1
|
Tian X, Chen Y, Nakamura J. Development of a novel PIG-A gene mutation assay based on a GPI-anchored fluorescent protein sensor. Genes Environ 2019; 41:21. [PMID: 31867084 PMCID: PMC6902599 DOI: 10.1186/s41021-019-0135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022] Open
Abstract
Background Accumulation of somatic mutations caused by both endogenous and exogenous exposures is a high risk for human health, in particular, cancer. Efficient detection of somatic mutations is crucial for risk assessment of different types of exposures. Due to its requirement in the process of attaching glycosylphatidylinositol- (GPI-) anchored proteins to the cell surface, the PIG-A gene located on the X-chromosome is used in both in vivo and in vitro mutation assays. Loss-of-function mutations in PIG-A lead to the elimination of GPI-anchored proteins such that they can no longer be detected on the cell surface by antibodies. Historically, mutation assays based on the PIG-A gene rely on the staining of these cell-surface proteins by antibodies; however, as with any antibody-based assay, there are major limitations, especially in terms of variability and lack of specific antibodies. Results In the current study, we developed a modified PIG-A mutation assay that uses the expression of GPI-anchored fluorescent proteins (henceforth referred to as a GPI-sensor), whereby the presence of fluorescence on the cell membrane is dependent on the expression of wild-type PIG-A. Using our modified PIG-A mutation assay, we have achieved complete separation of wild type cells and spontaneously mutated cells, in which the presence of PIG-A mutations has been confirmed via proaerolysin resistance and gene sequencing. Conclusion This study establishes a novel PIG-A mutation assay using GPI-anchored fluorescent protein expression that eliminates the need for antibody-based staining. This GPI-sensor PIG-A mutation assay should be widely applicable for accurate and efficient testing of genotoxicity for use in many mammalian and vertebrate cells.
Collapse
Affiliation(s)
- Xu Tian
- 1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Youjun Chen
- 2Department of Neurology, UNC Neuroscience center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| | - Jun Nakamura
- 1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,3Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
2
|
Bemis JC, Heflich RH. In vitro mammalian cell mutation assays based on the Pig-a gene: A report of the 7th International Workshop on Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403028. [PMID: 31699348 DOI: 10.1016/j.mrgentox.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Pig-a gene mutation assays enumerate cells with the glycosylphosphatidylinositol (GPI) anchor-deficient phenotype as a reporter of mutation in the endogenous Pig-a gene. Methods for measuring mutation in this gene are quite well established for in vivo systems. This approach to mutagenicity assessment has now been extended to in vitro mammalian cell-based systems. An expert workgroup from the 7th International Workshop on Genotoxicity Testing tasked with assessing the status of in vitro mammalian cell mutation assays has investigated the merits and limitations of in vitro Pig-a gene mutation assays. A review of the current status of these developing methodologies and the formation of consensus statements on the utility and application of these assays were performed to provide guidance for their potential use in genotoxicity hazard identification and risk assessment.
Collapse
Affiliation(s)
- J C Bemis
- Litron Laboratories, Rochester, NY, USA.
| | - R H Heflich
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
3
|
David R, Talbot E, Allen B, Wilson A, Arshad U, Doherty A. The development of an in vitro Pig-a assay in L5178Y cells. Arch Toxicol 2018; 92:1609-1623. [PMID: 29362862 DOI: 10.1007/s00204-018-2157-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/17/2018] [Indexed: 12/01/2022]
Abstract
A recent flow cytometry-based in vivo mutagenicity assay involves the hemizygous phosphatidylinositol class A (Pig-a) gene. Pig-a forms the catalytic subunit of N-acetylglucosaminyltransferase required for glycophosphatidylinositol (GPI) anchor biosynthesis. Mutations in Pig-a prevent GPI-anchor synthesis resulting in loss of cell-surface GPI-linked proteins. The aim of the current study was to develop and validate an in vitro Pig-a assay in L5178Y mouse lymphoma cells. Ethyl methanesulfonate (EMS)-treated cells (186.24-558.72 µg/ml; 24 h) were used for method development and antibodies against GPI-linked CD90.2 and stably expressed CD45 were used to determine GPI-status by flow cytometry. Antibody concentration and incubation times were optimised (0.18 µg/ml, 30 min, 4 °C) and Zombie Violet™ (viability marker; 0.5%, 30 min, RT) was included. The optimum phenotypic expression period was 8 days. The low background mutation frequency of GPI-deficiency [GPI(-)] in L5178Y cells (0.1%) constitutes a rare event, thus flow cytometry acquisition parameters were optimised; 104 cells were measured at medium flow rate to ensure a CV ≤ 30%. Spiking known numbers of GPI(-) cells into a wild-type population gave high correlation between measured and spiked numbers (R2 0.999). We applied the in vitro Pig-a assay to a selection of well-validated genotoxic and non-genotoxic compounds. EMS, N-ethyl-N-nitrosourea and 4-nitroquinoline-N-oxide dose dependently increased numbers of GPI(-) cells, while etoposide, mitomycin C, and a bacterial-specific mutagen did not. Cycloheximide and sodium chloride were negative. Sanger sequencing revealed Pig-a mutations in the GPI(-) clones. In conclusion, this in vitro Pig-a assay could complement the in vivo version, and follow up weak Ames positives and late-stage human metabolites or impurities.
Collapse
Affiliation(s)
- Rhiannon David
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK.
| | - Emily Talbot
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Bethany Allen
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Amy Wilson
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Usman Arshad
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Ann Doherty
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| |
Collapse
|
4
|
Sharma V, Collins LB, Chen TH, Herr N, Takeda S, Sun W, Swenberg JA, Nakamura J. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 2018; 7:25377-90. [PMID: 27015367 PMCID: PMC5041911 DOI: 10.18632/oncotarget.8298] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 03/13/2016] [Indexed: 12/12/2022] Open
Abstract
DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging.
Collapse
Affiliation(s)
- Vyom Sharma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Leonard B Collins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Ting-Huei Chen
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie Herr
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Wei Sun
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Bemis JC, Avlasevich SL, Labash C, McKinzie P, Revollo J, Dobrovolsky VN, Dertinger SD. Glycosylphosphatidylinositol (GPI) anchored protein deficiency serves as a reliable reporter of Pig-a gene Mutation: Support from an in vitro assay based on L5178Y/Tk +/- cells and the CD90.2 antigen. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:18-29. [PMID: 29115020 PMCID: PMC5771857 DOI: 10.1002/em.22154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Lack of cell surface glycosylphosphatidylinositol (GPI)-anchored protein(s) has been used as a reporter of Pig-a gene mutation in several model systems. As an extension of this work, our laboratory initiated development of an in vitro mutation assay based on the flow cytometric assessment of CD90.2 expression on the cell surface of the mouse lymphoma cell line L5178Y/Tk+/- . Cells were exposed to mutagenic and nonmutagenic compounds for 24 hr followed by washout and incubation for an additional 7 days. Following this mutant manifestation time, cells were labeled with fluorescent antibodies against CD90.2 and CD45 antigens. These reagents indicated the presence of GPI-anchored proteins and general cell surface membrane receptor integrity, respectively. Instrument set-up was aided by parallel processing of a GPI anchor-deficient subclone. Results show that the mutagens reproducibly caused increased frequencies of mutant phenotype cells, while the nonmutagens did not. Further modifications to the method, including application of a viability dye and an isotype control for instrument set-up, were investigated. As a means to verify that the GPI-anchored protein-negative phenotype reflects bona fide Pig-a gene mutation, sequencing was performed on 38 CD90.2-negative L5178Y/Tk+/- clones derived from cultures treated with ethyl methanesulfonate. All clones were found to have mutation(s) within the Pig-a gene. The continued investigation of L5178Y/Tk+/- cells, CD90.2 labeling, and flow cytometric analysis as the basis of an in vitro mutation assay is clearly supported by this work. These data also provide evidence of the reliability of using GPI anchor-deficiency as a valid reporter of Pig-a gene mutation. Environ. Mol. Mutagen. 59:18-29, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Page McKinzie
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Javier Revollo
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Vasily N Dobrovolsky
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | |
Collapse
|
6
|
Rees BJ, Tate M, Lynch AM, Thornton CA, Jenkins GJ, Walmsley RM, Johnson GE. Development of an in vitro PIG-A gene mutation assay in human cells. Mutagenesis 2017; 32:283-297. [PMID: 28057708 PMCID: PMC5907909 DOI: 10.1093/mutage/gew059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/15/2016] [Indexed: 11/12/2022] Open
Abstract
Mutagens can be carcinogens, and traditionally, they have been identified in vitro using the Salmonella 'Ames' reverse mutation assay. However, prokaryotic DNA packaging, replication and repair systems are mechanistically very different to those in the humans we inevitably seek to protect. Therefore, for many years, mammalian cell line genotoxicity assays that can detect eukaryotic mutagens as well as clastogens and aneugens have been used. The apparent lack of specificity in these largely rodent systems, due partly to their mutant p53 status, has contributed to the use of animal studies to resolve data conflicts. Recently, silencing mutations at the PIG-A locus have been demonstrated to prevent glycophosphatidylinositol (GPI) anchor synthesis and consequentially result in loss of GPI-anchored proteins from the cell's extracellular surface. The successful exploitation of this mutant phenotype in animal studies has triggered interest in the development of an analogous in vitro PIG-A mutation screening assay. This article describes the development of a robust assay design using metabolically active human cells. The assay includes viability and cell membrane integrity assessment and conforms to the future ideas of the 21st-century toxicology testing.
Collapse
Affiliation(s)
- Benjamin J Rees
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Matthew Tate
- Gentronix Ltd BioHub at Alderley Park, Alderley Edge, Cheshire, UK
| | | | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Gareth J Jenkins
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Richard M Walmsley
- Gentronix Ltd BioHub at Alderley Park, Alderley Edge, Cheshire, UK
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
| |
Collapse
|
7
|
The in vitro PIG-A gene mutation assay: glycosylphosphatidylinositol (GPI)-related genotype-to-phenotype relationship in TK6 cells. Arch Toxicol 2016; 90:1729-36. [PMID: 27100116 DOI: 10.1007/s00204-016-1707-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
In our previous work, we established an in vitro variant of the currently developed in vivo PIG-A assay as promising mutagenicity test system. We applied the human B-lymphoblastoid cell line TK6 for the in vitro assay development, which is based on the cellular glycosylphosphatidylinositol (GPI) status. At least 22 genes are involved in GPI biosynthesis, leading to the complex situation that, in principle, multiple genes could induce a GPI-deficient phenotype by acquiring inactivating mutations. However, only the PIG-A gene is located on the X-chromosome, rendering PIG-A more sensitive compared to autosomal linked, GPI-relevant genes. In this work, we investigated the GPI-related genotype-to-phenotype relationship in TK6 cells. By a next-generation sequencing approach, we identified a heterozygous chromosomal deletion on chromosome 17, where the PIG-L gene is located. In the analyzed TK6 cell clones, the GPI-deficient phenotype was induced either by mutations in PIG-A, by the complete absence of PIG-A mRNA, or by deletions in the remaining functional PIG-L gene, causing loss of heterozygosity. The identified PIG-L heterozygosity could also be responsible for the increased sensitivity toward mutagenic ethyl methanesulfonate or UV-C treatments of p53-proficient TK6 compared to the TK6-related, but p53-deficient WI-L2-NS cell line. Moreover, the WI-L2-NS cell line was found to exhibit a much lower number of GPI-deficient mutant cells in the purchased cell batch, and WI-L2-NS exerted a lower spontaneous rate of GPI deficiency compared to TK6 cells.
Collapse
|
8
|
Krüger CT, Hofmann M, Hartwig A. The in vitro PIG-A gene mutation assay: mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells. Arch Toxicol 2014; 89:2429-43. [PMID: 25417052 DOI: 10.1007/s00204-014-1413-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/06/2014] [Indexed: 11/28/2022]
Abstract
The X-linked PIG-A gene is involved in the biosynthesis of the cell surface anchor GPI, and its inactivation may serve as a new marker for mutagenicity. The in vivo PIG-A gene mutation assay is currently being validated by several groups. In this study, we established a corresponding in vitro variant of the PIG-A assay applying B-lymphoblastoid TK6 cells. PE-conjugated antibodies against the GPI-anchored proteins CD55 and CD59 were used to determine the GPI status via multicolor flow cytometry. Mutant spiked TK6 cell samples were analyzed, and mutants were quantified with even small numbers being quantitatively recovered. To validate our approach, mutant spiked cell samples were analyzed by flow cytometry and proaerolysin selection in parallel, yielding a high correlation. Further, we developed a procedure to reduce the background level of preexisting mutant cells to lower than 20 in 10(6) cells to increase the sensitivity of the assay. Spontaneous rate of GPI deficiency was investigated being 0.76 × 10(-6)/cell/generation for TK6 cells. The optimal phenotype expression time after ethyl methanesulfonate treatment was found to be 10 days. We applied the in vitro PIG-A assay to demonstrate the mutagenicity of ethyl methanesulfonate, 4-nitroquinoline 1-oxide and UV-C irradiation in a dose-dependent and statistically significant manner. Pyridine and cycloheximide were included as negative controls providing negative test results up to 10 mM. These data suggest that the in vitro PIG-A assay could complement the in vivo PIG-A assay with some distinct advantages compared to other in vitro mammalian mutagenicity tests.
Collapse
Affiliation(s)
- Christopher T Krüger
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Mareike Hofmann
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
9
|
Nakamura J, Mutlu E, Sharma V, Collins L, Bodnar W, Yu R, Lai Y, Moeller B, Lu K, Swenberg J. The endogenous exposome. DNA Repair (Amst) 2014; 19:3-13. [PMID: 24767943 PMCID: PMC4097170 DOI: 10.1016/j.dnarep.2014.03.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The concept of the Exposome is a compilation of diseases and one's lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the endogenous exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions.
Collapse
Affiliation(s)
- Jun Nakamura
- University of North Carolina, Chapel Hill, NC, United States
| | - Esra Mutlu
- University of North Carolina, Chapel Hill, NC, United States
| | - Vyom Sharma
- University of North Carolina, Chapel Hill, NC, United States
| | - Leonard Collins
- University of North Carolina, Chapel Hill, NC, United States
| | - Wanda Bodnar
- University of North Carolina, Chapel Hill, NC, United States
| | - Rui Yu
- University of North Carolina, Chapel Hill, NC, United States
| | - Yongquan Lai
- University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin Moeller
- University of North Carolina, Chapel Hill, NC, United States; Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Kun Lu
- University of North Carolina, Chapel Hill, NC, United States
| | - James Swenberg
- University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|