1
|
Byrne AS, Bissonnette N, Tahlan K. Mechanisms and implications of phenotypic switching in bacterial pathogens. Can J Microbiol 2025; 71:1-19. [PMID: 39361974 DOI: 10.1139/cjm-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment, and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.
Collapse
Affiliation(s)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
2
|
Tram G, Jen FEC, Phillips ZN, Lancashire JF, Timms J, Poole J, Jennings MP, Atack JM. Phasevarions in Haemophilus influenzae biogroup aegyptius control expression of multiple proteins. Microbiol Spectr 2024; 12:e0260123. [PMID: 38054719 PMCID: PMC10783040 DOI: 10.1128/spectrum.02601-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Haemophilus influenzae biogroup aegyptius is a human-adapted pathogen and the causative agent of Brazilian purpuric fever (BPF), an invasive disease with high mortality, that sporadically manifests in children previously suffering conjunctivitis. Phase variation is a rapid and reversible switching of gene expression found in many bacterial species, and typically associated with outer-membrane proteins. Phase variation of cytoplasmic DNA methyltransferases has been shown to play important roles in bacterial gene regulation and can act as epigenetic switches, regulating the expression of multiple genes as part of systems called phasevarions (phase-variable regulons). This study characterized two alleles of the ModA phasevarion present in H. influenzae biogroup aegyptius, ModA13, found in non-BPF causing strains and ModA16, unique to BPF causing isolates. Phase variation of ModA13 and ModA16 led to genome-wide changes to DNA methylation resulting in altered protein expression. These changes did not affect serum resistance in H. influenzae biogroup aegyptius strains.
Collapse
Affiliation(s)
- Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Zachary N. Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John F. Lancashire
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jamie Timms
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jessica Poole
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Atack JM, Brockman KL, Bakaletz LO, Jennings MP. High-depth RNA-Seq data sets to investigate the differences in gene expression mediated by phasevarions in non-typeable Haemophilus influenzae. Microbiol Resour Announc 2023; 12:e0078523. [PMID: 37991358 PMCID: PMC10720539 DOI: 10.1128/mra.00785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a major bacterial pathogen of the human airway. We report high-depth coverage RNA-Seq data from prototype NTHi strains 723 and R2866, encoding two of the most common phase-variable ModA alleles found in NTHi strains, ModA2 and ModA10, respectively.
Collapse
Affiliation(s)
- John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Kenneth L. Brockman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Nahar N, Tram G, Jen FEC, Phillips ZN, Weinert L, Bossé J, Jabbari J, Gouil Q, Du MM, Ritchie M, Bowden R, Langford P, Tucker A, Jennings M, Turni C, Blackall P, Atack J. Actinobacillus pleuropneumoniae encodes multiple phase-variable DNA methyltransferases that control distinct phasevarions. Nucleic Acids Res 2023; 51:3240-3260. [PMID: 36840716 PMCID: PMC10123105 DOI: 10.1093/nar/gkad091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Zachary N Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Jafar S Jabbari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Mei R M Du
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
5
|
Shaskolskiy B, Kravtsov D, Kandinov I, Gorshkova S, Kubanov A, Solomka V, Deryabin D, Dementieva E, Gryadunov D. Comparative Whole-Genome Analysis of Neisseria gonorrhoeae Isolates Revealed Changes in the Gonococcal Genetic Island and Specific Genes as a Link to Antimicrobial Resistance. Front Cell Infect Microbiol 2022; 12:831336. [PMID: 35252037 PMCID: PMC8895040 DOI: 10.3389/fcimb.2022.831336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Comparative whole-genome analysis was performed for Neisseria gonorrhoeae isolates belonging to the Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) types predominant worldwide — 225, 1407, 2400, 2992, and 4186 — and to genogroup 807, the most common genogroup in the Russian Federation. Here, for the first time, the complete genomes of 25 N. gonorrhoeae isolates from genogroup 807 were obtained. For NG-MAST types 225, 1407, 2400, 2992, and 4186, genomes from the Pathogenwatch database were used. The phylogenetic network constructed for 150 genomes showed that the clustering according to NG-MAST type corresponded to the clustering according to genome. Comparisons of genomes of the six sequence types revealed 8-20 genes specific to each sequence type, including the loci for phase variations and genetic components of the gonococcal genetic island (GGI). NG-MAST type 2992 and 4186 isolates either lacked the GGI or carried critical mutations in genes essential for DNA secretion. In all analyzed genogroup 807 isolates, substitution of the essential atlA gene with the eppA gene was found, accompanied by a change in the traG allele, replacement of the ych gene with ych1, and the absence of the exp1 gene, which is likely to result in loss of GGI functionality. For the NG-MAST type 225, 1407 and 2400 isolates, no premature stop codons or reading frameshifts were found in the genes essential for GGI function. A relationship between isolate susceptibility to ciprofloxacin, penicillin, tetracycline and the presence of lesions in GGI genes necessary for DNA secretion was established. The N. gonorrhoeae evolutionary pathways, which allow a particular sequence type to maintain long-term predominance in the population, may include changes in genes responsible for adhesion and virulence, changes in the GGI structure, preservation of genes carrying drug resistance determinants, and changes in genes associated with host adaptation or encoding enzymes of biochemical pathways.
Collapse
Affiliation(s)
- Boris Shaskolskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Boris Shaskolskiy,
| | - Dmitry Kravtsov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kandinov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofya Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Kubanov
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Victoria Solomka
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Dmitry Deryabin
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Ekaterina Dementieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Janoušková M, Straw ML, Su YC, Riesbeck K. Gene Expression Regulation in Airway Pathogens: Importance for Otitis Media. Front Cell Infect Microbiol 2022; 12:826018. [PMID: 35252035 PMCID: PMC8895709 DOI: 10.3389/fcimb.2022.826018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Otitis media (OM) is an inflammatory disorder in the middle ear. It is mainly caused by viruses or bacteria associated with the airways. Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are the three main pathogens in infection-related OM, especially in younger children. In this review, we will focus upon the multifaceted gene regulation mechanisms that are well-orchestrated in S. pneumoniae, H. influenzae, and M. catarrhalis during the course of infection in the middle ear either in experimental OM or in clinical settings. The sophisticated findings from the past 10 years on how the othopathogens govern their virulence phenotypes for survival and host adaptation via phase variation- and quorum sensing-dependent gene regulation, will be systematically discussed. Comprehensive understanding of gene expression regulation mechanisms employed by pathogens during the onset of OM may provide new insights for the design of a new generation of antimicrobial agents in the fight against bacterial pathogens while combating the serious emergence of antimicrobial resistance.
Collapse
|
7
|
Anton BP, Roberts RJ. Beyond Restriction Modification: Epigenomic Roles of DNA Methylation in Prokaryotes. Annu Rev Microbiol 2021; 75:129-149. [PMID: 34314594 DOI: 10.1146/annurev-micro-040521-035040] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amount of bacterial and archaeal genome sequence and methylome data has greatly increased over the last decade, enabling new insights into the functional roles of DNA methylation in these organisms. Methyltransferases (MTases), the enzymes responsible for DNA methylation, are exchanged between prokaryotes through horizontal gene transfer and can function either as part of restriction-modification systems or in apparent isolation as single (orphan) genes. The patterns of DNA methylation they confer on the host chromosome can have significant effects on gene expression, DNA replication, and other cellular processes. Some processes require very stable patterns of methylation, resulting in conservation of persistent MTases in a particular lineage. Other processes require patterns that are more dynamic yet more predictable than what is afforded by horizontal gene transfer and gene loss, resulting in phase-variable or recombination-driven MTase alleles. In this review, we discuss what is currently known about the functions of DNA methylation in prokaryotes in light of these evolutionary patterns. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Brian P Anton
- New England Biolabs, Ipswich, Massachusetts 01938, USA; ,
| | | |
Collapse
|
8
|
Streptococcus suis Encodes Multiple Allelic Variants of a Phase-Variable Type III DNA Methyltransferase, ModS, That Control Distinct Phasevarions. mSphere 2021; 6:6/3/e00069-21. [PMID: 33980672 PMCID: PMC8125046 DOI: 10.1128/msphere.00069-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is a causative agent of meningitis, polyarthritis, and polyserositis in swine, and it is a major cause of zoonotic meningitis in humans. Here, we investigate epigenetic gene regulation in S. suis by multiple phasevarions controlled by the phase-variable type III DNA methyltransferase ModS. Streptococcus suis is a significant cause of bacterial meningitis in humans, particularly in Southeast Asia, and is a leading cause of respiratory and invasive disease in pigs. Phase-variable DNA methyltransferases, associated with restriction-modification (R-M) systems, are a source of epigenetic gene regulation, controlling the expression of multiple genes. These systems are known as phasevarions (phase-variable regulons) and have been characterized in many host-adapted bacterial pathogens. We recently described the presence of a Type III DNA methyltransferase in S. suis, ModS, which contains a simple sequence repeat (SSR) tract within the open reading frame of the modS gene and which differed in length between individual strains. We also observed that multiple allelic variants of the modS gene were present in a population of S. suis isolates. Here, we demonstrate that a biphasic ON-OFF switching of expression occurs in the two most common ModS alleles, ModS1 and ModS2, and that switching is dependent on SSR tract length. Furthermore, we show using single-molecule real-time (SMRT) sequencing that ModS1 and ModS2 are active methyltransferases in S. suis. ON-OFF switching of each ModS allele results in the regulation of distinct phasevarions, with the ModS2 phasevarion impacting growth patterns and antibiotic resistance. This is the first demonstration of a phase-variable Type III DNA methyltransferase in a Gram-positive organism that controls a phasevarion. Characterizing the phenotypic effects of phasevarions in S. suis is key to understanding pathogenesis and the development of future vaccines. IMPORTANCEStreptococcus suis is a causative agent of meningitis, polyarthritis, and polyserositis in swine, and it is a major cause of zoonotic meningitis in humans. Here, we investigate epigenetic gene regulation in S. suis by multiple phasevarions controlled by the phase-variable Type III DNA methyltransferase ModS. This is the first characterized example of a Type III R-M system regulating a phasevarion in a Gram-positive organism. We demonstrate that biphasic ON-OFF switching of ModS expression results in differences in bacterial growth and antibiotic resistance. Understanding the effects of ModS phase variation is required to determine the stably expressed antigenic repertoire of S. suis, which will direct and inform the development of antimicrobial treatments and vaccines against this important pathogen.
Collapse
|
9
|
Prokaryotic DNA methylation and its functional roles. J Microbiol 2021; 59:242-248. [DOI: 10.1007/s12275-021-0674-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
|
10
|
Oliver MB, Swords WE. Comparative Analysis of Streptococcus pneumoniae Type I Restriction-Modification Loci: Variation in hsdS Gene Target Recognition Domains. Pathogens 2020; 9:pathogens9090712. [PMID: 32872494 PMCID: PMC7557576 DOI: 10.3390/pathogens9090712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a respiratory commensal pathogen that causes a range of infections, particularly in young children and the elderly. Pneumococci undergo spontaneous phase variation in colony opacity phenotype, in which DNA rearrangements within the Type I restriction-modification (R-M) system specificity gene hsdS can potentially generate up to six different hsdS alleles with differential DNA methylation activity, resulting in changes in gene expression. To gain a broader perspective of this system, we performed bioinformatic analyses of Type I R-M loci from 18 published pneumococcal genomes, and one R-M locus sequenced for this study, to compare genetic content, organization, and homology. All 19 loci encoded the genes hsdR, hsdM, hsdS, and at least one hsdS pseudogene, but differed in gene order, gene orientation, and hsdS target recognition domain (TRD) content. We determined the coding sequences of 87 hsdS TRDs and excluded seven from further analysis due to the presence of premature stop codons. Comparative analyses revealed that the TRD 1.1, 1.2, and 2.1 protein sequences had single amino acid substitutions, and TRD 2.2 and 2.3 each had seven differences. The results of this study indicate that variability exists among the gene content and arrangements within Type I R-M loci may provide an additional level of divergence between pneumococcal strains, such that phase variation-mediated control of virulence factors may vary significantly between individual strains. These findings are consistent with presently available transcript profile data.
Collapse
Affiliation(s)
- Melissa B. Oliver
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine University of Alabama at Birmingham, Birmingham, 35294 AL, USA;
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, 35294 AL, USA
| | - W. Edward Swords
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine University of Alabama at Birmingham, Birmingham, 35294 AL, USA;
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, 35294 AL, USA
- Correspondence:
| |
Collapse
|
11
|
Seib KL, Srikhanta YN, Atack JM, Jennings MP. Epigenetic Regulation of Virulence and Immunoevasion by Phase-Variable Restriction-Modification Systems in Bacterial Pathogens. Annu Rev Microbiol 2020; 74:655-671. [PMID: 32689914 DOI: 10.1146/annurev-micro-090817-062346] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| |
Collapse
|
12
|
Non-typeable Haemophilus influenzae isolates from patients with chronic obstructive pulmonary disease contain new phase-variable modA methyltransferase alleles controlling phasevarions. Sci Rep 2019; 9:15963. [PMID: 31685916 PMCID: PMC6828955 DOI: 10.1038/s41598-019-52429-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Phasevarions (phase-variable regulons) are emerging as an important area of bacterial gene regulation. Many bacterial pathogens contain phasevarions, with gene expression controlled by the phase-variable expression of DNA methyltransferases via epigenetic mechanisms. Non-typeable Haemophilus influenzae (NTHi) contains the phase-variable methyltransferase modA, of which multiple allelic variants exist (modA1-21). We have previously demonstrated 5 of 21 these modA alleles are overrepresented in NTHi strains isolated from children with middle ear infections. In this study we investigated the modA allele distribution in NTHi strains isolated from patients with chronic obstructive pulmonary disease, COPD. We demonstrate that the distribution of modA alleles in a large panel of COPD isolates is different to the distribution seen in middle ear infections, suggesting different modA alleles may provide distinct advantages in the differing niches of the middle ear and COPD airways. We also identified two new phase-variable modA alleles – modA15 and modA18 – and demonstrate that these alleles methylate distinct DNA sequences and control unique phasevarions. The modA15 and modA18 alleles have only been observed in COPD isolates, indicating that these two alleles may be markers for isolates likely to cause exacerbations of COPD.
Collapse
|
13
|
Yang J, Zhang X, Blumenthal RM, Cheng X. Detection of DNA Modifications by Sequence-Specific Transcription Factors. J Mol Biol 2019:S0022-2836(19)30568-6. [PMID: 31626807 DOI: 10.1016/j.jmb.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
The establishment, detection, and alteration or elimination of epigenetic DNA modifications are essential to controlling gene expression ranging from bacteria to mammals. The DNA methylations occurring at cytosine and adenine are carried out by SAM-dependent methyltransferases. Successive oxidations of 5-methylcytosine (5mC) by Tet dioxygenases generate 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxyl (5caC) derivatives; thus, DNA elements with multiple methylation sites can have a wide range of modification states. In contrast, oxidation of N6-methyladenine by homologs of Escherichia coli AlkB removes the methyl group directly. Both Tet and AlkB enzymes are 2-oxoglutarate- and Fe(II)-dependent dioxygenases. DNA-binding proteins decode the modification status of specific genomic regions. This article centers on two families of sequence-specific transcription factors: bZIP (basic leucine-zipper) proteins, exemplified by the AP-1 and CEBPβ recognition of 5mC; and bHLH (basic helix-loop-helix) proteins, exemplified by MAX and TCF4 recognition of 5caC. We discuss the impact of template strand DNA modification on the activities of DNA and RNA polymerases, and the varied tendencies of modifications to alter base pairing and their interactions with DNA repair enzymes.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Transcriptome Sequencing Data Sets for Determining Gene Expression Changes Mediated by Phase-Variable DNA Methyltransferases in Nontypeable Haemophilus influenzae Strains Isolated from Patients with Chronic Obstructive Pulmonary Disease. Microbiol Resour Announc 2019; 8:8/29/e00526-19. [PMID: 31320413 PMCID: PMC6639615 DOI: 10.1128/mra.00526-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a major bacterial cause of exacerbations in chronic obstructive pulmonary disease (COPD). Here, we report high-depth coverage transcriptome sequencing (RNA-seq) data from two NTHi strains, each encoding a different phase-variable methyltransferase. modA phase variation results in gene expression differences. These data will serve as an important resource for future studies. Nontypeable Haemophilus influenzae (NTHi) is a major bacterial cause of exacerbations in chronic obstructive pulmonary disease (COPD). Here, we report high-depth coverage transcriptome sequencing (RNA-seq) data from two NTHi strains, each encoding a different phase-variable methyltransferase. modA phase variation results in gene expression differences. These data will serve as an important resource for future studies.
Collapse
|
15
|
Atack JM, Yang Y, Seib KL, Zhou Y, Jennings MP. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions. Nucleic Acids Res 2019; 46:3532-3542. [PMID: 29554328 PMCID: PMC5909438 DOI: 10.1093/nar/gky192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022] Open
Abstract
Many bacteria utilize simple DNA sequence repeats as a mechanism to randomly switch genes on and off. This process is called phase variation. Several phase-variable N6-adenine DNA-methyltransferases from Type III restriction-modification systems have been reported in bacterial pathogens. Random switching of DNA methyltransferases changes the global DNA methylation pattern, leading to changes in gene expression. These epigenetic regulatory systems are called phasevarions — phase-variable regulons. The extent of these phase-variable genes in the bacterial kingdom is unknown. Here, we interrogated a database of restriction-modification systems, REBASE, by searching for all simple DNA sequence repeats in mod genes that encode Type III N6-adenine DNA-methyltransferases. We report that 17.4% of Type III mod genes (662/3805) contain simple sequence repeats. Of these, only one-fifth have been previously identified. The newly discovered examples are widely distributed and include many examples in opportunistic pathogens as well as in environmental species. In many cases, multiple phasevarions exist in one genome, with examples of up to 4 independent phasevarions in some species. We found several new types of phase-variable mod genes, including the first example of a phase-variable methyltransferase in pathogenic Escherichia coli. Phasevarions are a common epigenetic regulation contingency strategy used by both pathogenic and non-pathogenic bacteria.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
16
|
Phillips ZN, Husna AU, Jennings MP, Seib KL, Atack JM. Phasevarions of bacterial pathogens - phase-variable epigenetic regulators evolving from restriction-modification systems. MICROBIOLOGY-SGM 2019; 165:917-928. [PMID: 30994440 DOI: 10.1099/mic.0.000805] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phase-variable DNA methyltransferases control the expression of multiple genes via epigenetic mechanisms in a wide variety of bacterial species. These systems are called phasevarions, for phase-variable regulons. Phasevarions regulate genes involved in pathogenesis, host adaptation and antibiotic resistance. Many human-adapted bacterial pathogens contain phasevarions. These include leading causes of morbidity and mortality worldwide, such as non-typeable Haemophilus influenzae, Streptococcus pneumoniae and Neisseria spp. Phase-variable methyltransferases and phasevarions have also been discovered in environmental organisms and veterinary pathogens. The existence of many different examples suggests that phasevarions have evolved multiple times as a contingency strategy in the bacterial domain, controlling phenotypes that are important in adapting to environmental change. Many of the organisms that contain phasevarions have existing or emerging drug resistance. Vaccines may therefore represent the best and most cost-effective tool to prevent disease caused by these organisms. However, many phasevarions also control the expression of current and putative vaccine candidates; variable expression of antigens could lead to immune evasion, meaning that vaccines designed using these targets become ineffective. It is therefore essential to characterize phasevarions in order to determine an organism's stably expressed antigenic repertoire, and rationally design broadly effective vaccines.
Collapse
Affiliation(s)
- Zachary N Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Asma-Ul Husna
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
17
|
Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157-172. [PMID: 30546107 PMCID: PMC6555402 DOI: 10.1038/s41576-018-0081-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
High-Depth RNA-Seq Data Sets for Studying Gene Expression Changes Mediated by Phase-Variable DNA Methyltransferases in Nontypeable Haemophilus influenzae. Microbiol Resour Announc 2019; 8:MRA01500-18. [PMID: 30643897 PMCID: PMC6328670 DOI: 10.1128/mra.01500-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a major bacterial pathogen that causes multiple infections. We report high-depth-coverage RNA-Seq data from three NTHi strains, each of which encodes a different phase-variable methyltransferase. Nontypeable Haemophilus influenzae (NTHi) is a major bacterial pathogen that causes multiple infections. We report high-depth-coverage RNA-Seq data from three NTHi strains, each of which encodes a different phase-variable methyltransferase. Major gene expression differences occur, commensurate with modA phase variation, and data will serve as an important resource for future studies.
Collapse
|
19
|
Atack JM, Tan A, Bakaletz LO, Jennings MP, Seib KL. Phasevarions of Bacterial Pathogens: Methylomics Sheds New Light on Old Enemies. Trends Microbiol 2018; 26:715-726. [PMID: 29452952 PMCID: PMC6054543 DOI: 10.1016/j.tim.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/06/2018] [Accepted: 01/26/2018] [Indexed: 01/04/2023]
Abstract
A wide variety of bacterial pathogens express phase-variable DNA methyltransferases that control expression of multiple genes via epigenetic mechanisms. These randomly switching regulons - phasevarions - regulate genes involved in pathogenesis, host adaptation, and antibiotic resistance. Individual phase-variable genes can be identified in silico as they contain easily recognized features such as simple sequence repeats (SSRs) or inverted repeats (IRs) that mediate the random switching of expression. Conversely, phasevarion-controlled genes do not contain any easily identifiable features. The study of DNA methyltransferase specificity using Single-Molecule, Real-Time (SMRT) sequencing and methylome analysis has rapidly advanced the analysis of phasevarions by allowing methylomics to be combined with whole-transcriptome/proteome analysis to comprehensively characterize these systems in a number of important bacterial pathogens.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
20
|
Closed Complete Genome Sequences of Two Nontypeable Haemophilus influenzae Strains Containing Novel modA Alleles from the Sputum of Patients with Chronic Obstructive Pulmonary Disease. Microbiol Resour Announc 2018; 7:MRA00821-18. [PMID: 30533802 PMCID: PMC6211359 DOI: 10.1128/mra.00821-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 01/02/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease (COPD). Here, we report the complete genome sequences of NTHi strains 10P129H1 and 84P36H1, isolated from COPD patients, which contain the phase-variable epigenetic regulators ModA15 and ModA18, respectively. Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease (COPD). Here, we report the complete genome sequences of NTHi strains 10P129H1 and 84P36H1, isolated from COPD patients, which contain the phase-variable epigenetic regulators ModA15 and ModA18, respectively.
Collapse
|
21
|
Abstract
The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Sarah Jane Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
22
|
Seib KL, Jen FEC, Scott AL, Tan A, Jennings MP. Phase variation of DNA methyltransferases and the regulation of virulence and immune evasion in the pathogenic Neisseria. Pathog Dis 2017; 75:3966716. [DOI: 10.1093/femspd/ftx080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 01/31/2023] Open
|
23
|
Brockman KL, Branstool MT, Atack JM, Robledo-Avila F, Partida-Sanchez S, Jennings MP, Bakaletz LO. The ModA2 Phasevarion of nontypeable Haemophilus influenzae Regulates Resistance to Oxidative Stress and Killing by Human Neutrophils. Sci Rep 2017; 7:3161. [PMID: 28600561 PMCID: PMC5466613 DOI: 10.1038/s41598-017-03552-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/02/2017] [Indexed: 11/22/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is the causative agent of multiple respiratory tract infections. Several human pathogens, including NTHI, possess a novel genetic system, termed the phasevarion, which mediates a rapid and reversible change in the expression of many genes throughout the chromosome. This occurs by phase variation of a single gene (modA) that encodes a DNA methyltransferase and results in two phenotypically distinct subpopulations, ON and OFF. NTHI encounters many pressures within the various microenvironments of its human host as the disease course evolves from one of asymptomatic nasopharyngeal carriage to overt disease. These include oxidative stresses, which are present throughout the respiratory tract. To persist in the human nasopharynx and as a pathogen throughout the airways, NTHI must be able to mitigate toxic levels of oxidative stress. Here we show that expression of ModA2, modA2 ON status, resulted in increased sensitivity to oxidative stress. Furthermore, the modA2 ON status resulted in decreased resistance to neutrophil-mediated killing, which resulted in selection for the modA2 OFF subpopulation in an ex vivo survival assay. These findings highlight the importance of the ModA2 phasevarion in adaptation to innate host defences and reveal an additional microenvironmental pressure that selected for a specific ModA2 subpopulation.
Collapse
Affiliation(s)
- Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, 43205, USA
| | - M Taylor Branstool
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, 43205, USA
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, 43205, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, 43205, USA
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, 43205, USA.
| |
Collapse
|
24
|
Tan A, Atack JM, Jennings MP, Seib KL. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development. Front Immunol 2016; 7:586. [PMID: 28018352 PMCID: PMC5149525 DOI: 10.3389/fimmu.2016.00586] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression), are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase-variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.
Collapse
Affiliation(s)
- Aimee Tan
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - John M Atack
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| |
Collapse
|
25
|
Comparative Methylome Analysis of the Occasional Ruminant Respiratory Pathogen Bibersteinia trehalosi. PLoS One 2016; 11:e0161499. [PMID: 27556252 PMCID: PMC4996451 DOI: 10.1371/journal.pone.0161499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/05/2016] [Indexed: 01/31/2023] Open
Abstract
We examined and compared both the methylomes and the modification-related gene content of four sequenced strains of Bibersteinia trehalosi isolated from the nasopharyngeal tracts of Nebraska cattle with symptoms of bovine respiratory disease complex. The methylation patterns and the encoded DNA methyltransferase (MTase) gene sets were different between each strain, with the only common pattern being that of Dam (GATC). Among the observed patterns were three novel motifs attributable to Type I restriction-modification systems. In some cases the differences in methylation patterns corresponded to the gain or loss of MTase genes, or to recombination at target recognition domains that resulted in changes of enzyme specificity. However, in other cases the differences could be attributed to differential expression of the same MTase gene across strains. The most obvious regulatory mechanism responsible for these differences was slipped strand mispairing within short sequence repeat regions. The combined action of these evolutionary forces allows for alteration of different parts of the methylome at different time scales. We hypothesize that pleiotropic transcriptional modulation resulting from the observed methylomic changes may be involved with the switch between the commensal and pathogenic states of this common member of ruminant microflora.
Collapse
|
26
|
Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci Rep 2016; 6:21015. [PMID: 26867950 PMCID: PMC4751487 DOI: 10.1038/srep21015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the ‘hyperinvasive lineages’ are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains.
Collapse
|
27
|
VanWagoner TM, Atack JM, Nelson KL, Smith HK, Fox KL, Jennings MP, Stull TL, Smith AL. The modA10 phasevarion of nontypeable Haemophilus influenzae R2866 regulates multiple virulence-associated traits. Microb Pathog 2015; 92:60-67. [PMID: 26718097 DOI: 10.1016/j.micpath.2015.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/28/2022]
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a human restricted commensal and pathogen that elicits inflammation by adhering to and invading airway epithelia cells: transcytosis across these cells can result in systemic infection. NTHi strain R2866 was isolated from the blood of a normal 30-month old infant with meningitis, and is unusual for NTHi in that it is able to cause systemic infection. Strain R2866 is able to replicate in normal human serum due to expression of lgtC which mimics human blood group p(k). R2866 contains a phase-variable DNA methyltransferase, modA10 which switches ON and OFF randomly and reversibly due to polymerase slippage over a long tetrameric repeat tract located in its open reading frame. Random gain or loss of repeats during replication can results in expressed (ON), or not expressed (OFF) states, the latter due to a frameshift or transcriptional termination at a premature stop codon. We sought to determine if the unusual virulence of R2866 was modified by modA10 phase-variation. A modA10 knockout mutant was found to have increased adherence to, and invasion of, human ear and airway monolayers in culture, and increased invasion and transcytosis of polarized human bronchial epithelial cells. Intriguingly, the rate of bacteremia was lower in the infant rat model of infection than a wild-type R2866 strain, but the fatality rate was greater. Transcriptional analysis comparing the modA10 knockout to the R2866 wild-type parent strain showed increased expression of genes in the modA10 knockout whose products mediate cellular adherence. We conclude that loss of ModA10 function in strain R2866 enhances colonization and invasion by increasing expression of genes that allow for increased adherence, which can contribute to the increased virulence of this strain.
Collapse
Affiliation(s)
- Timothy M VanWagoner
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, OK, USA
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Kevin L Nelson
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Hannah K Smith
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Kate L Fox
- School of Chemical and Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Terrence L Stull
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, OK, USA
| | - Arnold L Smith
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, 98105, USA.
| |
Collapse
|
28
|
DNA Methylation Assessed by SMRT Sequencing Is Linked to Mutations in Neisseria meningitidis Isolates. PLoS One 2015; 10:e0144612. [PMID: 26656597 PMCID: PMC4676702 DOI: 10.1371/journal.pone.0144612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of prokaryotic genomes.
Collapse
|
29
|
A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae. Nat Commun 2015. [PMID: 26215614 PMCID: PMC4525171 DOI: 10.1038/ncomms8828] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Non-typeable Haemophilus influenzae contains an N6-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system. Non-typeable Haemophilus influenzae, which causes ear and lung infections, has a DNA methyltransferase encoded by alternative alleles that are subject to random ON/OFF switching. Here, Atack et al. show that this epigenetic switch controls the expression of key proteins involved in virulence.
Collapse
|
30
|
Murphy TF, Kirkham C, Jones MM, Sethi S, Kong Y, Pettigrew MM. Expression of IgA Proteases by Haemophilus influenzae in the Respiratory Tract of Adults With Chronic Obstructive Pulmonary Disease. J Infect Dis 2015; 212:1798-805. [PMID: 25995193 DOI: 10.1093/infdis/jiv299] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Immunoglobulin (Ig)A proteases of Haemophilus influenzae are highly specific endopeptidases that cleave the hinge region of human IgA1 and also mediate invasion and trafficking in human respiratory epithelial cells, facilitating persistence of H. influenzae. Little is known about the expression of IgA proteases in clinical settings of H. influenzae infection. METHODS We identified and characterized IgA protease genes in H. influenzae and studied their expression and proteolytic specificity, in vitro and in vivo in 169 independent strains of H. influenzae collected longitudinally over 10 years from adults with chronic obstructive pulmonary disease. RESULTS The H. influenzae pangenome has 2 alleles of IgA protease genes; all strains have igaA, and 40% of strains have igaB. Each allele has 2 variants with differing proteolytic specificities for human IgA1. A total of 88% of 169 strains express IgA protease activity. Expression of the 4 forms of IgA protease varies among strains. Based on the presence of IgA1 fragments in sputum samples, each of the different forms of IgA protease is selectively expressed in the human airways during infection. CONCLUSIONS Four variants of IgA proteases are variably expressed by H. influenzae during infection of the human airways.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases Department of Microbiology and Immunology Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Charmaine Kirkham
- Division of Infectious Diseases Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Megan M Jones
- Department of Microbiology and Immunology Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine Veterans Affairs Western New York Healthcare System, Buffalo, New York
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Biotechnology Resource Laboratory
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
31
|
Seib KL, Jen FEC, Tan A, Scott AL, Kumar R, Power PM, Chen LT, Wu HJ, Wang AHJ, Hill DMC, Luyten YA, Morgan RD, Roberts RJ, Maiden MCJ, Boitano M, Clark TA, Korlach J, Rao DN, Jennings MP. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N(6)-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res 2015; 43:4150-62. [PMID: 25845594 PMCID: PMC4417156 DOI: 10.1093/nar/gkv219] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 01/03/2023] Open
Abstract
Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N(6)-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N(6)-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5'-CGY M6A: G-3'), ModA12 (exemplified by M.Nme77I, M.Nme18I and M.Nme579II) (5'-AC M6A: CC-3') and ModD1 (exemplified by M.Nme579I) (5'-CC M6A: GC-3'). Restriction inhibition assays and mutagenesis confirmed the SMRT methylome analysis. The ModA11 site is complex and atypical and is dependent on the type of pyrimidine at the central position, in combination with the bases flanking the core recognition sequence 5'-CGY M6A: G-3'. The observed efficiency of methylation in the modA11 strain (MC58) genome ranged from 4.6% at 5'-GCGC M6A: GG-3' sites, to 100% at 5'-ACGT M6A: GG-3' sites. Analysis of the distribution of modified sites in the respective genomes shows many cases of association with intergenic regions of genes with altered expression due to phasevarion switching.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Adeana L Scott
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Peter M Power
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Li-Tzu Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hsing-Ju Wu
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
32
|
Atack JM, Winter LE, Jurcisek JA, Bakaletz LO, Barenkamp SJ, Jennings MP. Selection and Counterselection of Hia Expression Reveals a Key Role for Phase-Variable Expression of Hia in Infection Caused by Nontypeable Haemophilus influenzae. J Infect Dis 2015; 212:645-53. [PMID: 25712964 DOI: 10.1093/infdis/jiv103] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/13/2015] [Indexed: 11/12/2022] Open
Abstract
Hia is a major adhesin of nontypeable Haemophilus influenzae (NTHi) and has long been investigated as a vaccine candidate. Here we show that Hia phase variation is controlled by changes in the length of a polythymidine tract located in the hia promoter. Studies of an invasive clinical isolate (strain R2866) show that strains expressing high Hia levels are more efficiently killed by opsonophagocytosis. An opsonophagocytic assay was used to select for a subpopulation of variants that expressed a low level of Hia, which facilitated their escape from killing by anti-Hia antisera. Conversely, a subpopulation of variants expressing a high level of Hia was selected for during passaging through Chang cells. In both cases, phase variation of Hia expression corresponded directly with discrete modal changes in polythymidine tract length. In the chinchilla model of NTHi infection, we observed consistent selection for high Hia expression upon nasopharyngeal colonization, confirming the key role of phase-variable expression of Hia within a specific niche in vivo.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Linda E Winter
- Department of Pediatrics, Saint Louis University School of Medicine Pediatric Research Institute, Cardinal Glennon Children's Medical Center, Saint Louis, Missouri
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus
| | - Stephen J Barenkamp
- Department of Pediatrics, Saint Louis University School of Medicine Pediatric Research Institute, Cardinal Glennon Children's Medical Center, Saint Louis, Missouri
| | | |
Collapse
|
33
|
Blakeway LV, Power PM, Jen FEC, Worboys SR, Boitano M, Clark TA, Korlach J, Bakaletz LO, Jennings MP, Peak IR, Seib KL. ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media. FASEB J 2014; 28:5197-207. [PMID: 25183669 DOI: 10.1096/fj.14-256578] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moraxella catarrhalis is a significant cause of otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we characterize a phase-variable DNA methyltransferase (ModM), which contains 5'-CAAC-3' repeats in its open reading frame that mediate high-frequency mutation resulting in reversible on/off switching of ModM expression. Three modM alleles have been identified (modM1-3), with modM2 being the most commonly found allele. Using single-molecule, real-time (SMRT) genome sequencing and methylome analysis, we have determined that the ModM2 methylation target is 5'-GAR(m6)AC-3', and 100% of these sites are methylated in the genome of the M. catarrhalis 25239 ModM2 on strain. Proteomic analysis of ModM2 on and off variants revealed that ModM2 regulates expression of multiple genes that have potential roles in colonization, infection, and protection against host defenses. Investigation of the distribution of modM alleles in a panel of M. catarrhalis strains, isolated from the nasopharynx of healthy children or middle ear effusions from patients with otitis media, revealed a statistically significant association of modM3 with otitis media isolates. The modulation of gene expression via the ModM phase-variable regulon (phasevarion), and the significant association of the modM3 allele with otitis media, suggests a key role for ModM phasevarions in the pathogenesis of this organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Tyson A Clark
- Pacific Biosciences, Menlo Park, California, USA; and
| | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California, USA; and
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | - Ian R Peak
- Institute for Glycomics and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | | |
Collapse
|
34
|
Bonnin N, Belville C, Chiambaretta F, Sapin V, Blanchon L. DNA methyl transferases are differentially expressed in the human anterior eye segment. Acta Ophthalmol 2014; 92:e366-71. [PMID: 24529261 DOI: 10.1111/aos.12365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/06/2014] [Indexed: 01/30/2023]
Abstract
PURPOSE DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. METHODS Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. RESULTS All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. CONCLUSIONS This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective.
Collapse
Affiliation(s)
- Nicolas Bonnin
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
- Internal Medicine-Ophthalmology-ENT Department; Ophthalmology; Clermont-Ferrand University Hospital; Clermont-Ferrand France
| | - Corinne Belville
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
- GReD Laboratory; UMR CNRS 6293; Clermont University; INSERM U1103; Medicine School; Clermont-Ferrand France
| | - Frédéric Chiambaretta
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
- Internal Medicine-Ophthalmology-ENT Department; Ophthalmology; Clermont-Ferrand University Hospital; Clermont-Ferrand France
| | - Vincent Sapin
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
| | - Loïc Blanchon
- EA 7281 R2D2; Biochemistry Laboratory; Medicine School; Auvergne University; F-63000 Clermont-Ferrand France
| |
Collapse
|
35
|
Kong Y, Ma JH, Warren K, Tsang RS, Low DE, Jamieson FB, Alexander DC, Hao W. Homologous recombination drives both sequence diversity and gene content variation in Neisseria meningitidis. Genome Biol Evol 2013; 5:1611-27. [PMID: 23902748 PMCID: PMC3787668 DOI: 10.1093/gbe/evt116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2013] [Indexed: 01/13/2023] Open
Abstract
The study of genetic and phenotypic variation is fundamental for understanding the dynamics of bacterial genome evolution and untangling the evolution and epidemiology of bacterial pathogens. Neisseria meningitidis (Nm) is among the most intriguing bacterial pathogens in genomic studies due to its dynamic population structure and complex forms of pathogenicity. Extensive genomic variation within identical clonal complexes (CCs) in Nm has been recently reported and suggested to be the result of homologous recombination, but the extent to which recombination contributes to genomic variation within identical CCs has remained unclear. In this study, we sequenced two Nm strains of identical serogroup (C) and multi-locus sequence type (ST60), and conducted a systematic analysis with an additional 34 Nm genomes. Our results revealed that all gene content variation between the two ST60 genomes was introduced by homologous recombination at the conserved flanking genes, and 94.25% or more of sequence divergence was caused by homologous recombination. Recombination was found in genes associated with virulence factors, antigenic outer membrane proteins, and vaccine targets, suggesting an important role of homologous recombination in rapidly altering the pathogenicity and antigenicity of Nm. Recombination was also evident in genes of the restriction and modification systems, which may undermine barriers to DNA exchange. In conclusion, homologous recombination can drive both gene content variation and sequence divergence in Nm. These findings shed new light on the understanding of the rapid pathoadaptive evolution of Nm and other recombinogenic bacterial pathogens.
Collapse
Affiliation(s)
- Ying Kong
- Department of Biological Sciences, Wayne State University
| | - Jennifer H. Ma
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
| | - Keisha Warren
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Raymond S.W. Tsang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Donald E. Low
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances B. Jamieson
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David C. Alexander
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|