1
|
Wang Z, Shang X, Wu Z, Wei J, Tian X, Zhang G. Identification of Behaviorally Active Odorants for Adult Chilo sacchariphagus Based on the Binding Properties of Odorant-Binding Proteins toward Host Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7669-7684. [PMID: 40110702 DOI: 10.1021/acs.jafc.4c13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chilo sacchariphagus is the key pest of sugar cane. Due to the difficulty associated with pesticide application in middle and late growth stages of sugar cane, the use of odorant attractants is a beneficial alternative to pesticides. Odorant-binding proteins (OBPs) in the insect olfactory system represent excellent targets for screening odorant attractants. Here, we identified 12 OBPs from the head transcriptome of C. sacchariphagus adults, with four OBPs (CsacOBP1/2/5/12) highly enriched in adult antennae. Ligand-binding assays for the four CsacOBPs showed that they can bind with 10 of the 30 host volatiles tested. Behavioral assays revealed that (+)-cedrol and 1-hexadecanol from the 10 compounds can attract the moths of both sexes. Protein-ligand interaction analyses identified five key amino acid residues involved in CsacOBPs' binding to (+)-cedrol and 1-hexadecanol. These findings have enhanced our molecular understanding of the host plant selection in C. sacchariphagus and have facilitated the development of attractants for C. sacchariphagus.
Collapse
Affiliation(s)
- Zhixiong Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiankun Shang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zixuan Wu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jili Wei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
2
|
Xiao Y, Lei C, Wang X, Batool R, Yin F, Peng Z, Jing X, Li Z. Foraging in the darkness: Highly selective tuning of below-ground larval olfaction to Brassicaceae volatiles in striped flea beetle. INSECT MOLECULAR BIOLOGY 2025; 34:151-161. [PMID: 39306699 DOI: 10.1111/imb.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 01/11/2025]
Abstract
The olfactory system of above-ground insects is among the best described perceptual architectures. However, remarkably little is known about how below-ground insects navigate in the dark for foraging. Here, we investigated host plant preferences, olfactory sensilla and characterise olfactory proteins in below-ground larvae of the striped flea beetle (SFB) Phyllotreta striolata Fabricius (Coleoptera: Chrysomelidae). Both the adults and larvae of this coleopteran pest cause serious damage to Brassicaceous crops above and below ground, respectively. To elucidate the role of olfactory system in host location of below-ground larvae, we initially demonstrated that SFB larvae distinctly favoured Brassicaceae over other plant families by two-choice behavioural bioassay. Subsequently, scanning electron microscopy of sensilla in SFB larval head showed a significant reduction in the number of olfactory sensilla in larvae compared with adults. However, essential olfactory sensilla such as sensilla basiconica are underscoring the indispensability of the larval olfactory system. We selected four larval-specific odorant binding proteins for functional validation from our previous transcriptome data. Functional studies revealed that PstrOBP23 exhibits robust binding affinity to 24 volatiles of Brassicaceae plants, including seven isothiocyanate compounds. This suggests a pivotal role of PstrOBP23 in the foraging behaviour of the larvae below the ground. Moreover, two ligands displaying strong binding capacity exhibit apparent attractive or repellent activity towards SFB larvae. Our findings provide a crucial insight into the olfactory system of below-ground larvae in SFB, highlighting the highly selective tuning of larvae specific OBP to host plant volatiles. These results offer potential avenues for developing effective pest control strategies against SFB.
Collapse
Affiliation(s)
- Yong Xiao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunmei Lei
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xue Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Raufa Batool
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fei Yin
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhengke Peng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhenyu Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Chen YW, Yang HH, Gu N, Li JQ, Zhu XY, Zhang YN. Identification of attractants for adult Spodoptera litura based on the interaction between odorant-binding protein 34 and host volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106005. [PMID: 39084800 DOI: 10.1016/j.pestbp.2024.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Nan Gu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Qiao Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
4
|
Fu H, Xiao G, Yang Z, Hu P. EsigPBP3 Was the Important Pheromone-Binding Protein to Recognize Male Pheromones and Key Eucalyptus Volatiles. Int J Mol Sci 2024; 25:2940. [PMID: 38474187 DOI: 10.3390/ijms25052940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Pheromone-binding proteins (PBPs) are specific odorant-binding proteins that can specifically recognize insect pheromones. Through transcriptional analysis of the antennae of adult Endoclita signifer, EsigPBP3 was discovered and identified, and EsigPBP3 was found to be highly expressed in the antennae of male moths. Based on the binding characteristics and ability of EsigPBP3, we can find the key ligands and binding site to consider as a target to control the key wood bore E. signifier. In this study, the fluorescence competitive binding assays (FCBA) showed that EsigPBP3 had a high binding affinity for seven key eucalyptus volatiles. Molecular docking analysis revealed that EsigPBP3 had the strongest binding affinity for the sexual pheromone component, (3E,7E)-4,7,11-trimethyl-1,3,7,10-dodecatetraene. Furthermore, same as the result of FCBA, the EsigPBP3 exhibited high binding affinities to key eucalyptus volatiles, eucalyptol, α-terpinene, (E)-beta-ocimene, (-)-β-pinene, and (-)-α-pinene, and PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 are key sites. In summary, EsigPBP3 exhibits high binding affinity to male pheromones and key volatile compounds and the crucial binding sites PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 can act as targets in the recognition of E. signifier pheromones.
Collapse
Affiliation(s)
- Hengfei Fu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Guipeng Xiao
- Biotechnology, Faculty of Science, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Zhende Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Ping Hu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Zhou Y, Huang C, Fu G, Tang R, Yang N, Liu W, Qian W, Wan F. Molecular and Functional Characterization of Three General Odorant-Binding Protein 2 Genes in Cydia pomonella (Lepidoptera: Tortricidae). Int J Mol Sci 2024; 25:1746. [PMID: 38339028 PMCID: PMC10855334 DOI: 10.3390/ijms25031746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
General odorant-binding proteins (GOBPs) play a crucial role in the detection of host plant volatiles and pheromones by lepidopterans. Previous studies identified two duplications in the GOBP2 gene in Cydia pomonella. In this study, we employed qRT-PCR, protein purification, and fluorescence competitive binding assays to investigate the functions of three GOBP2 genes in C. pomonella. Our findings reveal that CpomGOBP2a and CpomGOBP2b are specifically highly expressed in antennae, while CpomGOBP2c exhibits high specific expression in wings, suggesting a potential divergence in their functions. Recombinant proteins of CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c were successfully expressed and purified, enabling an in-depth exploration of their functions. Competitive binding assays with 20 host plant volatiles and the sex pheromone (codlemone) demonstrated that CpomGOBP2a exhibits strong binding to four compounds, namely butyl octanoate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), codlemone, and geranylacetone, with corresponding dissolution constants (Ki) of 8.59993 μM, 9.14704 μM, 22.66298 μM, and 22.86923 μM, respectively. CpomGOBP2b showed specific binding to pear ester (Ki = 17.37481 μM), while CpomGOBP2c did not exhibit binding to any tested compounds. In conclusion, our results indicate a functional divergence among CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c. These findings contribute valuable insights for the development of novel prevention and control technologies and enhance our understanding of the evolutionary mechanisms of olfactory genes in C. pomonella.
Collapse
Affiliation(s)
- Yanan Zhou
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guanjun Fu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rui Tang
- Centre for Resource Insects and Biotechnology, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510220, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Wu Y, Li Y, Chu W, Niu T, Feng X, Ma R, Liu H. Expression and functional characterization of odorant-binding protein 2 in the predatory mite Neoseiulus barkeri. INSECT SCIENCE 2023; 30:1493-1506. [PMID: 36458978 DOI: 10.1111/1744-7917.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.
Collapse
Affiliation(s)
- Yixia Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Yaying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Wenqiang Chu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Tiandi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Xiaotian Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Rongjiang Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| |
Collapse
|
7
|
Tian L, Guo HG, Ren ZG, Zhang AH, Qin XC, Zhang MZ, Du YL. Ligand-binding specificities of four odorant-binding proteins in Conogethes punctiferalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21947. [PMID: 35731526 DOI: 10.1002/arch.21947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Odorant-binding proteins (OBPs) play essential roles in lepidopteran insects' perception of host volatiles by binding and transporting hydrophobic ligands. The yellow peach moth (YPM), Conogethes punctiferalis (Guenée), is a serious agricultural pest, with broad host range and cryptic feeding habits. However, few studies about YPM perceiving pheromones and host plant odorants have been reported. In this study, four OBP genes (CpunOBP8, CpunOBP9, CpunABP, and CpunGOBP2) were cloned from the antennae of YPM. The recombinant proteins were expressed and purified by prokaryotic expression system, with their binding affinities to 26 ligands being tested. Four CpunOBPs all had six conserved cysteine residues, which were typical structural characteristics of classical OBPs. The fluorescence competitive binding assay indicated that CpunOBP8 and CpunABP could not only exhibit high binding affinities to female sex pheromones, but also to host plant odorants. For example, CpunOBP8 bound strongly with cis-10-hexadecenal, hexadecanal, and so forth, whereas CpunABP bound with cis-10-hexadecenal, camphene, and 3-carene. Comparatively, CpunOBP9 and CpunGOBP2 could only bind with host plant odorants, with CpunOBP9 binding strongly to 3-methyl-1-butanol, hexyl acetate, and so forth, while CpunGOBP2 displaying the widest binding spectra and correlating with 3-carene, pentyl acetate, and so forth. The results indicated that on the one hand, each of the four CpunOBPs had its specific binding spectra when binding and transporting olfactory ligands; on the other hand, the same ligand might be bound to more than one CpunOBPs, which would provide information for the potential application of semiochemicals in controlling YPM.
Collapse
Affiliation(s)
- Lin Tian
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
- Academy of National Food and Strategic Reserves Administration, National Engineering Research Center for Grain Storage and Transportation, Beijing, China
| | - Hong-Gang Guo
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Zheng-Guang Ren
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Ai-Huan Zhang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Xiao-Chun Qin
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Min-Zhao Zhang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yan-Li Du
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Hu P, Hao E, Yang Z, Qiu Z, Fu H, Lu J, He Z, Huang Y. EsigGOBP1: The Key Protein Binding Alpha-Phellandrene in Endoclita signifer Larvae. Int J Mol Sci 2022; 23:9269. [PMID: 36012538 PMCID: PMC9409361 DOI: 10.3390/ijms23169269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Endoclita signifer larvae show olfactory recognition towards volatiles of eucalyptus trunks and humus soils. Further, EsigGOBP1 was identified through larval head transcriptome and speculated as the main odorant-binding proteins in E. signifer larvae. In this study, the highest expression of EsigGOBP1 was only expressed in the heads of 3rd instar larvae of E. signifer, compared with the thorax and abdomen; this was consistent with the phenomenon of habitat transfer of 3rd instar larvae, indicating that EsigGOBP1 was a key OBP gene in E. signifer larvae. Results of fluorescence competition binding assays (FCBA) showed that EsigGOBP1 had high binding affinities to eight GC-EAD active ligands. Furthermore, screening of key active odorants for EsigGOBP1 and molecular docking analysis, indicated that EsigGOBP1 showed high binding activity to alpha-phellandrene in 3rd instar larvae of E. signifer. Conformational analysis of the EsigGOBP1-alpha-phellandrene complex, showed that MET49 and GLU38 were the key sites involved in binding. These results demonstrated that EsigGOBP1 is a key odorant-binding protein in E. signifer larvae, which recognizes and transports eight key volatiles from eucalyptus trunk, especially the main eucalyptus trunks volatile, alpha-phellandrene. Taken together, our results showed that EsigGOBP1 is involved in host selection of E. signifer larvae, which would aid in developing EsigGOBP1 as molecular targets for controlling pests at the larval stage.
Collapse
Affiliation(s)
- Ping Hu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Enhua Hao
- Forestry College, Beijing Forestry University, Beijing 100083, China
| | - Zhende Yang
- Forestry College, Guangxi University, Nanning 540003, China
| | - Zhisong Qiu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Hengfei Fu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Jintao Lu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Ziting He
- Forestry College, Guangxi University, Nanning 540003, China
| | - Yingqi Huang
- Forestry College, Guangxi University, Nanning 540003, China
| |
Collapse
|
9
|
Li LL, Xu BQ, Li CQ, Li BL, Chen XL, Li GW. Different Binding Affinities of Three General Odorant-Binding Proteins in Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae) to Sex Pheromones, Host Plant Volatiles, and Insecticides. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1129-1145. [PMID: 35604383 DOI: 10.1093/jee/toac063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 06/15/2023]
Abstract
Insect general odorant-binding proteins (GOBPs) play irreplaceable roles in filtering, binding, and transporting host odorants to olfactory receptors. Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae), an economically important pest of fruit crops, uses fruit volatiles as cues to locate host plants. However, the functions of GOBPs in G. funebrana are still unknown. Three GOBP genes, namely, GfunGOBP1, GfunGOBP2, and GfunGOBP3, were cloned, and their expression profiles in different tissues were detected by the method of real-time quantitative PCR (RT-qPCR). The binding properties of recombinant GfunGOBPs (rGfunGOBPs) to various ligands were investigated via fluorescence binding assays. The three GfunGOBPs were mainly expressed in the antennae of both male and female moths. All these three rGfunGOBPs could bind to sex pheromones, while having varying affinities toward these pheromones. The three rGfunGOBPs also displayed a wide range of ligand-binding spectrums with tested host odorants. The rGfunGOBP1, rGfunGOBP2, and rGfunGOBP3 bound to 34, 33, and 30 out of the 41 tested odorants, respectively. Three rGfunGOBPs had overlapping binding activities to β-myrcene, (-)-α-phellandrene, and ethyl isovalerate with the Ki less than 3.0 μM. The rGfunGOBP1 and rGfunGOBP3 could selectively bind to several insecticides, whereas rGfunGOBP2 could not. Three rGfunGOBPs had the dual functions of selectively binding to sex pheromones and host odorants. Moreover, the rGfunGOBP1 and rGfunGOBP3 can also serve as 'signal proteins' and bind to different insecticides. This study contributed to elucidating the potential molecular mechanism of the olfaction for G. funebrana, and thereby promotes the development of effective botanical attractants or pheromone synergists to control G. funebrana.
Collapse
Affiliation(s)
- Lin-Lin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Bing-Qiang Xu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumchi, Xinjiang, P. R. China
| | - Chun-Qin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Bo-Liao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| |
Collapse
|
10
|
Host-plant volatiles enhance the attraction of Cnaphalocrocis medinalis (Lepidoptera: Crambidae) to sex pheromone. CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00372-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Guo X, Xuan N, Liu G, Xie H, Lou Q, Arnaud P, Offmann B, Picimbon JF. An Expanded Survey of the Moth PBP/GOBP Clade in Bombyx mori: New Insight into Expression and Functional Roles. Front Physiol 2021; 12:712593. [PMID: 34776998 PMCID: PMC8582636 DOI: 10.3389/fphys.2021.712593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
We studied the expression profile and ontogeny (from the egg stage through the larval stages and pupal stages, to the elderly adult age) of four OBPs from the silkworm moth Bombyx mori. We first showed that male responsiveness to female sex pheromone in the silkworm moth B. mori does not depend on age variation; whereas the expression of BmorPBP1, BmorPBP2, BmorGOBP1, and BmorGOBP2 varies with age. The expression profile analysis revealed that the studied OBPs are expressed in non-olfactory tissues at different developmental stages. In addition, we tested the effect of insecticide exposure on the expression of the four OBPs studied. Exposure to a toxic macrolide insecticide endectocide molecule (abamectin) led to the modulated expression of all four genes in different tissues. The higher expression of OBPs was detected in metabolic tissues, such as the thorax, gut, and fat body. All these data strongly suggest some alternative functions for these proteins other than olfaction. Finally, we carried out ligand docking studies and reported that PBP1 and GOBP2 have the capacity of binding vitamin K1 and multiple different vitamins.
Collapse
Affiliation(s)
- Xia Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Xie
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qinian Lou
- Shandong Silkworm Institute, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Bioengineering, QILU University of Technology, Jinan, China
| |
Collapse
|
12
|
Xu C, Yang F, Duan S, Li D, Li L, Wang M, Zhou A. Discovery of behaviorally active semiochemicals in Aenasius bambawalei using a reverse chemical ecology approach. PEST MANAGEMENT SCIENCE 2021; 77:2843-2853. [PMID: 33538389 DOI: 10.1002/ps.6319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/27/2020] [Accepted: 02/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The invasive mealybug, Phenacoccus solenopsis, has caused serious damage to cotton crops throughout the world. Aenasius bambawalei is a dominant endoparasitoid of P. solenopsis. Exploration of behaviorally active semiochemicals may promote the efficacy of parasitoids used in biological control. Reverse chemical ecology, based on the physiological function of odorant-binding proteins (OBPs), provides an effective approach to screen behaviorally active compounds to target insect pests. Determination of the binding mechanisms and specificity towards different odorants in A. bambawalei may facilitate the development of more-efficient biological control strategies. RESULTS We characterized the expression profile and analyzed the binding affinity of OBP28 in A. bambawalei. AbamOBP28 showed high expression in the wings and antennae of both male and female A. bambawalei. A fluorescence competitive binding assay indicated that AbamOBP28 displayed strong binding affinity to most candidate ligands. Circular dichroism spectra demonstrated that 1-octen-3-one, myrcene, dodecane, 2,4,4-trimethyl-2-pentene, nonanal, and limonene elicited conformational changes in AbamOBP28. Electrophysiological and behavioral bioassays revealed that diethyl sebacate, 2,4,4-trimethyl-2-pentene, and 1-octen-3-one evoked significant electroantennography responses and functioned as attractants in A. bambawalei at specific concentrations. Furthermore, three-dimensional structure modeling and molecular docking showed that hydrogen bonds were formed by Glu1 and Ser75 of AbamOBP28 with diethyl sebacate, respectively. CONCLUSION These results demonstrate that AbamOBP28 is involved in the chemoreception of A. bambawalei. The identified protein provides a potential target for efficient enemy utilization and pest control, and the overall results may help develop protocols for more effective screening of behaviorally active semiochemicals. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chong Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuxiang Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuanggang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongzhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aiming Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Cheng W, Zhang Y, Yu J, Liu W, Zhu-Salzman K. Functional Analysis of Odorant-Binding Proteins 12 and 17 from Wheat Blossom Midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae). INSECTS 2020; 11:insects11120891. [PMID: 33348639 PMCID: PMC7767053 DOI: 10.3390/insects11120891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022]
Abstract
Simple Summary Sitodiplosis mosellana is one of the most destructive pests of wheat. Adults rely highly on wheat spike volatiles to search and locate oviposition sites. Insect odorant-binding proteins (OBPs) are important in binding and transporting host plant volatiles to the olfactory receptors. Therefore, OBP-based behavioral interference is believed to be a novel and effective pest management strategy. The objectives of this study were to clone two S. mosellana female antenna-enriched OBP genes (SmosOBP12 and SmosOBP17), determine the functions of the encoded SmosOBP proteins in binding wheat volatiles, and investigate behavioral responses of female S. mosellana to odorant molecules. Results indicated that SmosOBP12 had a broader ligand-binding spectrum than SmosOBP17 to wheat volatiles. Female S. mosellana showed intensive response to 3-hexanol, 1-octen-3-ol, D-panthenol, 3-carene, (Z)-3-hexenylacetate, hexyl acetate, methyl salicylate, heptyl acetate, ethyl heptanoate, α-farnesene, and ocimene. Notably, all these compounds except α-farnesene exhibited strong affinity to SmosOBP12. In conclusion, SmosOBP12 may play more crucial roles than SmosOBP17 in perception and transportation of biologically active host volatiles. This information has enhanced our molecular understanding of the S. mosellana olfaction, which could also serve as an important reference for developing attractants or repellents to control this pest. Abstract The wheat blossom midge Sitodiplosis mosellana, one of the most disastrous wheat pests, depends highly on olfactory cues to track suitable plants. To better understand the olfactory recognition mechanisms involved in host selection, in the present study we cloned two S. mosellana adult antenna-specific odorant binding protein (OBP) genes, SmosOBP12 and SmosOBP17, and evaluated bacterially expressed recombinant proteins for their selectivity and sensitivity for host wheat volatiles using the fluorescence-based ligand binding assay. The results showed that both SmosOBPs effectively bound alcohol, ester, ketone, and terpenoid compounds. Particularly, SmosOBP12 had significantly higher affinities (Ki < 10.5 μM) than SmosOBP17 (Ki2 > 0.1 μM) to 3-hexanol, 1-octen-3-ol, D-panthenol, 3-carene, (Z)-3-hexenylacetate, hexyl acetate, methyl salicylate, heptyl acetate, and ethyl heptanoate. Consistently, S. mosellana females were attracted to all these chemicals in a behavioral assay using Y-tube olfactometer. SmosOBP12 also bound aldehyde, but neither bound alkanes. Notably, SmosOBP12 exhibited strong affinity to ocimene (Ki = 8.2 μM) that repelled S. mosellana. SmosOBP17, however, was insensitive to this compound. Taken together, our results indicate that SmosOBP12 may play a greater role than SmosOBP17 in perceiving these biologically active plant volatiles.
Collapse
Affiliation(s)
- Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
- Correspondence: (W.C.); (K.Z.-S.)
| | - Yudong Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Jinlin Yu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Wei Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (W.C.); (K.Z.-S.)
| |
Collapse
|
14
|
Liu Y, Hu Y, Bi J, Kong X, Long G, Zheng Y, Liu K, Wang Y, Xu H, Guan C, Ai H. Odorant-binding proteins involved in sex pheromone and host-plant recognition of the sugarcane borer Chilo infuscatellus (Lepidoptera: Crambidae). PEST MANAGEMENT SCIENCE 2020; 76:4064-4076. [PMID: 32542949 DOI: 10.1002/ps.5961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pheromone-binding proteins (PBPs) are responsible for transporting sex pheromones and general odorant-binding proteins (GOBPs) have been proposed to transport host-plant volatiles. A large number of OBPs have been identified from Lepidoptera species. However, olfactory molecular biology and physiology studies on PBP and GOBP in sugarcane pests are limited. Chilo infuscatellus is one of the most widely distributed pests in sugarcane-producing areas. RESULTS Three PBPs (CinfPBP1, CinfPBP2 and CinfPBP3) and two GOBPs (CinfGOBP1 and CinfGOBP2) were identified, and five olfactory gene transcripts were abundantly expressed in antennae of C. infuscatellus. Binding assays showed that CinfPBP1-3 exhibited strong binding affinity for the sex pheromone components Z11-16:OH and 16:OH of C. infuscatellus. Meanwhile, CinfGOBP1-2 had high binding affinity with host-plant volatiles from sugarcane (Saccharum officinarum). Field-trapping results suggested that four volatile components, octadecane, (Z)-3-hexen-1-ol, α-terpineol and hexadecane from host plants and sex pheromone mixed baits have synergistic roles in attracting C. infuscatellus adult moths. CONCLUSION Functional characterization of CinfPBPs and CinfGOBPs in C. infuscatellus could help us find new environmentally friendly alternatives to conventional pest control using pesticides in sugarcane fields. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuying Liu
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yuwei Hu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Jie Bi
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaotong Kong
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guangyan Long
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya Zheng
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yufeng Wang
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hanliang Xu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Chuxiong Guan
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Hui Ai
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
15
|
Cheng WN, Zhang YD, Liu W, Li GW, Zhu-Salzman K. Molecular and functional characterization of three odorant-binding proteins from the wheat blossom midge, Sitodiplosis mosellana. INSECT SCIENCE 2020; 27:721-734. [PMID: 31017726 DOI: 10.1111/1744-7917.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Sitodiplosis mosellana, a periodic but devastating wheat pest, relies on wheat spike volatiles as a cue in selecting hosts for oviposition. Insect odorant-binding proteins (OBPs) are thought to play essential roles in filtering, binding and transporting hydrophobic odorant molecules to specific receptors. To date, the molecular mechanisms underlying S. mosellana olfaction are poorly understood. Here, three S. mosellana antenna-specific OBP genes, SmosOBP11, 16 and 21, were cloned and bacterially expressed. Binding properties of the recombinant proteins to 28 volatiles emitted from wheat spikes were investigated using fluorescence competitive binding assays. Sequence analysis suggested that these SmosOBPs belong to the Classic OBP subfamily. Ligand-binding analysis showed that all three SmosOBPs preferentially bound alcohol, ester and ketone compounds, and SmosOBP11 and 16 also selectively bound terpenoid compounds. In particular, the three SmosOBPs had high binding affinities (Ki < 20 μmol/L) to 3-hexanol and cis-3-hexenylacetate that elicited strong electroantennogram (EAG) response from female antennae. In addition, SmosOBP11 displayed significantly higher binding (Ki < 8 μmol/L) than SmosOBP16 and 21 to 1-octen-3-ol, D-panthenol, α-pinene and heptyl acetate which elicited significant EAG response, suggesting that SmosOBP11 plays a major role in recognition and transportation of these volatiles. These findings have provided important insight into the molecular mechanism by which S. mosellana specifically recognizes plant volatiles for host selection, and have facilitated identification of effective volatile attractants that are potentially useful for pest monitoring and trapping.
Collapse
Affiliation(s)
- Wei-Ning Cheng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Dong Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Guang-Wei Li
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, Shaanxi, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Wei HS, Duan HX, Li KB, Zhang S, Wei ZJ, Yin J. The mechanism underlying OBP heterodimer formation and the recognition of odors in Holotrichia oblita Faldermann. Int J Biol Macromol 2020; 152:957-968. [DOI: 10.1016/j.ijbiomac.2019.10.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
|
17
|
Lizana P, Machuca J, Larama G, Quiroz A, Mutis A, Venthur H. Mating-based regulation and ligand binding of an odorant-binding protein support the inverse sexual communication of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). INSECT MOLECULAR BIOLOGY 2020; 29:337-351. [PMID: 32065441 DOI: 10.1111/imb.12638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In moths, sex pheromones play a key role in mate finding. These chemicals are transported in the antennae by odorant-binding proteins (OBPs). Commonly, males encounter conspecific females; therefore, several OBPs are male-biased. Less is known, however, about how the olfactory system of moths has evolved toward inverse sexual communication, ie where females seek males. Therefore, the objective of this study was to identify the profile of OBPs and their expression patterns in the bee hive pest, Galleria mellonella, a moth that uses inverse sexual communication. Here, OBP-related transcripts were identified by an RNA Sequencing (RNA-Seq) approach and analysed through both Reverse Transcription Polymerase Chain Reaction (RT-PCR) in different tissues and quantitative real-time PCR for two states, virgin and postmating. Our results indicate that G. mellonella has 20 OBPs distributed amongst different tissues. Interestingly, 17 of the 20 OBPs were significantly down-regulated after mating in females, whereas only OBP7 was up-regulated. By contrast, 18 OBP transcripts were up-regulated in males after mating. Additionally, binding assays and structural simulations showed general odorant-binding protein 2 (GOBP2) was able to bind sex pheromone components and analogues. These findings suggest a possible role of OBPs, especially GOBPs, in the inverse sexual communication of G. mellonella, with gene expression regulated as a response to mating.
Collapse
Affiliation(s)
- P Lizana
- Carrera de Bioquímica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - J Machuca
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - G Larama
- Centro de Excelencia de Modelación y Computación Científica, Universidad de La Frontera, Temuco, Chile
| | - A Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - A Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - H Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Li DZ, Huang XF, Yang RN, Chen JY, Wang MQ. Functional Analysis of Two Odorant-Binding Proteins, MaltOBP9 and MaltOBP10, in Monochamus alternatus Hope. Front Physiol 2020; 11:317. [PMID: 32351402 PMCID: PMC7174603 DOI: 10.3389/fphys.2020.00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
Odorant-binding proteins (OBPs) are important for the perception of chemical signals by insects. Effective pest management strategies can be developed by understanding the host location mechanism and the physiological functions of OBPs in olfactory detection. In this study, we cloned two OBPs from Monochamus alternatus, where MaltOBP9 was highly expressed in multiple insect tissues and MaltOBP10 was highly expressed in the female antenna according to the results of qRT-PCR. The recombinant proteins were successfully purified in vitro. Immunocytochemistry indicated the high expression of MaltOBP9 and MaltOBP10 in the sensillum lymph of sensilla basiconica, sensilla trichodea, sensilla auricillica, and sensilla chaetica, thereby demonstrating their broad participation in semiochemical detection. Both proteins were localized in the inner cavity of mechanoreceptors and they exhibited broad binding abilities with volatiles from pine bark according to fluorescence competitive binding assays. Due to its broad binding ability and distribution, MaltOBP9 may be involved in various physiological processes as well as olfactory detection. MaltOBP10 appears to play a role in the fundamental olfactory recognition process of female adults according to its broad binding ability. These findings suggest that OBPs may have various physiological functions in insects, thereby providing novel insights into the olfactory receptive mechanism.
Collapse
Affiliation(s)
- Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Feng Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Wen M, Li E, Li J, Chen Q, Zhou H, Zhang S, Li K, Ren B, Wang Y, Yin J. Molecular Characterization and Key Binding Sites of Sex Pheromone-Binding Proteins from the Meadow Moth, Loxostege sticticalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12685-12695. [PMID: 31657923 DOI: 10.1021/acs.jafc.9b03235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The meadow moth, Loxostege sticticalis, is a typical agricultural pest that uses sex pheromones to mediate mating behavior; however, the mechanism underlying the selectivity of its pheromone-binding proteins (PBPs) remains unknown. In this study, LstiPBP1 and LstiPBP3 were cloned, expressed, and purified, and the fluorescence binding assay showed that LstiPBP1 binds to the major sex pheromone component, E-11-tetradecenol (E11-14:OH), with high affinity; moreover, E11-14:OH could evoke a significant antennal electrophysiological response and attract L. sticticalis males. After LstiPBP1 was silenced, both the antennal response and attractiveness of E11-14:OH decreased significantly. Molecular docking predicted that a hydrogen bonding site, Leu37, played key role in the binding of LstiPBP1 to E11-14:OH. After Leu37 was mutated, the E11-14:OH-binding affinity decreased drastically. These results suggest that LstiPBP1 participates in E11-14:OH recognition and could be used as a target gene to disturb the mating behavior of L. sticticalis and develop new odorants for pest control.
Collapse
Affiliation(s)
- Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Ertao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Jinqiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Haifeng Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization , Northeast Normal University , Changchun , Jilin 130024 , China
- Key Laboratory of Vegetation Ecology, MOE , Northeast Normal University , Changchun 130024 , China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
20
|
Li F, Li D, Dewer Y, Qu C, Yang Z, Tian J, Luo C. Discrimination of Oviposition Deterrent Volatile β-Ionone by Odorant-Binding Proteins 1 and 4 in the Whitefly Bemisia tabaci. Biomolecules 2019; 9:biom9100563. [PMID: 31623354 PMCID: PMC6843521 DOI: 10.3390/biom9100563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022] Open
Abstract
: The whitefly, Bemisia tabaci, is an important invasive economic pest of agricultural crops worldwide. β-ionone has a significant oviposition repellent effect against B. tabaci, but the olfactory molecular mechanism of this insect for recognizing β-ionone is unclear. To clarify the binding properties of odorant-binding proteins (OBPs) with β-ionone, we performed gene cloning, evolution analysis, bacterial expression, fluorescence competitive binding assay, and molecular docking to study the binding function of OBP1 and OBP4 on β-ionone. The results showed that after the OBP1 and OBP4 proteins were recombined, the compound β-ionone exhibited a reduction in the fluorescence binding affinity to <50%, with a dissociation constant of 5.15 and 3.62 μM for OBP1 and OBP4, respectively. Our data indicate that β-ionone has high affinity for OBP1 and OBP4, which play a crucial role in the identification of oviposition sites in B. tabaci. The findings of this study suggest that whiteflies employ β-ionone compound in the selection of the suitable egg-laying sites on host plants during the oviposition behavior.
Collapse
Affiliation(s)
- Fengqi Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Du Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria 21616, Egypt.
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Zhen Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| | - Jiahui Tian
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chen Luo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
21
|
Bari G, Scala A, Garzone V, Salvia R, Yalcin C, Vernile P, Aresta AM, Facini O, Baraldi R, Bufo SA, Vogel H, de Lillo E, Rapparini F, Falabella P. Chemical Ecology of Capnodis tenebrionis (L.) (Coleoptera: Buprestidae): Behavioral and Biochemical Strategies for Intraspecific and Host Interactions. Front Physiol 2019; 10:604. [PMID: 31191334 PMCID: PMC6545930 DOI: 10.3389/fphys.2019.00604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
This study focuses on several aspects of communication strategies adopted by adults of the Mediterranean flat-headed root-borer Capnodis tenebrionis (Coleoptera: Buprestidae). Morphological studies on the structures involved in mate recognition and acceptance revealed the presence of porous areas in the pronota in both sexes. These areas were variable in shape and size, but proportionally larger in males. The presence of chaetic, basiconic, and coeloconic sensilla in the antennae of both males and females was verified. Bioassays revealed stereotyped rituals in males and the involvement of female pronotal secretions in mate recognition and acceptance. During the mating assays, the female's pronotum was covered by a biologically inert polymeric resin (DenFilTM), which prevented males from detecting the secretions and from completing the copulation ritual. The use of the resin allowed for the collection of chemical compounds. GC-MS analysis of the resin suggested it may be used to retain compounds from insect body surfaces and revealed sex-specific chemical profiles in the cuticles. Since adult C. tenebrionis may use volatile organic compounds (VOCs) emitted from leaves or shoots, the VOC emission profiles of apricot trees were characterized. Several volatiles related to plant-insect interactions involving fruit tree species of the Rosaceae family and buprestid beetles were identified. To improve understanding of how VOCs are perceived, candidate soluble olfactory proteins involved in chemoreception (odorant-binding proteins and chemosensory proteins) were identified using tissue and sex-specific RNA-seq data. The implications for chemical identification, physiological and ecological functions in intraspecific communication and insect-host interactions are discussed and potential applications for monitoring presented.
Collapse
Affiliation(s)
- Giuseppe Bari
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Scala
- Department of Science, University of Basilicata, Potenza, Italy
| | - Vita Garzone
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Rosanna Salvia
- Department of Science, University of Basilicata, Potenza, Italy
| | - Cem Yalcin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Syngenta, Izmir, Turkey
| | - Pasqua Vernile
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Osvaldo Facini
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | - Rita Baraldi
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | - Sabino A. Bufo
- Department of Science, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Enrico de Lillo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Rapparini
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | | |
Collapse
|
22
|
Tang QF, Shen C, Zhang Y, Yang ZP, Han RR, Wang J. Antennal transcriptome analysis of the maize weevil Sitophilus zeamais: Identification and tissue expression profiling of candidate odorant-binding protein genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21542. [PMID: 30820994 DOI: 10.1002/arch.21542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Our bioassays reviewed that antennae played crucial roles in the responses of maize weevil (Sitophilus zeamais) to food and sex volatiles. In order to identify the maize weevil odorant-binding protein (OBP) genes, we analyzed its antennal transcriptome. In total, 21,587,928 high-quality clean reads were obtained from RNA-seq, 52,206 unigenes were assembled, and 25,744 unigenes showed significant similarity ( E value < 10 -5 ) to known proteins in the NCBI nonredundant protein database. From those unigenes, we identified 41 candidate OBP proteins, which could be categorized into dimeric OBPs subfamily, minus-C OBPs subfamily, and classical OBPs subfamily. Phylogenic analysis indicated that most maize weevil OBPs were closely related to their orthologues in other beetles of the Superfamily Curculionoidea. We further investigated the expression profiles of those candidate OBP genes by quantitative real-time polymerase chain reaction. Twenty-six of forty-one maize weevil OBP genes were highly expressed in the antennae or other parts of the head. The rest were expressed in the legs, wings, or other tested tissues. The antennal transcriptomic data and candidate OBP genes described here provide a basis for the functional studies of the maize weevil chemical perception, which are potential novel targets for pest control strategies.
Collapse
Affiliation(s)
- Qing-Feng Tang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Chen Shen
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhi-Peng Yang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Rong-Rong Han
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, Maryland
| |
Collapse
|
23
|
Yin J, Wang C, Fang C, Zhang S, Cao Y, Li K, Leal WS. Functional characterization of odorant-binding proteins from the scarab beetle Holotrichia oblita based on semiochemical-induced expression alteration and gene silencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:11-19. [PMID: 30423422 DOI: 10.1016/j.ibmb.2018.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/22/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
With the advent of next-generation sequencing, it is now possible to rapidly identify the entire repertoire of olfactory genes likely to be involved in chemical communication of an insect species. It remains, however, a challenge to identify olfactory proteins, such as odorant receptors and odorant-binding proteins (OBPs), vis-à-vis the odorants they detect. It has been reported that exposing the olfactory system to a physiologically relevant odorant alters the transcript levels of odorant receptor(s) involved in the detection of the tested odorant. We applied this paradigm in an attempt to identify putative OBPs from the scarab beetle Holotrichia oblita involved in the reception of plant-derived kairomones. Twenty-nine OBP genes were identified in the H. oblita transcriptome, 20 of which were enriched in antennae compared with nonolfactory tissues. Of these, 2 OBP genes, HoblOBP13 and HoblOBP9, were upregulated upon exposure to one of the female attractants (E)-2-hexenol and phenethyl alcohol; none of the OBP transcripts changed upon exposure to methyl anthranilate, which does not attract H. oblita females. Binding assays showed that HoblOBP13 and HoblOBP9 have high affinity for (E)-2-hexenol and phenethyl alcohol, respectively. RNAi treatment showed that transcripts of both HoblOBP13 and HoblOBP9 declined in a time-course manner 24-72 h postinjection. OBP-dsRNA-treated female beetles showed significantly lower attraction to (E)-2-hexenol and phenethyl alcohol than did water-injected beetles and those treated with GFP-dsRNA. We, therefore, concluded that HoblOBP13 and HoblOBP9 are essential for H. oblita reception of the plant-derived kairomones (E)-2-hexenol and phenethyl alcohol.
Collapse
Affiliation(s)
- Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaoqun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chiqin Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Water S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
24
|
Chen XL, Li GW, Xu XL, Wu JX. Molecular and Functional Characterization of Odorant Binding Protein 7 From the Oriental Fruit Moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 2018; 9:1762. [PMID: 30618787 PMCID: PMC6295574 DOI: 10.3389/fphys.2018.01762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/22/2018] [Indexed: 01/14/2023] Open
Abstract
Odorant-binding proteins (OBPs) are widely and abundantly distributed in the insect sensillar lymph and are essential for insect olfactory processes. The OBPs can capture and transfer odor molecules across the sensillum lymph to odorant receptors and trigger the signal transduction pathway. In this study, a putative OBP gene, GmolOBP7, was cloned using specific-primers, based on the annotated unigene which forms the antennal transcriptome of Grapholita molesta. Real-time PCR (qRT-PCR) analysis revealed that GmolOBP7 was highly expressed in the wings of males and the antennae of both male and female adult moths, while low levels were expressed in other tissues. The recombinant GmolOBP7 (rGmolOBP7) was successfully expressed and purified via Ni-ion affinity chromatography. The results of binding assays revealed that rGmolOBP7 exhibited a high binding affinity to the minor sex pheromone 1-dodecanol containing Ki of 7.48 μM and had high binding capacities to the host-plant volatiles, such as pear ester, lauraldehyde and α-ocimene. RNA-interference experiments were performed to further assess the function of GmolOBP7. qRT-PCR showed that the levels of mRNA transcripts significantly declined in 1 and 2 day old male and female moths, treated with GmolOBP7 dsRNA, compared with non-injection controls. The EAG responses of dsRNA-injected males and females to pear ester, as well as the EAG responses of dsRNA-injected males to 1-dodecanol, were significantly reduced compared to the GFP-dsRNA-injected and non-injected controls. We therefore infer that GmolOBP7 has a dual function in the perception and recognition of the host-plant volatiles and sex pheromones.
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China.,Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan' an University, Yan'an, China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan' an University, Yan'an, China
| | - Xiang-Li Xu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| |
Collapse
|
25
|
Ju Q, Li X, Guo XQ, Du L, Shi CR, Qu MJ. Two Odorant-Binding Proteins of the Dark Black Chafer ( Holotrichia parallela) Display Preferential Binding to Biologically Active Host Plant Volatiles. Front Physiol 2018; 9:769. [PMID: 30072905 PMCID: PMC6058716 DOI: 10.3389/fphys.2018.00769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/01/2018] [Indexed: 01/14/2023] Open
Abstract
The dark black chafer (DBC), Holotrichia parallela, is an important pest of multiple crops. Insect host-searching behaviors are regulated by host plant volatiles. Therefore, a better understanding of the mechanism linking the chemosensory system to plant volatiles at the molecular level will benefit DBC control strategies. Based on antenna transcriptome data, two highly expressed antenna-specific odorant-binding proteins (HparOBP20 and 49) were selected to identify novel DBC attractants using reverse chemical ecology methods. We expressed these proteins, mapped their binding specificity, and tested the activity of the plant volatiles in the field. The ligands used in the binding specificity assays included 31 host-plant-associated volatiles and two sex pheromone components. The results showed that (1) HparOBP20 and 49 are involved in odor recognition; (2) these proteins bind attractive plant volatiles strongly and can therefore be employed to develop environmentally friendly DBC management strategies; and (3) the green-leaf volatile (Z)-3-hexenyl acetate shows a high binding affinity to HparOBP20 (Ki = 18.51 μM) and HparOBP49 (Ki = 39.65 μM) and is highly attractive to DBC adults, especially females. In the field test, a (Z)-3-hexenyl acetate trap caught an average of 13 ± 1.202 females per day, which was significantly greater than the corresponding male catch (F2,6 = 74.18, P < 0.0001). (Z)-3-Hexenyl acetate may represent a useful supplement to the known sex pheromone for DBC attraction. In the present study, the binding characteristics of two HparOBPs with host plant volatiles were screened, providing behaviourally active compounds that might be useful for DBC control, based on reverse chemical ecology.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Jing Qu
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
26
|
Younas A, Waris MI, Tahir ul Qamar M, Shaaban M, Prager SM, Wang MQ. Functional Analysis of the Chemosensory Protein MsepCSP8 From the Oriental Armyworm Mythimna separata. Front Physiol 2018; 9:872. [PMID: 30050456 PMCID: PMC6052345 DOI: 10.3389/fphys.2018.00872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Chemosensory proteins (CSPs) play important roles in chemosensation in insects, but their exact physiological functions remain elusive. In order to investigate the functions of CSPs in the oriental armyworm Mythimna separata, in the present study we explored expression patterns and binding characteristics of the CSP, MsepCSP8. The distinctive functions of MsepCSP8 were also validated by RNAi. The results showed that MsepCSP8 shares high sequence similarity with CSPs of other insect family members, including the characteristic four-cysteine signature motif. MsepCSP8 mRNA was specifically expressed in antennae of females at levels well above those in other tissues. Competitive binding assays confirmed that 20 out of 56 ligands bound more strongly to MsepCSP8 at pH 7.4 than at pH 5.0. Protein structure modeling and molecular docking analyses identified amino acid residues involved in binding volatile compounds, and behavioral response experiments showed that M. separata elicited significant responses to five volatiles from compounds displaying high binding affinity to MsepCSP8. MsepCSP8 transcript abundance was decreased by dsMsepCSP8 injection, which affected the behavioral responses of M. separata to representative semiochemicals. Our findings demonstrate that MsepCSP8 likely contributes to mediating responses of M. separata adults to plant volatiles.
Collapse
Affiliation(s)
- Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad I. Waris
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Sean M. Prager
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Chen XL, Su L, Li BL, Li GW, Wu JX. Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricide). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21456. [PMID: 29569371 DOI: 10.1002/arch.21456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Odorant binding proteins (OBPs) act in recognizing odor molecules and their most well-studied functions are transporting odors across the sensillum lymph to olfactory receptor neurons within the insect antennal sensillum. The adults of Grapholita molesta highly depend on olfactory cues in locating host plants and selecting oviposition sites, in which OBPs play an important role in perceiving and recognizing host plant volatiles. Exploring the physiological function of OBPs could facilitate our understanding of their importance in insects' chemical communication. In this study, three OBP genes were cloned and named GmolOBP4, GmolOBP5, and GmolOBP10. Quantitative real-time PCR results indicated that GmolOBP4 and GmolOBP10 were predominantly expressed in adult antennae and GmolOBP5 was expressed in multiple tissues, including head, legs, and wings in addition to antennae. The binding affinities of the three recombinant GmolOBPs (rGmolOBPs) with four sex pheromone components and twenty-nine host plant volatiles were measured using 1-N-Phenyl-naphthylamine as a fluorescence probe. The three rGmolOBPs exhibited specific binding properties to potential ligands, GmolOBP4 and GmolOBP10 bound to minor sex pheromone components, such as (Z)-8-dodecenyl alcohol and dodecanol, respectively. rGmolOBP4 showed intermediate binding ability with hexanal, benzyl alcohol, and pear ester, rGmolOBP5 had a weak affinity for benzaldehyde, pear ester and, methyl jasmonate, and rGmolOBP10 showed strong binding capacity toward hexanol, decanol, and α-ocimene. We speculate that the GmolOBP4 and GmolOBP10 have dual functions in perception and recognition of host plant volatiles and sex pheromone components, while GmolOBP5 may serve other function(s).
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Li Su
- Department of Plant Protection, Agricultural College, Guangxi University, Nanning, Guangxi, China
| | - Bo-Liao Li
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guang-Wei Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Li QL, Yi SC, Li DZ, Nie XP, Li SQ, Wang MQ, Zhou AM. Optimization of reverse chemical ecology method: false positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism. INSECT MOLECULAR BIOLOGY 2018; 27:305-318. [PMID: 29381231 DOI: 10.1111/imb.12372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Odorant binding proteins (OBPs) are considered as the core molecular targets in reverse chemical ecology, which is a convenient and efficient method by which to screen potential semiochemicals. Herein, we identified a classic OBP, AbamOBP1 from Aenasius bambawalei, which showed high mRNA expression in male antennae. Fluorescence competitive binding assay (FCBA) results demonstrated that AbamOBP1 has higher binding affinity with ligands at acid pH, suggesting the physiologically inconsistent binding affinity of this protein. Amongst the four compounds with the highest binding affinities at acid pH, 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one were shown to have attractant activity for male adults, whereas (-)-limonene and an analogue of 1-octen-3-ol exhibited nonbehavioural activity. Further homology modelling and fluorescence quenching experiments demonstrated that the stoichiometry of the binding of this protein to these ligands was not 1: 1, suggesting that the results of FCBA were false. In contrast, the apparent association constants (Ka) of fluorescence quenching experiments seemed to be more reliable, because 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one had observably higher Ka than (-)-limonene and 1-octen-3-ol at neutral pH. Based on the characteristics of different OBPs, various approaches should be applied to study their binding affinities with ligands, which could modify and complement the results of FCBA and contribute to the application of reverse chemical ecology.
Collapse
Affiliation(s)
- Q L Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - S C Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - D Z Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - X P Nie
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - S Q Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - M-Q Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - A M Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Hu P, Gao C, Zong S, Luo Y, Tao J. Pheromone Binding Protein EhipPBP1 Is Highly Enriched in the Male Antennae of the Seabuckthorn Carpenterworm and Is Binding to Sex Pheromone Components. Front Physiol 2018; 9:447. [PMID: 29755369 PMCID: PMC5934486 DOI: 10.3389/fphys.2018.00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
The seabuckthorn carpenterworm moth Eogystia hippophaecolus is a major threat to seabuckthorn plantations, causing considerable ecological and economic losses in China. Transcriptomic analysis of E. hippophaecolus previously identified 137 olfactory proteins, including three pheromone-binding proteins (PBPs). We investigated the function of E. hippophaecolus PBP1 by studying its mRNA and protein expression profiles and its binding ability with different compounds. The highest levels of expression were in the antennae, particularly in males, with much lower levels of expression in the legs and external genitals. Recombinant PBP1 showed strong binding to sex-pheromone components, suggesting that antennal EhipPBP1 is involved in binding sex-pheromone components during pheromone communication.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China.,Xing An Vocational and Technical College, Xinganmeng, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
30
|
Functional Characteristics, Electrophysiological and Antennal Immunolocalization of General Odorant-Binding Protein 2 in Tea Geometrid, Ectropis obliqua. Int J Mol Sci 2018; 19:ijms19030875. [PMID: 29543772 PMCID: PMC5877736 DOI: 10.3390/ijms19030875] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022] Open
Abstract
As one of the main lepidopteran pests in Chinese tea plantations, Ectropisobliqua Warren (tea geometrids) can severely decrease yields of tea products. The olfactory system of the adult tea geometrid plays a significant role in seeking behaviors, influencing their search for food, mating partners, and even spawning grounds. In this study, a general odorant-binding protein (OBP) gene, EoblGOBP2, was identified in the antennae of E. obliqua using reverse transcription quantification PCR (RT-qPCR). Results showed that EoblGOBP2 was more highly expressed in the antennae of males than in females relative to other tissues. The recombinant EoblGOBP2 protein was prepared in Escherichia coli and then purified through affinity chromatography. Ligand-binding assays showed that EoblGOBP2 had a strong binding affinity for some carbonyl-containing tea leaf volatiles (e.g., (E)-2-hexenal, methyl salicylate, and acetophenone). Electrophysiological tests confirmed that the male moths were more sensitive to these candidate tea plant volatiles than the female moths. Immunolocalization results indicated that EoblGOBP2 was regionally confined to the sensilla trichoid type-II in the male antennae. These results indicate that EoblGOBP2 may be primarily involved in the olfactory activity of male E. obliqua moths, influencing their ability to sense tea leaf volatiles. This study provides a new perspective of insect GOBPs and implies that olfactory function can be used to prevent and control the tea geometrid.
Collapse
|
31
|
Liu H, Zhao XF, Fu L, Han YY, Chen J, Lu YY. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel). Sci Rep 2017; 7:15894. [PMID: 29162858 PMCID: PMC5698463 DOI: 10.1038/s41598-017-15893-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022] Open
Abstract
Bactrocera dorsalis (Hendel) is a fruit-eating pest that causes substantial economic damage to the fresh produce industry in tropical and sub-tropical countries. Methyl eugenol (ME) is a powerful attractant for mature males of B. dorsalis, and has been widely used for detecting, luring and eradicating B. dorsalis populations worldwide. However, the molecular mechanism underlying the olfactory perception of ME remains largely unknown. Here, we analyzed the differential proteomics profiling of the antennae between ME-responsive and ME-non-responsive males by using isobaric tags for relative and absolute quantitation (iTRAQ). In total, 4622 proteins were identified, of which 277 proteins were significant differentially expressed, with 192 up-regulated and 85 down-regulated in responsive male antennae. Quantitative real-time PCR (qRT-PCR) analysis confirmed the authenticity and accuracy of the proteomic analysis. Based on the iTRAQ and qRT-PCR results, we found that the odorant-binding protein 2 (BdorOBP2) was abundantly expressed in responsive male antennae. Moreover, BdorOBP2 was significantly up-regulated by ME in male antennae. Mature males showed significantly greater taxis toward ME than did mature females. Silencing BdorOBP2 reduced mature males' responsiveness to ME. These results indicate that BdorOBP2 may play an essential role in the molecular mechanism underlying B. dorsalis olfactory perception of ME.
Collapse
Affiliation(s)
- Huan Liu
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Feng Zhao
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China
| | - Lang Fu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Yi-Ye Han
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China
| | - Jin Chen
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Yue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Yang RN, Li DZ, Yu G, Yi SC, Zhang Y, Kong DX, Wang MQ. Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides. J Chem Ecol 2017; 43:1033-1045. [PMID: 29063475 DOI: 10.1007/s10886-017-0897-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022]
Abstract
In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (β-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-β-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, β-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.
Collapse
Affiliation(s)
- Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangqiang Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yinan Zhang
- Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, 102442, People's Republic of China
| | - De-Xin Kong
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
33
|
Sun L, Wang Q, Wang Q, Dong K, Xiao Y, Zhang YJ. Identification and Characterization of Odorant Binding Proteins in the Forelegs of Adelphocoris lineolatus (Goeze). Front Physiol 2017; 8:735. [PMID: 29018358 PMCID: PMC5623005 DOI: 10.3389/fphys.2017.00735] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022] Open
Abstract
The chemosensory system is essential for insects to detect exogenous compounds, and odorant binding proteins (OBPs) play crucial roles in odorant binding and transduction. In the alfalfa plant bug Adelphocoris lineolatus, an important pest of multiple crops, our understanding of the physiological roles of antenna-biased OBPs has increased dramatically, whereas OBPs related to gustation have remained mostly unexplored. In this study, we employed RNA sequencing and RACE PCR methods to identify putative OBPs from the adult forelegs of both sexes. Eight candidate OBPs were identified, and three OBPs (AlinOBP15, 16, and 17) were novel. Full-length sequence alignment and phylogenetic analyses suggested that these three candidate OBPs had characteristics typical of the insect OBP family. AlinOBP16 and 17 displayed six highly conserved cysteines, placing them in the classic OBP subfamily, whereas AlinOBP15 resembled AlinOBP14 and clustered with the Plus-C clade. Quantitative real-time PCR (qRT-PCR) revealed distinct and significant tissue- and sex-biased expression patterns. AlinOBP15 was highly expressed in female heads, and AlinOBP16 and 17 were strongly expressed in female antennae. In particular, AlinOBP11, the most abundant OBP gene in our foreleg transcriptome dataset, was predominately expressed in adult legs. Furthermore, four types of sensilla hairs were observed on the forelegs of adult A. lineolatus, including sensilla trichodea, setae, and two types of sensilla chaetica (Sch1 and Sch2). Anti-AlinOBP11 antiserum strongly labeled the outer sensillum lymph of Sch2, implying that it has important gustatory functions in A. lineolatus. Our current findings provide evidence that OBPs can be functionally expressed in the tarsal gustatory sensilla of hemipteran mirid species, broadening our understanding of OBP chemosensory function in insects and facilitating the discovery of new functional targets for the regulation of insect host-searching behaviors.
Collapse
Affiliation(s)
- Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Li H, Zhao L, Fu X, Song X, Wu F, Tang M, Cui H, Yu J. Physicochemical Evidence on Sublethal Neonicotinoid Imidacloprid Interacting with an Odorant-Binding Protein from the Tea Geometrid Moth, Ectropis obliqua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3276-3284. [PMID: 28366004 DOI: 10.1021/acs.jafc.7b00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nowadays the excessive usage of neonicotinoid insecticides always results in residues in Chinese tea fields. It is not clear whether the insecticide residue at the sublethal level influences the physiological processes of tea pests. Here, we provide evidence of interaction between the neonicotinoid imidacloprid and a general odorant-binding protein, EoblGOBP2, from the tea geometrid moth, Ectropis obliqua. The interacting process was demonstrated through multiple fluorescence spectra, UV absorption spectra, circular dichroism (CD) spectra, molecular docking, etc. The binding mode was determined to be static (from 300 to 310 K) and dynamic quenching (from 290 to 300 K). The binding distance was calculated to be 6.9 nm on the basis of FRET theory. According to the thermodynamic analysis, the process was mainly driven by enthalpy (ΔH < 0), and hydrogen bond and van der Waals interactions were the main driving forces in the static and dynamic binding cases, respectively. Moreover, synchronous fluorescence spectra and CD spectra analysis showed stretching of the EoblGOBP2 peptide chains with a decreasing α-helix when imidacloprid was added. Molecular docking was applied and predicted that two hydrogen bonds were formed between imidacloprid and Arg110 in the mature peptide of EoblGOBP2. Moreover, when the absolute amounts of EoblGOBP2 in the moth antennae were measured and calculated by using real-time PCR, it was estimated that imidacloprid at sublethal level (about 0.233 and 0.175 ng/male and female moth antennae, respectively) inhibited the binding of a tea volatile, E-2-hexenal, to EoblGOBP2 at about half. This study indicates that neonicotinoid insecticide at sublethal level may still affect the olfactory cognition of the tea geometrid moth to volatile compounds from tea leaves.
Collapse
Affiliation(s)
- Hongliang Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University , Hangzhou 310018, China
| | - Lei Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University , Hangzhou 310018, China
| | - Xiaobin Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University , Hangzhou 310018, China
| | - Xinmi Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University , Hangzhou 310018, China
| | - Fan Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University , Hangzhou 310018, China
| | - Mingzhu Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University , Hangzhou 310018, China
| | - Hongchun Cui
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences , Hangzhou 310024, China
| | - Jizhong Yu
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences , Hangzhou 310024, China
| |
Collapse
|
35
|
Identification of candidate chemosensory genes by transcriptome analysis in Loxostege sticticalis Linnaeus. PLoS One 2017; 12:e0174036. [PMID: 28423037 PMCID: PMC5396883 DOI: 10.1371/journal.pone.0174036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/02/2017] [Indexed: 12/03/2022] Open
Abstract
Loxostege sticticalis Linnaeus is an economically important agricultural pest, and the larvae cause great damage to crops, especially in Northern China. However, effective and environmentally friendly chemical methods for controlling this pest have not been discovered to date. In the present study, we performed HiSeq2500 sequencing of transcriptomes of the male and female adult antennae, adult legs and third instar larvae, and we identified 54 candidate odorant receptors (ORs), including 1 odorant receptor coreceptor (Orco) and 5 pheromone receptors (PRs), 18 ionotropic receptors (IRs), 13 gustatory receptors (GRs), 34 odorant binding proteins (OBPs), including 1 general odorant binding protein (GOBP1) and 3 pheromone binding proteins (PBPs), 10 chemosensory proteins (CSPs) and 2 sensory neuron membrane proteins (SNMPs). The results of RNA-Seq and RT-qPCR analyses showed the expression levels of most genes in the antennae were higher than that in the legs and larvae. Furthermore, PR4, OR1-4, 7–11, 13–15, 23, 29–32, 34, 41, 43, 47/IR7d.2/GR5b, 45, 7/PBP2-3, GOBP1, OBP3, 8 showed female antennae-biased expression, while PR1/OBP2, 7/IR75d/CSP2 showed male antennae-biased expression. However, IR1, 7d.3, 68a/OBP11, 20–22, 28/CSP9 had larvae enriched expression, and OBP15, 17, 25, 29/CSP5 were mainly expressed in the legs. The results shown above indicated that these genes might play a key role in foraging, seeking mates and host recognition in the L. sticticalis. Our findings will provide the basic knowledge for further studies on the molecular mechanisms of the olfactory system of L. sticticalis and potential novel targets for pest control strategies.
Collapse
|
36
|
Ahmed T, Zhang T, Wang Z, He K, Bai S. C-terminus Methionene Specifically Involved in Binding Corn Odorants to Odorant Binding Protein4 in Macrocentrus cingulum. Front Physiol 2017; 8:62. [PMID: 28228732 PMCID: PMC5297413 DOI: 10.3389/fphys.2017.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
The soluble carrier proteins, OBPs carry odor components through sensilium lymph to specific receptors within the antennal sensilla to trigger behavioral responses. Herein, McinOBP4 was characterized from the Macrocentrus cingulum, which is the specialist parasitic insect of Ostrinia furnacalis for better understanding of olfactory recognition mechanism of this wasp. The classical odorant binding protein McinOBP4 showed good binding affinity to corn green leaf volatiles. RT-qPCR results showed that the McinOBP4 was primarily expressed in male and female wasp antennae, with transcripts levels differing by sex. Fluorescence assays indicate that, McinOBP4 binds corn green leaf volatiles including terpenoides and aliphatic alcohols as well as aldehydes with good affinity. We have also conducted series of binding assay with first mutant (M1), which lacked the last 8 residues and a second mutant (M2), with Met119 replaced by Leucine (Leu119). In the acidic conditions, affinity N-phenylnaphthylamine (1-NPN) to McinOBP4 and M1 were substantially decreased, but increase in basic condition with no significant differences. The lack of C-terminus showed reduced affinity to terpenoides and aliphatic alcohols as well as aldehydes compounds of corn odorants. The mutant M2 with Met119 showed significant reduction in binding affinity to tested odorants, it indicating that Met119 forming hydrophobic chain with the odorants functional group to binding. This finding provides detailed insight of chemosensory function of McinOBP4 in M. cingulum and help to develop low release agents that attract of this wasp to improve ecologically-friendly pest management strategy.
Collapse
Affiliation(s)
- Tofael Ahmed
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China; Bangladesh Sugarcrop Research InstitutePabna, Bangladesh
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
37
|
Brito NF, Moreira MF, Melo ACA. A look inside odorant-binding proteins in insect chemoreception. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:51-65. [PMID: 27639942 DOI: 10.1016/j.jinsphys.2016.09.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 05/14/2023]
Abstract
Detection of chemical signals from the environment through olfaction is an indispensable mechanism for maintaining an insect's life, evoking critical behavioral responses. Among several proteins involved in the olfactory perception process, the odorant binding protein (OBP) has been shown to be essential for a normally functioning olfactory system. This paper discusses the role of OBPs in insect chemoreception. Here, structural aspects, mechanisms of action and binding affinity of such proteins are reviewed, as well as their promising application as molecular targets for the development of new strategies for insect population management and other technological purposes.
Collapse
Affiliation(s)
- Nathália F Brito
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Li G, Chen X, Li B, Zhang G, Li Y, Wu J. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). PLoS One 2016; 11:e0155096. [PMID: 27152703 PMCID: PMC4859520 DOI: 10.1371/journal.pone.0155096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/25/2016] [Indexed: 01/23/2023] Open
Abstract
Background The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs) are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs) within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications. Methodology/Principal Finding Two antennae-specific general OBPs (GOBPs) of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2) for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC) experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1) exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition. Conclusion Two rGmolGOBPs exhibit different binding characteristics for tested ligands. rGmolGOBP1 has dual functions in recognition of host plant volatiles and sex pheromone components, while rGmolGOBP2 is mainly involved in minor sex pheromone component dodecanol perception. This study also provides empirical evidence for the predicted functions of key amino acids in recombinant protein ligand-binding characteristics.
Collapse
Affiliation(s)
- Guangwei Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiulin Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Boliao Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guohui Zhang
- Institute of Entomology, Agricultural College, Yangtze University, Jingzhou, Hubei, China
| | - Yiping Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YPL); (JXW)
| | - Junxiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YPL); (JXW)
| |
Collapse
|
39
|
Yao Q, Xu S, Dong Y, Lu K, Chen B. Identification and characterisation of two general odourant-binding proteins from the litchi fruit borer, Conopomorpha sinensis Bradley. PEST MANAGEMENT SCIENCE 2016; 72:877-887. [PMID: 26085035 DOI: 10.1002/ps.4062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The litchi fruit borer, Conopomorpha sinensis Bradley, is one of the most destructive pests of litchi and longan fruits in south-east Asia and southern China, yet the molecular biology and physiology of this pest remain poorly understood. Control of this insect pest may be achieved by interfering with its recognition of host plants. RESULTS In this study, two cDNAs encoding CsGOBP1 and CsGOBP2 were identified from the antennae of C. sinensis, and a comparative study on these two C. sinensis GOBPs (CsGOBPs) was conducted. The secondary structure of these two CsGOBPs mainly consists of six α-helices, but three-dimensional structural predictions of CsGOBP1 and CsGOBP2 indicated significant difference in the final 3D models. Results in real-time PCR assays indicated that the two CsGOBPs had different tissue- and sex-dependent expression patterns. A competitive binding assay revealed that CsGOBP1 considerably prefer the component exhibited in Guiwei or Feizixiao litchi cultivar, while CsGOBP2 bind to general volatile components from nine litchi cultivars. Additionally, ethyl acetate has higher binding affinities to CsGOBP2 protein than to CsGOBP1, and has remarkable attraction to female C. sinensis moths in Y-tube olfactometer assays. CONCLUSION These results strongly suggest functional difference between these two CsGOBPs in perception of host plant odourants.
Collapse
Affiliation(s)
- Qiong Yao
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Shu Xu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yizhi Dong
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Kai Lu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Bingxu Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| |
Collapse
|
40
|
Li GW, Zhang Y, Li YP, Wu JX, Xu XL. CLONING, EXPRESSION, AND FUNCTIONAL ANALYSIS OF THREE ODORANT-BINDING PROTEINS OF THE ORIENTAL FRUIT MOTH, Grapholita molesta (BUSCK) (LEPIDOPTERA: TORTRICIDAE). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:67-87. [PMID: 26609640 DOI: 10.1002/arch.21309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Odorant-binding proteins (OBPs) act in insect olfactory processes. OBPs are expressed in the olfactory organs and serve in binding and transport of hydrophobic odorants through the sensillum lymph to olfactory receptor neurons within the antennal sensilla. In this study, three OBP genes were cloned from the antennal transcriptome database of Grapholita molesta via reverse-transcription PCR. Recombinant GmolOBPs (rGmolOBPs) were expressed in a prokaryotic expression system and enriched via Ni ion affinity chromatography. The binding properties of the three rGmolOBPs to four sex pheromones and 30 host-plant volatiles were investigated in fluorescence ligand-binding assays. The results demonstrated that rGmolOBP8, rGmolOBP11, and rGmolOBP15 exhibited high binding affinities with the major sex pheromone components (E)-8-dodecenyl acetate, (Z)-8-dodecenyl alcohol, and dodecanol. The volatiles emitted from peach and pear, decanal, butyl hexanoate, and α-ocimene, also showed binding affinities to rGmolOBP8 and rGmolOBP11. Hexanal, heptanal, and α-pinene showed strong binding affinities to rGmolOBP15. Results of the electrophysiological recording experiments and previous behavior bioassays indicated that adult insects had strong electroantennogram and behavioral responses toward butyl hexanoate, hexanal, and heptanal. We infer that the GmolOBP8 and GmolOBP11 have dual functions in perception and recognition of host-plant volatiles and sex pheromones, while GmolOBP15 was mainly involved in plant volatile odorants' perception.
Collapse
Affiliation(s)
- Guang-Wei Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, China
| | - Yan Zhang
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, China
| | - Yi-Ping Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, China
| | - Xiang-Li Xu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, China
| |
Collapse
|
41
|
Zhou J, Zhang N, Wang P, Zhang S, Li D, Liu K, Wang G, Wang X, Ai H. Identification of Host-Plant Volatiles and Characterization of Two Novel General Odorant-Binding Proteins from the Legume Pod Borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae). PLoS One 2015; 10:e0141208. [PMID: 26517714 PMCID: PMC4627759 DOI: 10.1371/journal.pone.0141208] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
Chemoreception is a key feature in selection of host plant by phytophagous insects, and odorant-binding proteins (OBPs) are involved in chemical communication of both insects and vertebrates. The legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) is one of the key pest species of cowpea and widely distributed throughout tropical and subtropical regions, causing up to 80% of yield loss. In this study, we investigated the electrophysiological responses of female M. vitrata to floral volatiles from V. unguiculata. Seventeen electroantennogram-active compounds were identified from floral volatiles of V. unguiculata by coupled gas chromatography-electroantennography (GC-EAD) and gas chromatography-mass spectrometry (GC-MS). Then, we cloned two novel full-length GOBP genes (MvitGOBP1 and MvitGOBP2) from the antennae of M. vitrata using reverse transcription PCR. Protein sequence analysis indicated that they shared high sequence similarity with other Pyralididae insect GOBPs and had the typical six-cysteine signature. Real-time PCR analysis indicated that MvitGOBP1-2 mRNA was highly expressed in the antennae of female adult with several thousands-fold difference compare to other tissue. Next, the recombinant MvitGOBP1-2 was expressed in Escherichia coli and purified using Ni ion affinity chromatography. Fluorescence binding assays demonstrated that MvitGOBP1-2 had different binding affinities with 17 volatile odorant molecules including butanoic acid butyl ester, limonene, 4-ethylpropiophenone, 1H-indol-4-ol, butanoic acid octyl ester and 2-methyl-3-phenylpropanal. In the field trapping experiment, these six floral volatiles could effectively attract female moths and showed significant difference compared with the blank lure. These results suggested that MvitGOBPs and the seventeen floral volatiles are likely to function in the olfactory behavior response of female moths, which may have played crucial roles in the selection of oviposition sites. The six compounds that we have identified from the volatiles of V. unguiculata may provide useful information for exploring efficiency monitoring and integrated pest management strategies of this legume pod borer in the field.
Collapse
Affiliation(s)
- Jing Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Na Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Pan Wang
- Key Laboratory of Insect Resource Utilization & Sustainable Pest Management of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shichang Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Kaiyu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiaoping Wang
- Key Laboratory of Insect Resource Utilization & Sustainable Pest Management of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- * E-mail:
| |
Collapse
|
42
|
Yin J, Zhuang X, Wang Q, Cao Y, Zhang S, Xiao C, Li K. Three amino acid residues of an odorant-binding protein are involved in binding odours in Loxostege sticticalis L. INSECT MOLECULAR BIOLOGY 2015; 24:528-538. [PMID: 26152502 DOI: 10.1111/imb.12179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/09/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Odorant-binding proteins (OBPs) play an important role in insect olfactory processes and are thought to be responsible for the transport of pheromones and other semiochemicals across the sensillum lymph to the olfactory receptors within the antennal sensilla. As an important general odorant binding protein in the process of olfactory recognition, LstiGOBP1 of Loxostege sticticalis L. has been shown to have good affinity to various plant volatiles. However, the binding specificity of LstiGOBP1 should be further explored in order to better understand the olfactory recognition mechanism of L. sticticalis. In this study, real-time PCR experiments indicated that LstiGOBP1 was expressed primarily in adult antennae. Homology modelling and molecular docking were then conducted on the interactions between LstiGOBP1 and 1-heptanol to understand the interactions between LstiGOBP1 and their ligands. Hydrogen bonds formed by amino acid residues might be crucial for the ligand-binding specificity on molecular docking, a hypothesis that was tested by site-directed mutagenesis. As predicted binding sites for LstiGOBP1, Thr15, Trp43 and Val14 were replaced by alanine to determine the changes in binding affinity. Finally, fluorescence assays revealed that the mutants Thr15 and Trp43 had significantly decreased binding affinity to most odours; in mutants that had two-site mutations, the binding to the six odours that were tested was completely abolished. This result indicates that Thr15 and Trp43 were involved in binding these compounds, possibly by forming multiple hydrogen bonds with the functional groups of the ligands. These results provide new insights into the detailed chemistry of odours' interactions with proteins.
Collapse
Affiliation(s)
- J Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Zhuang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - C Xiao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - K Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Kola VSR, Renuka P, Madhav MS, Mangrauthia SK. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front Physiol 2015; 6:119. [PMID: 25954206 PMCID: PMC4406143 DOI: 10.3389/fphys.2015.00119] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21-24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed.
Collapse
Affiliation(s)
| | | | - Maganti Sheshu Madhav
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Satendra K. Mangrauthia
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| |
Collapse
|
44
|
Zhang J, Walker WB, Wang G. Pheromone reception in moths: from molecules to behaviors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 130:109-28. [PMID: 25623339 DOI: 10.1016/bs.pmbts.2014.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Male moths detect and find their mates using species-specific sex pheromones emitted by conspecific females. Olfaction plays a vital role in this behavior. Since the first discovery of an insect sex pheromone from the silkmoth Bombyx mori, great efforts have been spent on understanding the sensing of the pheromones in vivo. Much progress has been made in elucidating the molecular mechanisms that mediate chemoreception in insects in the past few decades. In this review, we focus on pheromone reception and detection in moths, from the molecular to the behavioral level. We trace the information pathway from the capture of pheromone by male antennae, binding and transportation to olfactory receptor neurons, receptor activation, signal transduction, molecule inactivation, through brain processing and behavioral response. We highlight the impact of recent studies and also provide our insights into pheromone processing.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - William B Walker
- Chemical Ecology Research Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
45
|
Sun H, Guan L, Feng H, Yin J, Cao Y, Xi J, Li K. Functional characterization of chemosensory proteins in the scarab beetle, Holotrichia oblita Faldermann (Coleoptera: Scarabaeida). PLoS One 2014; 9:e107059. [PMID: 25188038 PMCID: PMC4154846 DOI: 10.1371/journal.pone.0107059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/06/2014] [Indexed: 11/17/2022] Open
Abstract
Chemosensory proteins (CSPs) play important roles in chemical communication by insects, as they recognize and transport environmental chemical signals to receptors within sensilla. In this study, we identified HoblCSP1 and HoblCSP2 from a cDNA library of Holotrichia oblita antennae, successfully expressed them in E. coli and purified them by Ni ion affinity chromatography. We then measured the ligand-binding specificities of HoblCSP1 and HoblCSP2 to 50 selected ligands in a competitive binding assay. These results demonstrated that HoblCSP1 and HoblCSP2 have similar ligand-binding spectra. Both proteins displayed the highest affinity for β-ionone, α-ionone and cinnamaldehyde, indicating that they prefer binding to odorants other than sex pheromones. Additionally, immuno-localization revealed that HoblCSP1 is highly concentrated in sensilla basiconica, while HoblCSP2 is specifically localized to sensilla placodea. In conclusion, HoblCSP1 and HoblCSP2 are responsible for binding to general odorants with slightly different specificities due to their different in vivo environments.
Collapse
Affiliation(s)
- Hongyan Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; College of Plant Science, Jilin University, Changchun, Jilin Province, P.R. China
| | - Li Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; College of Plant Science, Jilin University, Changchun, Jilin Province, P.R. China
| | - Honglin Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; College of Plant Science, Jilin University, Changchun, Jilin Province, P.R. China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, Jilin Province, P.R. China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
46
|
Zhuang X, Wang Q, Wang B, Zhong T, Cao Y, Li K, Yin J. Prediction of the key binding site of odorant-binding protein of Holotrichia oblita Faldermann (Coleoptera: Scarabaeida). INSECT MOLECULAR BIOLOGY 2014; 23:381-390. [PMID: 24576058 DOI: 10.1111/imb.12088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae) is a predominant underground pest in the northern parts of China, and its larvae (grubs) cause great economic losses because of its wide range of host plants and covert habitats. Environmentally friendly strategies for controlling adults would have novel and broad potential applications. One potential pest management measure is the regulation of olfactory chemoreception to control target insect pests. In the process of olfactory recognition, odorant-binding proteins (OBPs) are believed to carry hydrophobic odorants from the environment to the surface of olfactory receptor neurons. To obtain a better understanding of the relationship between OBP structures and their ligands, homology modelling and molecular docking have been conducted on the interaction between HoblOBP1 and hexyl benzoate in the present study. Based on the results, site-directed mutagenesis and binding experiments were combined to describe the binding sites of HoblOBP1 and to explore its ligand-binding mechanism. After homology modelling of HoblOBP1, it was found that the three-dimensional structure of HoblOBP1 consists of six α-helices and three disulphide bridges that connect the helices, and the hydrophobic pockets are both composed of five helices. Based on the docking study, we found that van der Waals interactions and hydrophobic interactions are both important in the bonding between HoblOBP1 and hexyl benzoate. Intramolecular residues formed the hydrogen bonds in the C terminus of the protein and the bonds are crucial for the ligand-binding specificity. Finally, MET48, ILE80 and TYR111 are binding sites predicted for HoblOBP1. Using site-directed mutagenesis and fluorescence assays, it was found that ligands could not be recognized by mutant of Tyr111. A possible explanation is that the compound could not be recognized by the mutant, and remains in the binding cavity because of the loss of the intramolecular hydrogen bonding that acts as a holder. So we believe that Tyr111 of HoblOBP1 is a key binding site. We also believe that Ile80A is a very important binding site, especially to some ligands.
Collapse
Affiliation(s)
- X Zhuang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Ahmed T, Zhang TT, Wang ZY, He KL, Bai SX. Three amino acid residues bind corn odorants to McinOBP1 in the polyembryonic endoparasitoid of Macrocentrus cingulum Brischke. PLoS One 2014; 9:e93501. [PMID: 24705388 PMCID: PMC3976273 DOI: 10.1371/journal.pone.0093501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/04/2014] [Indexed: 12/03/2022] Open
Abstract
Odorant binding proteins (OBPs) play a central role in transporting odorant molecules from the sensillum lymph to olfactory receptors to initiate behavioral responses. In this study, the OBP of Macrocentrus cingulum McinOBP1 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR experiments indicate that the McinOBP1 is expressed mainly in adult antennae, with expression levels differing by sex. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN) as a fluorescent probe demonstrated that the McinOBP1 can bind green-leaf volatiles, including aldehydes and terpenoids, but also can bind aliphatic alcohols with good affinity, in the order trans-2-nonenal>cis-3-hexen-1-ol>trans-caryophelle, suggesting a role of McinOBP1 in general odorant chemoreception. We chose those three odorants for further homology modeling and ligand docking based on their binding affinity. The Val58, Leu62 and Glu130 are the key amino acids in the binding pockets that bind with these three odorants. The three mutants, Val58, Leu62 and Glu130, where the valine, leucine and glutamic residues were replaced by alanine, proline and alanine, respectively; showed reduced affinity to these odorants. This information suggests, Val58, Leu62 and Glu130 are involved in the binding of these compounds, possibly through the specific recognition of ligands that forms hydrogen bonds with the ligands functional groups.
Collapse
Affiliation(s)
- Tofael Ahmed
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Bangladesh Sugarcane Research Institute, Ishurdi, Pabna, Bangladesh
| | - Tian-tao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen-ying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| | - Kang-lai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-xiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Jayanthi KPD, Kempraj V, Aurade RM, Roy TK, Shivashankara KS, Verghese A. Computational reverse chemical ecology: virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis. BMC Genomics 2014; 15:209. [PMID: 24640964 PMCID: PMC4003815 DOI: 10.1186/1471-2164-15-209] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/03/2014] [Indexed: 11/16/2022] Open
Abstract
Background Semiochemical is a generic term used for a chemical substance that influences the behaviour of an organism. It is a common term used in the field of chemical ecology to encompass pheromones, allomones, kairomones, attractants and repellents. Insects have mastered the art of using semiochemicals as communication signals and rely on them to find mates, host or habitat. This dependency of insects on semiochemicals has allowed chemical ecologists to develop environment friendly pest management strategies. However, discovering semiochemicals is a laborious process that involves a plethora of behavioural and analytical techniques, making it expansively time consuming. Recently, reverse chemical ecology approach using odorant binding proteins (OBPs) as target for elucidating behaviourally active compounds is gaining eminence. In this scenario, we describe a “computational reverse chemical ecology” approach for rapid screening of potential semiochemicals. Results We illustrate the high prediction accuracy of our computational method. We screened 25 semiochemicals for their binding potential to a GOBP of B. dorsalis using molecular docking (in silico) and molecular dynamics. Parallely, compounds were subjected to fluorescent quenching assays (Experimental). The correlation between in silico and experimental data were significant (r2 = 0.9408; P < 0.0001). Further, predicted compounds were subjected to behavioral bioassays and were found to be highly attractive to insects. Conclusions The present study provides a unique methodology for rapid screening and predicting behaviorally active semiochemicals. This methodology may be developed as a viable approach for prospecting active semiochemicals for pest control, which otherwise is a laborious process.
Collapse
Affiliation(s)
| | - Vivek Kempraj
- National Fellow Lab, Division of Entomology and Nematology, Indian Institute of Horticultural Research, Bangalore, India.
| | | | | | | | | |
Collapse
|
49
|
Gong ZJ, Miao J, Duan Y, Jiang YL, Li T, Wu YQ. Identification and expression profile analysis of putative odorant-binding proteins in Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae). Biochem Biophys Res Commun 2014; 444:164-70. [DOI: 10.1016/j.bbrc.2014.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/10/2014] [Indexed: 01/19/2023]
|
50
|
Garczynski SF, Coates BS, Unruh TR, Schaeffer S, Jiwan D, Koepke T, Dhingra A. Application of Cydia pomonella expressed sequence tags: Identification and expression of three general odorant binding proteins in codling moth. INSECT SCIENCE 2013; 20:559-574. [PMID: 23956229 PMCID: PMC4255946 DOI: 10.1111/j.1744-7917.2012.01560.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 06/02/2023]
Abstract
The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8 341 expressed sequence tags was generated from Roche 454 GS-FLX sequencing of eight tissue-specific cDNA libraries. Putative chemosensory proteins (12) and odorant binding proteins (OBPs) (18) were annotated, which included three putative general OBP (GOBP), one more than typically reported for other Lepidoptera. To further characterize CpomGOBPs, we cloned cDNA copies of their transcripts and determined their expression patterns in various tissues. Cloning and sequencing of the 698 nt transcript for CpomGOBP1 resulted in the prediction of a 163 amino acid coding region, and subsequent RT-PCR indicated that the transcripts were mainly expressed in antennae and mouthparts. The 1 289 nt (160 amino acid) CpomGOBP2 and the novel 702 nt (169 amino acid) CpomGOBP3 transcripts are mainly expressed in antennae, mouthparts, and female abdomen tips. These results indicate that next generation sequencing is useful for the identification of novel transcripts of interest, and that codling moth expresses a transcript encoding for a new member of the GOBP subfamily.
Collapse
Affiliation(s)
| | - Brad S. Coates
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011
| | - Thomas R. Unruh
- USDA-ARS, Yakima Agricultural Research Laboratory, Wapato, WA 98951
| | - Scott Schaeffer
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Derick Jiwan
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Tyson Koepke
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Amit Dhingra
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|