des Landais, Aubière Cedex 63171, France
| | - Antoine Martinez
- Laboratoire Génétique Reproduction et Développement -GReD- CNRS UMR 6293, Inserm U1103, Clermont Université, 24 Avenue des Landais, Aubière Cedex 63171, France
| | - Pierre Val
- Laboratoire Génétique Reproduction et Développement -GReD- CNRS UMR 6293, Inserm U1103, Clermont Université, 24 Avenue des Landais, Aubière Cedex 63171, France.
| |
Collapse
|
18
|
Antonini SR, Leal LF, Cavalcanti MM. Pediatric adrenocortical tumors: diagnosis, management and advancements in the understanding of the genetic basis and therapeutic implications. Expert Rev Endocrinol Metab 2014; 9:445-464. [PMID: 30736208 DOI: 10.1586/17446651.2014.941813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenocortical tumors (ACTs) may be sporadic or related to inherited genetic syndromes. Uncovering the molecular defects underlying these genetic syndromes has revealed key signaling pathways involved in adrenocortical tumorigenesis. Although the understanding of ACT biology has improved, to date, very few potential prognostic molecular markers of childhood ACTs have been identified. In this review, we summarize the current knowledge of the epidemiology, clinical presentation, diagnosis, prognosis and treatment options for pediatric patients with ACTs. A review of the genetic basis of adrenocortical tumorigenesis is presented, focusing on the main molecular abnormalities involved in the tumorigenic process and potential novel therapy targets that have been generated, or are being generated, with the discovery of these molecular defects.
Collapse
Affiliation(s)
| | - Letícia F Leal
- a Department of Pediatrics, Ribeirao Preto Medical-School - University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo M Cavalcanti
- a Department of Pediatrics, Ribeirao Preto Medical-School - University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1). Biochem J 2014; 460:459-71. [DOI: 10.1042/bj20131522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CCAAT/enhancer-binding protein β (C/EBPβ) was identified as a component of the SF-1 nuclear complex. C/EBPβ regulates expression of progesterone production-related genes (STAR, CYP11A1 and HSD3B2) by co-operation with SF-1. Our findings reveal a novel molecular mechanism of progesterone production.
Collapse
|
20
|
Zhu J, Zhao C, Kharman-Biz A, Zhuang T, Jonsson P, Liang N, Williams C, Lin CY, Qiao Y, Zendehdel K, Strömblad S, Treuter E, Dahlman-Wright K. The atypical ubiquitin ligase RNF31 stabilizes estrogen receptor α and modulates estrogen-stimulated breast cancer cell proliferation. Oncogene 2014; 33:4340-51. [PMID: 24441041 PMCID: PMC4141304 DOI: 10.1038/onc.2013.573] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/29/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022]
Abstract
Estrogen receptor α (ERα) is initially expressed in the majority of breast cancers and promotes estrogen-dependent cancer progression by regulating the transcription of genes linked to cell proliferation. ERα status is of clinical importance, as ERα-positive breast cancers can be successfully treated by adjuvant therapy with antiestrogens or aromatase inhibitors. Complications arise from the frequent development of drug resistance that might be caused by multiple alterations, including components of ERα signaling, during tumor progression and metastasis. Therefore, insights into the molecular mechanisms that control ERα expression and stability are of utmost importance to improve breast cancer diagnostics and therapeutics. Here we report that the atypical E3 ubiquitin ligase RNF31 stabilizes ERα and facilitates ERα-stimulated proliferation in breast cancer cell lines. We show that depletion of RNF31 decreases the number of cells in the S phase and reduces the levels of ERα and its downstream target genes, including cyclin D1 and c-myc. Analysis of data from clinical samples confirms correlation between RNF31 expression and the expression of ERα target genes. Immunoprecipitation indicates that RNF31 associates with ERα and increases its stability and mono-ubiquitination, dependent on the ubiquitin ligase activity of RNF31. Our data suggest that association of RNF31 and ERα occurs mainly in the cytosol, consistent with the lack of RNF31 recruitment to ERα-occupied promoters. In conclusion, our study establishes a non-genomic mechanism by which RNF31 via stabilizing ERα levels controls the transcription of estrogen-dependent genes linked to breast cancer cell proliferation.
Collapse
Affiliation(s)
- J Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - C Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - A Kharman-Biz
- 1] Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden [2] Cancer Research Center, Cancer institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - T Zhuang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - P Jonsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - N Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - C Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - C-Y Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Y Qiao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - K Zendehdel
- Cancer Research Center, Cancer institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - S Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - E Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - K Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
21
|
Doghman M, Figueiredo BC, Volante M, Papotti M, Lalli E. Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation. Nucleic Acids Res 2013; 41:8896-8907. [PMID: 23907384 PMCID: PMC3799431 DOI: 10.1093/nar/gkt658] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 12/05/2022] Open
Abstract
Steroidogenic Factor-1 (SF-1) is a nuclear receptor that has a pivotal role in the development of adrenal glands and gonads and in the control of steroid hormone production, being also implicated in the pathogenesis of adrenocortical tumors. We have analyzed the mechanisms how SF-1 controls gene expression in adrenocortical cells and showed that it regulates different categories of genes according to its dosage. Significant correlations exist between the localization of SF-1-binding sites in chromatin under different dosage conditions and dosage-dependent regulation of gene expression. Our study revealed unexpected functional interactions between SF-1 and Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription Factor (NRSF/REST), which was first characterized as a repressor of neuronal gene expression in non-neuronal tissues, in the regulation of gene expression in steroidogenic cells. When overexpressed, SF-1 reshapes the repertoire of NRSF/REST-regulated genes, relieving repression of key steroidogenic genes. These data show that NRSF/REST has a novel function in regulating gene expression in steroidogenic cells and suggest that it may have a broad role in regulating tissue-specific gene expression programs.
Collapse
Affiliation(s)
- Mabrouka Doghman
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, Valbonne 06560, France, Associated International Laboratory (LIA) NEOGENEX CNRS, Valbonne 06560, France, University of Nice-Sophia-Antipolis, Valbonne 06560, France, Federal University of Paraná, Curitiba, Paraná 80060-000, Brazil, Instituto de Pesquisa Pelé Pequeno Principe, Curitiba, Paraná 80250-060, Brazil and Department of Oncology, University of Turin, Orbassano 10043, Italy
| | - Bonald C. Figueiredo
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, Valbonne 06560, France, Associated International Laboratory (LIA) NEOGENEX CNRS, Valbonne 06560, France, University of Nice-Sophia-Antipolis, Valbonne 06560, France, Federal University of Paraná, Curitiba, Paraná 80060-000, Brazil, Instituto de Pesquisa Pelé Pequeno Principe, Curitiba, Paraná 80250-060, Brazil and Department of Oncology, University of Turin, Orbassano 10043, Italy
| | - Marco Volante
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, Valbonne 06560, France, Associated International Laboratory (LIA) NEOGENEX CNRS, Valbonne 06560, France, University of Nice-Sophia-Antipolis, Valbonne 06560, France, Federal University of Paraná, Curitiba, Paraná 80060-000, Brazil, Instituto de Pesquisa Pelé Pequeno Principe, Curitiba, Paraná 80250-060, Brazil and Department of Oncology, University of Turin, Orbassano 10043, Italy
| | - Mauro Papotti
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, Valbonne 06560, France, Associated International Laboratory (LIA) NEOGENEX CNRS, Valbonne 06560, France, University of Nice-Sophia-Antipolis, Valbonne 06560, France, Federal University of Paraná, Curitiba, Paraná 80060-000, Brazil, Instituto de Pesquisa Pelé Pequeno Principe, Curitiba, Paraná 80250-060, Brazil and Department of Oncology, University of Turin, Orbassano 10043, Italy
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, Valbonne 06560, France, Associated International Laboratory (LIA) NEOGENEX CNRS, Valbonne 06560, France, University of Nice-Sophia-Antipolis, Valbonne 06560, France, Federal University of Paraná, Curitiba, Paraná 80060-000, Brazil, Instituto de Pesquisa Pelé Pequeno Principe, Curitiba, Paraná 80250-060, Brazil and Department of Oncology, University of Turin, Orbassano 10043, Italy
| |
Collapse
|
22
|
Lalli E, Doghman M, Latre de Late P, El Wakil A, Mus-Veteau I. Beyond steroidogenesis: novel target genes for SF-1 discovered by genomics. Mol Cell Endocrinol 2013; 371:154-159. [PMID: 23168267 DOI: 10.1016/j.mce.2012.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Steroidogenic Factor-1 (SF-1) is a nuclear receptor transcription factor that has an essential role in the development of adrenal glands and gonads and in the regulation of steroidogenic gene expression. Recent studies using genomic approaches have revealed that SF-1 also has an important role in regulating proliferation of adrenocortical cells and have revealed its role in the control of a variety of biological processes as diverse as angiogenesis, adhesion to the extracellular matrix, cytoskeleton dynamics, transcriptional and post-transcriptional regulation of gene expression and apoptosis in the adrenal cortex. The identification of the complete set of SF-1 target genes will be of great importance to open new avenues for therapeutic intervention in adrenal diseases.
Collapse
Affiliation(s)
- Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR 7275, Valbonne, France.
| | | | | | | | | |
Collapse
|
23
|
Du G, Huang H, Hu J, Qin Y, Wu D, Song L, Xia Y, Wang X. Endocrine-related effects of perfluorooctanoic acid (PFOA) in zebrafish, H295R steroidogenesis and receptor reporter gene assays. CHEMOSPHERE 2013; 91:1099-1106. [PMID: 23399300 DOI: 10.1016/j.chemosphere.2013.01.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 05/26/2023]
Abstract
Perfluorooctanoic acid (PFOA), a persistent perfluorinated compound, is distributed widely in wildlife and humans. Recent studies showed that PFOA is a suspected endocrine disruptor. But the results are somewhat contradictory and the mechanisms are unclear. In this study, we investigated the endocrine-related effects of PFOA using a series of assays. The lower dose effect of PFOA on development and endocrine-related gene expression were assessed in a short-term zebrafish assay in vivo. To clarify the mechanism of PFOA, in vitro assays were performed. We tested the hormone receptor activities of ER, AR, and TR against PFOA using reporter gene assays. The hormone levels of estradiol (E2) and testosterone (T), the expression of major steroidogenic genes and the key steroidogenic gene regulator steroidogenic factors 1 (SF-1) were measured after PFOA exposure in H295R steroidogenesis assay. Exposure of zebrafish embryo to PFOA resulted in higher expression of esr1, hhex and pax. PFOA is able to interfere with hormone receptor ER and TR. In H295R cells, PFOA could increase the E2 production and decrease the T production, altered the expression of major steroidogenic genes and regulator SF-1. The current findings indicated the potential endocrine-related effects of PFOA and provided novel information for human risk assessment.
Collapse
Affiliation(s)
- Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Current and emerging therapeutic options in adrenocortical cancer treatment. JOURNAL OF ONCOLOGY 2012; 2012:408131. [PMID: 22934112 PMCID: PMC3425859 DOI: 10.1155/2012/408131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 12/14/2022]
Abstract
Adrenocortical carcinoma (ACC) is a very rare endocrine tumour, with variable prognosis, depending on tumour stage and time of diagnosis. The overall survival is five years from detection. Radical surgery is considered the therapy of choice in the first stages of ACC. However postoperative disease-free survival at 5 years is only around 30% and recurrence rates are frequent. o,p'DDD (ortho-, para'-, dichloro-, diphenyl-, dichloroethane, or mitotane), an adrenolytic drug with significant toxicity and unpredictable therapeutic response, is used in the treatment of ACC. Unfortunately, treatment for this aggressive cancer is still ineffective. Over the past years, the growing interest in ACC has contributed to the development of therapeutic strategies in order to contrast the neoplastic spread. In this paper we discuss the most promising therapies which can be used in this endocrine neoplasia.
Collapse
|