1
|
Abstract
Influenza A viruses (IAVs) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs and humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health. Bidirection transmission of IAV between pigs and people has altered the evolutionary dynamics of IAV, and a "One Health" approach is required to ameliorate morbidity and mortality in both hosts and improve control strategies. Although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, considerable diversity can be found not only in the hemagglutinin (HA) and neuraminidase (NA) genes but in the remaining six genes as well. Human and swine IAVs have demonstrated a particular propensity for interspecies transmission, leading to regular and sometimes sustained incursions from man to pig and vice versa. The diversity of IAVs in swine remains a critical challenge in the diagnosis and control of this important pathogen for swine health and in turn contributes to a significant public health risk.
Collapse
Affiliation(s)
- Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA.
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| |
Collapse
|
2
|
Virological Surveillance of Influenza A Subtypes Isolated in 2014 from Clinical Outbreaks in Canadian Swine. Viruses 2017; 9:v9030055. [PMID: 28335552 PMCID: PMC5371810 DOI: 10.3390/v9030055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 12/11/2022] Open
Abstract
Influenza A viruses (IAVs) are respiratory pathogens associated with an acute respiratory disease that occurs year-round in swine production. It is currently one of the most important pathogens in swine populations, with the potential to infect other host species including humans. Ongoing research indicates that the three major subtypes of IAV—H1N1, H1N2, and H3N2—continue to expand in their genetic and antigenic diversity. In this study, we conducted a comprehensive genomic analysis of 16 IAVs isolated from different clinical outbreaks in Alberta, Manitoba, Ontario, and Saskatchewan in 2014. We also examined the genetic basis for probable antigenic differences among sequenced viruses. On the basis of phylogenetic analysis, all 13 Canadian H3N2 viruses belonged to cluster IV, eight H3N2 viruses were part of the IV-C cluster, and one virus belonged to the IV-B and one to the IV-D cluster. Based on standards used in this study, three H3N2 viruses could not be clearly classified into any currently established group within cluster IV (A to F). Three H1N2 viruses were part of the H1α cluster.
Collapse
|
3
|
Karnbunchob N, Omori R, Tessmer HL, Ito K. Tracking the Evolution of Polymerase Genes of Influenza A Viruses during Interspecies Transmission between Avian and Swine Hosts. Front Microbiol 2017; 7:2118. [PMID: 28082971 PMCID: PMC5183616 DOI: 10.3389/fmicb.2016.02118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Human influenza pandemics have historically been caused by reassortant influenza A viruses using genes from human and avian viruses. This genetic reassortment between human and avian viruses has been known to occur in swine during viral circulation, as swine are capable of circulating both avian and human viruses. Therefore, avian-to-swine transmission of viruses plays an important role in the emergence of new pandemic strains. The amino acids at several positions on PB2, PB1, and PA are known to determine the host range of influenza A viruses. In this paper, we track viral transmission between avian and swine to investigate the evolution on polymerase genes associated with their hosts. We traced viral transmissions between avian and swine hosts by using nucleotide sequences of avian viruses and swine viruses registered in the NCBI GenBank. Using BLAST and the reciprocal best hits technique, we found 32, 33, and 30 pairs of avian and swine nucleotide sequences that may be associated with avian-to-swine transmissions for PB2, PB1, and PA genes, respectively. Then, we examined the amino acid substitutions involved in these sporadic transmissions. On average, avian-to-swine transmission pairs had 5.47, 3.73, and 5.13 amino acid substitutions on PB2, PB1, and PA, respectively. However, amino acid substitutions were distributed over the positions, and few positions showed common substitutions in the multiple transmission events. Statistical tests on the number of repeated amino acid substitutions suggested that no specific positions on PB2 and PA may be required for avian viruses to infect swine. We also found that avian viruses that transmitted to swine tend to process I478V substitutions on PB2 before interspecies transmission events. Furthermore, most mutations occurred after the interspecies transmissions, possibly due to selective viral adaptation to swine.
Collapse
Affiliation(s)
- Nipawit Karnbunchob
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido UniversitySapporo, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| | - Heidi L Tessmer
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| |
Collapse
|
4
|
Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb Pathog 2015; 89:62-72. [PMID: 26344393 DOI: 10.1016/j.micpath.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.
Collapse
|
5
|
Nelson MI, Vincent AL. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface. Trends Microbiol 2015; 23:142-53. [PMID: 25564096 DOI: 10.1016/j.tim.2014.12.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023]
Abstract
The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, US Department of Agriculture (USDA) Agricultural Research Service (ARS), Ames, IA 50010, USA
| |
Collapse
|
6
|
Grgić H, Costa M, Friendship RM, Carman S, Nagy É, Wideman G, Weese S, Poljak Z. Molecular characterization of H3N2 influenza A viruses isolated from Ontario swine in 2011 and 2012. Virol J 2014; 11:194. [PMID: 25416300 PMCID: PMC4245826 DOI: 10.1186/s12985-014-0194-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/29/2014] [Indexed: 01/19/2023] Open
Abstract
Background Data about molecular diversity of commonly circulating type A influenza viruses in Ontario swine are scarce. Yet, this information is essential for surveillance of animal and public health, vaccine updates, and for understanding virus evolution and its large-scale spread. Methods The study population consisted of 21 swine herds with clinical problems due to respiratory disease. Nasal swabs from individual pigs were collected and tested by virus isolation in MDCK cells and by rtRT-PCR. All eight segments of 10 H3N2 viruses were sequenced using high-throughput sequencing and molecularly characterized. Results Within-herd prevalence ranged between 2 and 100%. Structurally, Ontario H3N2 viruses could be classified into three different groups. Group 1 was the most similar to the original trH3N2 virus from 2005. Group 2 was the most similar to the Ontario turkey H3N2 isolates with PB1 and NS genes originating from trH3N2 virus and M, PB2, PA and NP genes originating from the A(H1N1)pdm09 virus. All Group 3 internal genes were genetically related to A(H1N1)pdm09. Analysis of antigenic sites of HA1 showed that Group 1 had 8 aa changes within 4 antigenic sites, A(1), B(3), C(2) and E(2). The Group 2 viruses had 8 aa changes within 3 antigenic sites A(3), B(3) and C(2), while Group 3 viruses had 4 aa changes within 3 antigenic sites, B(1), D(1) and E(2), when compared to the cluster IV H3N2 virus [A/swine/Ontario/33853/2005/(H3N2)]. Conclusions The characterization of the Ontario H3N2 viruses clearly indicates reassortment of gene segments between the North American swine trH3N2 from cluster IV and the A(H1N1)pdm09 virus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0194-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Grgić
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Marcio Costa
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Robert M Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Susy Carman
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, N1H 6R8, Canada.
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Greg Wideman
- South-West Ontario Veterinary Services, Stratford, Ontario, Canada.
| | - Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2 W1, Canada. .,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Canada.
| |
Collapse
|
7
|
Pinette MM, Rodriguez-Lecompte JC, Pasick J, Ojkic D, Leith M, Suderman M, Berhane Y. Development of a duplex Fluorescent Microsphere Immunoassay (FMIA) for the detection of antibody responses to influenza A and newcastle disease viruses. J Immunol Methods 2014; 405:167-77. [DOI: 10.1016/j.jim.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/26/2022]
|
8
|
Abstract
Influenza A viruses (IAV) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs as well as humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health. This overlap between human and animal health is a prime example of the "One Health" concept. Although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, considerable diversity can be found not only in the hemagglutinin (HA) and neuraminidase (NA) genes, but in the other 6 genes as well. Human and swine IAV have demonstrated a particular propensity for interspecies transmission in the past century, leading to regular and sometimes sustained, incursions from man to pig and vice versa. The diversity of IAV in swine remains one of the critical challenges in diagnosis and control of this important pathogen for swine health, and in turn contributes to a significant public health risk.
Collapse
|
9
|
Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, Donis R, Culhane M, Hamilton K, Lewis N, Mumford E, Nguyen T, Parchariyanon S, Pasick J, Pavade G, Pereda A, Peiris M, Saito T, Swenson S, Van Reeth K, Webby R, Wong F, Ciacci-Zanella J. Review of Influenza A Virus in Swine Worldwide: A Call for Increased Surveillance and Research. Zoonoses Public Health 2013; 61:4-17. [DOI: 10.1111/zph.12049] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Indexed: 11/30/2022]
Affiliation(s)
- A. Vincent
- Virus and Prion Research Unit; USDA-ARS NADC; Ames IA USA
| | - L. Awada
- World Organization for Animal Health (OIE); Paris France
| | - I. Brown
- Animal Health and Veterinary Laboratories Agency; Weybridge UK
| | - H. Chen
- Harbin Veterinary Research Institute; Harbin China
| | - F. Claes
- Food and Agriculture Organization of the United Nations (FAO); Rome Italy
| | - G. Dauphin
- Food and Agriculture Organization of the United Nations (FAO); Rome Italy
| | | | - M. Culhane
- University of Minnesota Veterinary Diagnostic Lab; St. Paul MN USA
| | - K. Hamilton
- World Organization for Animal Health (OIE); Paris France
| | - N. Lewis
- Department of Zoology; University of Cambridge; Cambridge UK
| | - E. Mumford
- World Health Organization (WHO); Geneva Switzerland
| | - T. Nguyen
- Department of Animal Health; National Centre for Veterinary Diagnostics; Hanoi Vietnam
| | | | - J. Pasick
- Canadian Food Inspection Agency; Winnepeg Canada
| | - G. Pavade
- World Organization for Animal Health (OIE); Paris France
| | - A. Pereda
- Instituto de Virología - INTA; Buenos Aires Argentina
| | - M. Peiris
- Hong Kong University; Hong Kong City Hong Kong
| | - T. Saito
- National Institute of Animal Health; Ibaraki Japan
| | | | | | - R. Webby
- St. Jude Children's Research Hospital; Memphis TN USA
| | - F. Wong
- Australian Animal Health Laboratory; CSIRO Livestock Industries; Geelong Vic. Australia
| | | |
Collapse
|
10
|
Experimental infection with a Thai reassortant swine influenza virus of pandemic H1N1 origin induced disease. Virol J 2013; 10:88. [PMID: 23497073 PMCID: PMC3606200 DOI: 10.1186/1743-422x-10-88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 03/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following the emergence of the pandemic H1N1 influenza A virus in 2009 in humans, this novel virus spread into the swine population. Pigs represent a potential host for this virus and can serve as a mixing vessel for genetic mutations of the influenza virus. Reassortant viruses eventually emerged from the 2009 pandemic and were reported in swine populations worldwide including Thailand. As a result of the discovery of this emergent disease, pathogenesis studies of this novel virus were conducted in order that future disease protection and control measures in swine and human populations could be enacted. METHODS The pandemic H1N1 2009 virus (pH1N1) and its reassortant virus (rH1N1) isolated from pigs in Thailand were inoculated into 2 separate cohorts of 9, 3-week-old pigs. Cohorts were consisted of one group experimentally infected with pH1N1 and one group with rH1N1. A negative control group consisting of 3 pigs was also included. Clinical signs, viral shedding and pathological lesions were investigated and compared. Later, 3 pigs from viral inoculated groups and 1 pig from the control group were necropsied at 2, 4, and 12 days post inoculation (DPI). RESULTS The results indicated that pigs infected with both viruses demonstrated typical flu-like clinical signs and histopathological lesions of varying severity. Influenza infected-pigs of both groups had mild to moderate pulmonary signs on 1-4 DPI. Interestingly, pigs in both groups demonstrated viral RNA detection in the nasal swabs until the end of the experiment (12 DPI). CONCLUSION The present study demonstrated that both the pH1N1 and rH1N1 influenza viruses, isolated from naturally infected pigs, induced acute respiratory disease in experimentally inoculated nursery pigs. Although animals in the rH1N1-infected cohort demonstrated more severe clinical signs, had higher numbers of pigs shedding the virus, were noted to have increased histopathological severity of lung lesions and increased viral antigen in lung tissue, the findings were not statistically significant in comparison with the pH1N1-infected group. Interestingly, viral genetic material of both viruses could be detected from the nasal swabs until the end of the experiment. Similar to other swine influenza viruses, the clinical signs and pathological lesions in both rH1N1 and pH1N1 were limited to the respiratory tract.
Collapse
|
11
|
|
12
|
Lung O, Beeston A, Ohene-Adjei S, Pasick J, Hodko D, Hughes KB, Furukawa-Stoffer T, Fisher M, Deregt D. Electronic microarray assays for avian influenza and Newcastle disease virus. J Virol Methods 2012; 185:244-53. [PMID: 22796283 DOI: 10.1016/j.jviromet.2012.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 01/02/2023]
Abstract
Microarrays are suitable for multiplexed detection and typing of pathogens. Avian influenza virus (AIV) is currently classified into 16 H (hemagglutinin) and 9 N (neuraminidase) subtypes, whereas Newcastle disease virus (NDV) strains differ in virulence and are broadly classified into high and low pathogenicity types. In this study, three assays for detection and typing of poultry viruses were developed on an automated microarray platform: a multiplex assay for simultaneous detection of AIV and detection and pathotyping of NDV, and two separate assays for differentiating all AIV H and N subtypes. The AIV-NDV multiplex assay detected all strains in a 63 virus panel, and accurately typed all high pathogenicity NDV strains tested. A limit of detection of 10(1)-10(3) TCID(50)/mL and 200-400 EID(50)/mL was obtained for NDV and AIV, respectively. The AIV typing assays accurately typed all 41 AIV strains and a limit of detection of 4-200 EID(50)/mL was obtained. Assay validation showed that the microarray assays were generally comparable to real-time RT-PCR. However, the AIV typing microarray assays detected more positive clinical samples than the AIV matrix real-time RT-PCR, and also provided information regarding the subtype. The AIV-NDV multiplex and AIV H typing microarray assays detected mixed infections and could be useful for detection and typing of AIV and NDV.
Collapse
Affiliation(s)
- Oliver Lung
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Township Road 9-1, P.O. Box 640, Lethbridge, Alberta T1J 3Z4, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|