1
|
Schön JL, Groß VE, Post WB, Daum A, Matúš D, Pilz J, Schnorr R, Horn S, Bäumers M, Weidtkamp-Peters S, Hughes S, Schöneberg T, Prömel S. The adhesion GPCR and PCP component flamingo (FMI-1) alters body size and regulates the composition of the extracellular matrix. Matrix Biol 2024; 128:1-10. [PMID: 38378098 DOI: 10.1016/j.matbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
The extracellular matrix (ECM) is a network of macromolecules that presents a vital scaffold for cells and enables multiple ways of cellular communication. Thus, it is essential for many physiological processes such as development, tissue morphogenesis, homeostasis, the shape and partially the size of the body and its organs. To ensure these, the composition of the ECM is tissue-specific and highly dynamic. ECM homeostasis is therefore tightly controlled by several mechanisms. Here, we show that FMI-1, the homolog of the Adhesion GPCR Flamingo/CELSR/ADGRC in the nematode Caenorhabditis elegans, modulates the composition of the ECM by controlling the production both of ECM molecules such as collagens and also of ECM modifying enzymes. Thereby, FMI-1 affects the morphology and functionality of the nematode´s cuticle, which is mainly composed of ECM, and also modulates the body size. Mechanistic analyses highlight the fact that FMI-1 exerts its function from neurons non-cell autonomously (trans) solely via its extracellular N terminus. Our data support a model, by which the activity of the receptor, which has a well-described role in the planar cell polarity (PCP) pathway, involves the PCP molecule VANG-1, but seems to be independent of the DBL-1/BMP pathway.
Collapse
Affiliation(s)
- Johanna Lena Schön
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig University, Leipzig, Germany
| | - Victoria Elisabeth Groß
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Willem Berend Post
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Daum
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Matúš
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Johanna Pilz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Samantha Hughes
- A-LIFE, Section Environmental Health and Toxicology, Free University Amsterdam, Amsterdam, the Netherlands
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Qu Z, Liu L, Wu X, Guo P, Yu Z, Wang P, Song Y, Zheng S, Liu N. Cadmium-induced reproductive toxicity combined with a correlation to the oogenesis process and competing endogenous RNA networks based on a Caenorhabditis elegans model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115687. [PMID: 37976926 DOI: 10.1016/j.ecoenv.2023.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Accumulation of the heavy metal Cadmium (Cd) in the ovaries and placenta can affect the structure and function of these organs and induce female reproductive toxicity. This toxicity may be due to Cd's similarity to estrogen and its ability to disrupt endocrine systems. However, the exact molecular mechanism by which Cd causes reproductive toxicity at the transcriptome level remains poorly understood. Hence, this study aimed to observe Cd-induced reproductive damage at the gene level, scrutinize the repercussions of Cd exposure on oogenesis, and explicate the putative pathogenesis of Cd-induced oogenesis based on Caenorhabditis elegans (C. elegans) as an in vivo model. The results showed that Cd exposure significantly decreased the number of offspring and prolonged the reproductive span of C. elegans. Cd exposure also reduced the number of cells in mitosis and the pachytene and diakinesis stages of meiosis, thereby disrupting oogenesis. Combined with transcriptional sequencing and bioinformatics analysis, a total of 3167 DEmRNAs were identified. Regarding gene expression, cul-6, mum-2, and vang-1 were found to be related to Cd-induced reproductive toxicity, and their competing endogenous RNA networks were constructed. We observed that mutations of mom-2 and vang-1 in the Wnt pathway could induce susceptibility to Cd-caused meiosis injury. In conclusion, the results indicated that Cd could impair the oogenesis of C. elegans and the Wnt pathway might serve as a protective mechanism against Cd reproductive toxicity. These findings contribute to a better understanding of the damaging effects and molecular biological mechanisms of Cd on the human reproductive system.
Collapse
Affiliation(s)
- Zhi Qu
- School of Nursing and Health, Henan University, Kaifeng 475004, PR China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou 540001, PR China
| | - Xiaoliang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou 540001, PR China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou 540001, PR China
| | - Peixi Wang
- School of Nursing and Health, Henan University, Kaifeng 475004, PR China
| | - Yuzhen Song
- School of Nursing and Health, Henan University, Kaifeng 475004, PR China
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China.
| | - Nan Liu
- School of Nursing and Health, Henan University, Kaifeng 475004, PR China; College of Public Health, Zhengzhou University, Zhengzhou 540001, PR China; Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen 518116, PR China.
| |
Collapse
|
3
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
4
|
Subramanian A, Hall M, Hou H, Mufteev M, Yu B, Yuki KE, Nishimura H, Sathaseevan A, Lant B, Zhai B, Ellis J, Wilson MD, Daugaard M, Derry WB. Alternative polyadenylation is a determinant of oncogenic Ras function. SCIENCE ADVANCES 2021; 7:eabh0562. [PMID: 34919436 PMCID: PMC8682989 DOI: 10.1126/sciadv.abh0562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Alternative polyadenylation of mRNA has important but poorly understood roles in development and cancer. Activating mutations in the Ras oncogene are common drivers of many human cancers. From a screen for enhancers of activated Ras (let-60) in Caenorhabditis elegans, we identified cfim-1, a subunit of the alternative polyadenylation machinery. Ablation of cfim-1 increased penetrance of the multivulva phenotype in let-60/Ras gain-of-function (gf) mutants. Depletion of the human cfim-1 ortholog CFIm25/NUDT21 in cancer cells with KRAS mutations increased their migration and stimulated an epithelial-to-mesenchymal transition. CFIm25-depleted cells and cfim-1 mutants displayed biased placement of poly(A) tails to more proximal sites in many conserved transcripts. Functional analysis of these transcripts identified the multidrug resistance protein mrp-5/ABCC1 as a previously unidentified regulator of C. elegans vulva development and cell migration in human cells through alternative 3′UTR usage. Our observations demonstrate a conserved functional role for alternative polyadenylation in oncogenic Ras function.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mathew Hall
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Huayun Hou
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marat Mufteev
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kyoko E. Yuki
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Haruka Nishimura
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anson Sathaseevan
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin Lant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beibei Zhai
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - W. Brent Derry
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Chuang WT, Yen CC, Huang CS, Chen HW, Lii CK. Benzyl Isothiocyanate Ameliorates High-Fat Diet-Induced Hyperglycemia by Enhancing Nrf2-Dependent Antioxidant Defense-Mediated IRS-1/AKT/TBC1D1 Signaling and GLUT4 Expression in Skeletal Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15228-15238. [PMID: 33301311 DOI: 10.1021/acs.jafc.0c06269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obesity caused lipotoxicity, which results in insulin resistance. We studied whether benzyl isothiocyanate (BITC) improved insulin resistance in muscle. BITC was studied in vivo in mice fed a high-fat diet (HFD) and in vitro in C2C12 myotubes treated with palmitic acid (PA). In C2C12 cells, BITC mitigated PA inhibition of glucose uptake and phosphorylation of IRS-1, AKT, and TBC1D1 in response to insulin. BITC upregulated the expression of HO-1, GSTP, and GCLM mRNA and protein as well as GSH contents, which suppressed oxidative damage. Knockdown of Nrf2 abrogated BITC enhancement of antioxidant defense and subsequently reversed BITC protection against PA-induced insulin resistance. Moreover, BITC upregulated the expression of GLUT4, PPARγ, and C/EBPα. In HFD-fed mice, plasma total cholesterol, nonesterified fatty acid, and glucose levels and HOMA-IR were dose-dependently decreased with 0.05 or 0.1% BITC administration. In gastrocnemius muscle, compared with the HFD group, BITC increased the phosphorylation of AKT and TBC1D1, GSH contents, and the expression of antioxidant enzymes as well as GLUT4. These results indicate that BITC ameliorates obesity-induced hyperglycemia by enhancing insulin sensitivity in muscle. This is partly attributed to its inhibition of lipotoxicity-induced oxidative insult and upregulation of GLUT4 expression.
Collapse
Affiliation(s)
- Wei-Ting Chuang
- Department of Nutrition, China Medical University, 40402 Taichung, Taiwan
| | - Chih-Ching Yen
- Department of Respiratory Therapy, China Medical University, 40402 Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, 40447 Taichung, Taiwan
| | - Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, 41354 Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, 40402 Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, 40402 Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, 41354 Taichung, Taiwan
| |
Collapse
|
6
|
Cherian JR, Adams KV, Petrella LN. Wnt Signaling Drives Ectopic Gene Expression and Larval Arrest in the Absence of the Caenorhabditis elegans DREAM Repressor Complex. G3 (BETHESDA, MD.) 2020; 10:863-874. [PMID: 31843805 PMCID: PMC7003081 DOI: 10.1534/g3.119.400850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022]
Abstract
Establishment and maintenance of proper gene expression is a requirement for normal growth and development. The DREAM complex in Caenorhabditis elegans functions as a transcriptional repressor of germline genes in somatic cells. At 26°, DREAM complex mutants show increased misexpression of germline genes in somatic cells and High Temperature Arrest (HTA) of worms at the first larval stage. To identify transcription factors required for the ectopic expression of germline genes in DREAM complex mutants, we conducted an RNA interference screen against 123 transcription factors capable of binding DREAM target promoter loci for suppression of the HTA phenotype in lin-54 mutants. We found that knock-down of 15 embryonically expressed transcription factors suppress the HTA phenotype in lin-54 mutants. Five of the transcription factors found in the initial screen have associations with Wnt signaling pathways. In a subsequent RNAi suppression screen of Wnt signaling factors we found that knock-down of the non-canonical Wnt/PCP pathway factors vang-1, prkl-1 and fmi-1 in a lin-54 mutant background resulted in strong suppression of the HTA phenotype. Animals mutant for both lin-54 and vang-1 showed almost complete suppression of the HTA phenotype, pgl-1 misexpression, and fertility defects associated with lin-54 single mutants at 26°. We propose a model whereby a set of embryonically expressed transcription factors, and the Wnt/PCP pathway, act opportunistically to activate DREAM complex target genes in somatic cells of DREAM complex mutants at 26°.
Collapse
Affiliation(s)
- Jerrin R Cherian
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Katherine V Adams
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
7
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
Gengnianchun Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1 Signalling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4740739. [PMID: 29670680 PMCID: PMC5835280 DOI: 10.1155/2018/4740739] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
Gengnianchun (GNC), a traditional Chinese medicine (TCM), is believed to have beneficial effects on ageing-related diseases, such as antioxidant properties and effects against Aβ-induced toxicity. We previously found that GNC extended the lifespan of Caenorhabditis elegans. However, the mechanism underlying this effect was unclear. In this study, we further explored the mechanisms of GNC using a C. elegans model. GNC significantly increased the lifespan of C. elegans and enhanced oxidative and thermal stress resistance. Moreover, chemotaxis increased after GNC treatment. RNA-seq analysis showed that GNC regulated genes associated with longevity. We also conducted lifespan assays with a series of worm mutants. The results showed that GNC significantly extended the lifespan of several mutant strains, including eat-2 (ad465), rsks-1 (ok1255), and glp-1 (e2144), suggesting that the prolongevity effect of GNC is independent of the function of these genes. However, GNC failed to extend the lifespan of daf-2 (e1370), age-1 (hx546), and daf-16 (mu86) mutant strains. Our findings suggest that GNC extends the lifespan of C. elegans via the insulin/IGF-1 signalling pathway and may be a potential antiageing agent.
Collapse
|
9
|
Koorman T, Klompstra D, van der Voet M, Lemmens I, Ramalho JJ, Nieuwenhuize S, van den Heuvel S, Tavernier J, Nance J, Boxem M. A combined binary interaction and phenotypic map of C. elegans cell polarity proteins. Nat Cell Biol 2016; 18:337-46. [PMID: 26780296 PMCID: PMC4767559 DOI: 10.1038/ncb3300] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
The establishment of cell polarity is an essential process for the development of multicellular organisms and the functioning of cells and tissues. Here, we combine large-scale protein interaction mapping with systematic phenotypic profiling to study the network of physical interactions that underlies polarity establishment and maintenance in the nematode Caenorhabditis elegans. Using a fragment-based yeast two-hybrid strategy, we identified 439 interactions between 296 proteins, as well as the protein regions that mediate these interactions. Phenotypic profiling of the network resulted in the identification of 100 physically interacting protein pairs for which RNAi-mediated depletion caused a defect in the same polarity-related process. We demonstrate the predictive capabilities of the network by showing that the physical interaction between the RhoGAP PAC-1 and PAR-6 is required for radial polarization of the C. elegans embryo. Our network represents a valuable resource of candidate interactions that can be used to further our insight into cell polarization.
Collapse
Affiliation(s)
- Thijs Koorman
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Diana Klompstra
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, New York 10016, USA
- Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Monique van der Voet
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Irma Lemmens
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - João J. Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Susan Nieuwenhuize
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Sander van den Heuvel
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, New York 10016, USA
- Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
10
|
Hale R, Strutt D. Conservation of Planar Polarity Pathway Function Across the Animal Kingdom. Annu Rev Genet 2015; 49:529-51. [DOI: 10.1146/annurev-genet-112414-055224] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosalind Hale
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - David Strutt
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
11
|
Soares H, Marinho HS, Real C, Antunes F. Cellular polarity in aging: role of redox regulation and nutrition. GENES AND NUTRITION 2013; 9:371. [PMID: 24306961 DOI: 10.1007/s12263-013-0371-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.
Collapse
Affiliation(s)
- Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
12
|
Büchter C, Ackermann D, Havermann S, Honnen S, Chovolou Y, Fritz G, Kampkötter A, Wätjen W. Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int J Mol Sci 2013; 14:11895-914. [PMID: 23736695 PMCID: PMC3709762 DOI: 10.3390/ijms140611895] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022] Open
Abstract
Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue) and SKN-1 (Nrf2 homologue), which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS) detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038). Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid.
Collapse
Affiliation(s)
- Christian Büchter
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Daniela Ackermann
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Susannah Havermann
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Sebastian Honnen
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Yvonni Chovolou
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Gerhard Fritz
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Andreas Kampkötter
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
- Global Drug Development, Safety and Pharmacokinetics, Bayer Animal Health GmbH, Bayer HealthCare, Building 6700 Monheim, 51368 Leverkusen, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-0345-5522-381; Fax: +49-0345-5522-382
| |
Collapse
|