1
|
Yang S, Yang S, Luo A. Phthalates and uterine disorders. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:97-114. [PMID: 38452364 DOI: 10.1515/reveh-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Humans are ubiquitously exposed to environmental endocrine disrupting chemicals such as phthalates. Phthalates can migrate out of products and enter the human body through ingestion, inhalation, or dermal application, can have potential estrogenic/antiestrogenic and/or androgenic/antiandrogenic activity, and are involved in many diseases. As a female reproductive organ that is regulated by hormones such as estrogen, progesterone and androgen, the uterus can develop several disorders such as leiomyoma, endometriosis and abnormal bleeding. In this review, we summarize the hormone-like activities of phthalates, in vitro studies of endometrial cells exposed to phthalates, epigenetic modifications in the uterus induced by phthalate exposure, and associations between phthalate exposure and uterine disorders such as leiomyoma and endometriosis. Moreover, we also discuss the current research gaps in understanding the relationship between phthalate exposure and uterine disorders.
Collapse
Affiliation(s)
- Shuhong Yang
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| | - Shuhao Yang
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| |
Collapse
|
2
|
Bornman MS, Aneck-Hahn NH. EDCs and male urogenital cancers. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:521-553. [PMID: 34452696 DOI: 10.1016/bs.apha.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Male sex determination and sexual differentiation occur between 6-12 weeks of gestation. During the "male programming window" the fetal testes start to produce testosterone that initiates the development of the male reproductive tract. Exposure to endocrine disrupting chemicals (EDCs) able to mimic or disrupt steroid hormone actions may disrupt testicular development and adversely impact reproductive health at birth, during puberty and adulthood. The testicular dysgenesis syndrome (TDS) occurs as a result inhibition of androgen action on fetal development preceding Sertoli and Leydig cell dysfunction and may result from direct or epigenetic effects. Hypospadias, cryptorchidism and poor semen quality are elements of TDS, which may be considered a risk factor for testicular germ cell cancer (TGCC). Exposure to estrogen or estrogenic EDCs results in developmental estrogenization/estrogen imprinting in the rodent for prostate cancer (PCa). This can disrupt prostate histology by disorganization of the epithelium, prostatic intraepithelial neoplasia (PIN) lesions, in particular high-grade PIN (HGPIN) lesions which are precursors of prostatic adenocarcinoma. These defects persist throughout the lifespan of the animal and later in life estrogen exposure predispose development of cancer. Exposure of pregnant dams to vinclozolin, a competitive anti-androgen, and results in prominent, focal regions of inflammation in all exposed animals. The inflammation closely resembles human nonbacterial prostatitis that occurs in young men and evidence indicates that inflammation plays a central role in the development of PCa. In conclusion, in utero exposure to endocrine disrupters may predispose to the development of TDS, testicular cancer (TCa) and PCa and are illustrations of Developmental Origins of Health and Disease (DOHaD).
Collapse
Affiliation(s)
- M S Bornman
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - N H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Medicine, Department of Urology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Voisin AS, Suarez Ulloa V, Stockwell P, Chatterjee A, Silvestre F. Genome-wide DNA methylation of the liver reveals delayed effects of early-life exposure to 17-α-ethinylestradiol in the self-fertilizing mangrove rivulus. Epigenetics 2021; 17:473-497. [PMID: 33892617 DOI: 10.1080/15592294.2021.1921337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organisms exposed to endocrine disruptors in early life can show altered phenotype later in adulthood. Although the mechanisms underlying these long-term effects remain poorly understood, an increasing body of evidence points towards the potential role of epigenetic processes. In the present study, we exposed hatchlings of an isogenic lineage of the self-fertilizing fish mangrove rivulus for 28 days to 4 and 120 ng/L of 17-α-ethinylestradiol. After a recovery period of 140 days, reduced representation bisulphite sequencing (RRBS) was performed on the liver in order to assess the hepatic genome-wide methylation landscape. Across all treatment comparisons, a total of 146 differentially methylated fragments (DMFs) were reported, mostly for the group exposed to 4 ng/L, suggesting a non-monotonic effect of EE2 exposure. Gene ontology analysis revealed networks involved in lipid metabolism, cellular processes, connective tissue function, molecular transport and inflammation. The highest effect was reported for nipped-B-like protein B (NIPBL) promoter region after exposure to 4 ng/L EE2 (+ 21.9%), suggesting that NIPBL could be an important regulator for long-term effects of EE2. Our results also suggest a significant role of DNA methylation in intergenic regions and potentially in transposable elements. These results support the ability of early exposure to endocrine disruptors of inducing epigenetic alterations during adulthood, providing plausible mechanistic explanations for long-term phenotypic alteration. Additionally, this work demonstrates the usefulness of isogenic lineages of the self-fertilizing mangrove rivulus to better understand the biological significance of long-term alterations of DNA methylation by diminishing the confounding factor of genetic variability.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Victoria Suarez Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Peter Stockwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Dutta S, Haggerty DK, Rappolee DA, Ruden DM. Phthalate Exposure and Long-Term Epigenomic Consequences: A Review. Front Genet 2020; 11:405. [PMID: 32435260 PMCID: PMC7218126 DOI: 10.3389/fgene.2020.00405] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
Phthalates are esters of phthalic acid which are used in cosmetics and other daily personal care products. They are also used in polyvinyl chloride (PVC) plastics to increase durability and plasticity. Phthalates are not present in plastics by covalent bonds and thus can easily leach into the environment and enter the human body by dermal absorption, ingestion, or inhalation. Several in vitro and in vivo studies suggest that phthalates can act as endocrine disruptors and cause moderate reproductive and developmental toxicities. Furthermore, phthalates can pass through the placental barrier and affect the developing fetus. Thus, phthalates have ubiquitous presence in food and environment with potential adverse health effects in humans. This review focusses on studies conducted in the field of toxicogenomics of phthalates and discusses possible transgenerational and multigenerational effects caused by phthalate exposure during any point of the life-cycle.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Diana K Haggerty
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Daniel A Rappolee
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States.,Reproductive Stress, Inc., Grosse Pointe Farms, MI, United States
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States.,Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
5
|
Plunk EC, Richards SM. Epigenetic Modifications due to Environment, Ageing, Nutrition, and Endocrine Disrupting Chemicals and Their Effects on the Endocrine System. Int J Endocrinol 2020; 2020:9251980. [PMID: 32774366 PMCID: PMC7391083 DOI: 10.1155/2020/9251980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
The epigenome of an individual can be altered by endogenous hormones, environment, age, diet, and exposure to endocrine disrupting chemicals (EDCs), and the effects of these modifications can be seen across generations. Epigenetic modifications to the genome can alter the phenotype of the individual without altering the DNA sequence itself. Epigenetic modifications include DNA methylation, histone modification, and aberrant microRNA (miRNA) expression; they begin during germ cell development and embryogenesis and continue until death. Hormone modulation occurs during the ageing process due to epigenetic modifications. Maternal overnutrition or undernutrition can affect the epigenome of the fetus, and the effects can be seen throughout life. Furthermore, maternal care during the childhood of the offspring can lead to different phenotypes seen in adulthood. Diseases controlled by the endocrine system, such as obesity and diabetes, as well as infertility in females can be associated with epigenetic changes. Not only can these phenotypes be seen in F1, but also some chemical effects can be passed through the germline and have effects transgenerationally, and the phenotypes are seen in F3. The following literature review expands upon these topics and discusses the state of the science related to epigenetic effects of age, diet, and EDCs on the endocrine system.
Collapse
Affiliation(s)
- Elizabeth C. Plunk
- Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403, USA
| | - Sean M. Richards
- Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403, USA
| |
Collapse
|
6
|
Combarnous Y, Nguyen TMD. Comparative Overview of the Mechanisms of Action of Hormones and Endocrine Disruptor Compounds. TOXICS 2019; 7:toxics7010005. [PMID: 30682876 PMCID: PMC6468742 DOI: 10.3390/toxics7010005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/23/2022]
Abstract
Endocrine Disruptor Compounds (EDCs) are synthetic or natural molecules in the environment that promote adverse modifications of endogenous hormone regulation in humans and/or in wildlife animals. In the present paper, we review the potential mechanisms of EDCs and point out the similarities and differences between EDCs and hormones. There was only one mechanism, out of nine identified, in which EDCs acted like hormones (i.e. binding and stimulated hormone receptor activity). In the other eight identified mechanisms of action, EDCs exerted their effects either by affecting endogenous hormone concentration, or its availability, or by modifying hormone receptor turn over. This overview is intended to classify the various EDC mechanisms of action in order to better appreciate when in vitro tests would be valid to assess their risks towards humans and wildlife.
Collapse
Affiliation(s)
- Yves Combarnous
- CNRS, INRA, Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France.
| | - Thi Mong Diep Nguyen
- CNRS, INRA, Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France.
- Faculty of Biology-Agricultural Engineering, Quy Nhon University, Binh Dinh 820000, Vietnam.
| |
Collapse
|
7
|
Lymperi S, Giwercman A. Endocrine disruptors and testicular function. Metabolism 2018; 86:79-90. [PMID: 29605435 DOI: 10.1016/j.metabol.2018.03.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
Despite concerns of the scientific community regarding the adverse effects of human exposure to exogenous man-made chemical substances or mixtures that interfere with normal hormonal balance, the so called "endocrine disruptors (EDs)", their production has been increased during the last few decades. EDs' extensive use has been implicated in the increasing incidence of male reproductive disorders including poor semen quality, testicular malignancies and congenital developmental defects such as hypospadias and cryptorchidism. Several animal studies have demonstrated that exposure to EDs during fetal, neonatal and adult life has deleterious consequences on male reproductive system; however, the evidence on humans remains ambiguous. The complexity of their mode of action, the differential effect according to the developmental stage that exposure occurs, the latency from exposure and the influence of the genetic background in the manifestation of their toxic effects are all responsible factors for the contradictory outcomes. Furthermore, the heterogeneity in the published human studies has hampered agreement in the field. Interventional studies to establish causality would be desirable, but unfortunately the nature of the field excludes this possibility. Therefore, future studies based on standardized guidelines are necessary, in order to estimate human health risks and implement policies to limit public exposure.
Collapse
Affiliation(s)
- Stefania Lymperi
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
8
|
Polo A, Nittoli C, Crispo A, Langastro T, Cocco S, Severino L, De Laurentiis M, Ciliberto G, Montella M, Budillon A, Costantini S. An interaction network approach to study the correlation between endocrine disrupting chemicals and breast cancer. MOLECULAR BIOSYSTEMS 2017; 13:2687-2696. [PMID: 29072741 DOI: 10.1039/c7mb00489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are natural or synthetic exogenous substances affecting human health. Although present at low concentrations in the environment, they can cause a broad range of negative effects on the endocrine functions by mimicking the action of steroid hormones due to their structural similarity. Hormonal unbalance can play an important role in carcinogenesis at any stage of disease. In the case of the breast cancer, EDCs directly affect the transformation of normal breast cells into cancer cells by interfering with hormonal regulation and by inducing the alteration of factors that regulate gene expression. The principal aims of this work were to study the interaction networks of proteins modulated in breast cancer by either environmental EDCs or mycotoxins, and to identify the proteins with the strongest coordination role defined as hub nodes. Our studies evidenced the presence of seven and six hub proteins in two EDCs and mycotoxins networks, respectively. Then, by merging the two networks, we identified that three hub nodes (BCL2, ESR2 and CTNNB1) in the environmental EDCs network show direct interactions with three hub nodes (CASP8, RELA and MKI67) in the mycotoxins network. These data highlighted that two networks are linked through proteins involved in the apoptosis regulation and in processes related to cell proliferation and survival, and, thus, in breast cancer progression.
Collapse
Affiliation(s)
- Andrea Polo
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Functional Divergence of the Nuclear Receptor NR2C1 as a Modulator of Pluripotentiality During Hominid Evolution. Genetics 2016; 203:905-22. [PMID: 27075724 DOI: 10.1534/genetics.115.183889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
Genes encoding nuclear receptors (NRs) are attractive as candidates for investigating the evolution of gene regulation because they (1) have a direct effect on gene expression and (2) modulate many cellular processes that underlie development. We employed a three-phase investigation linking NR molecular evolution among primates with direct experimental assessment of NR function. Phase 1 was an analysis of NR domain evolution and the results were used to guide the design of phase 2, a codon-model-based survey for alterations of natural selection within the hominids. By using a series of reliability and robustness analyses we selected a single gene, NR2C1, as the best candidate for experimental assessment. We carried out assays to determine whether changes between the ancestral and extant NR2C1s could have impacted stem cell pluripotency (phase 3). We evaluated human, chimpanzee, and ancestral NR2C1 for transcriptional modulation of Oct4 and Nanog (key regulators of pluripotency and cell lineage commitment), promoter activity for Pepck (a proxy for differentiation in numerous cell types), and average size of embryological stem cell colonies (a proxy for the self-renewal capacity of pluripotent cells). Results supported the signal for alteration of natural selection identified in phase 2. We suggest that adaptive evolution of gene regulation has impacted several aspects of pluripotentiality within primates. Our study illustrates that the combination of targeted evolutionary surveys and experimental analysis is an effective strategy for investigating the evolution of gene regulation with respect to developmental phenotypes.
Collapse
|
10
|
Lea RG, Amezaga MR, Loup B, Mandon-Pépin B, Stefansdottir A, Filis P, Kyle C, Zhang Z, Allen C, Purdie L, Jouneau L, Cotinot C, Rhind SM, Sinclair KD, Fowler PA. The fetal ovary exhibits temporal sensitivity to a 'real-life' mixture of environmental chemicals. Sci Rep 2016; 6:22279. [PMID: 26931299 PMCID: PMC4773987 DOI: 10.1038/srep22279] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/10/2016] [Indexed: 01/09/2023] Open
Abstract
The development of fetal ovarian follicles is a critical determinant of adult female reproductive competence. Prolonged exposure to environmental chemicals (ECs) can perturb this process with detrimental consequences for offspring. Here we report on the exposure of pregnant ewes to an environmental mixture of ECs derived from pastures fertilized with sewage sludge (biosolids): a common global agricultural practice. Exposure of pregnant ewes to ECs over 80 day periods during early, mid or late gestation reduced the proportion of healthy early stage fetal follicles comprising the ovarian reserve. Mid and late gestation EC exposures had the most marked effects, disturbing maternal and fetal liver chemical profiles, masculinising fetal anogenital distance and greatly increasing the number of altered fetal ovarian genes and proteins. In conclusion, differential temporal sensitivity of the fetus and its ovaries to EC mixtures has implications for adult ovarian function following adverse exposures during pregnancy.
Collapse
Affiliation(s)
- Richard G Lea
- Schools of Veterinary Medicine and Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Maria R Amezaga
- Institute of Medical Sciences, School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Benoit Loup
- UMR BDR, INRA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | | | - Agnes Stefansdottir
- Institute of Medical Sciences, School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Carol Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Ceri Allen
- Schools of Veterinary Medicine and Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Laura Purdie
- Schools of Veterinary Medicine and Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Luc Jouneau
- UMR BDR, INRA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Corinne Cotinot
- UMR BDR, INRA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Stewart M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Kevin D Sinclair
- Schools of Veterinary Medicine and Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
11
|
Sweeney MF, Hasan N, Soto AM, Sonnenschein C. Environmental endocrine disruptors: Effects on the human male reproductive system. Rev Endocr Metab Disord 2015; 16:341-57. [PMID: 26847433 PMCID: PMC4803593 DOI: 10.1007/s11154-016-9337-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.
Collapse
Affiliation(s)
- M F Sweeney
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - N Hasan
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - A M Soto
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Department of Integrative Physiology & Pathobiology, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - C Sonnenschein
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Department of Integrative Physiology & Pathobiology, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Casati L, Sendra R, Sibilia V, Celotti F. Endocrine disrupters: the new players able to affect the epigenome. Front Cell Dev Biol 2015; 3:37. [PMID: 26151052 PMCID: PMC4471431 DOI: 10.3389/fcell.2015.00037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/17/2015] [Indexed: 01/27/2023] Open
Abstract
Epigenetics represents the way by which the environment is able to program the genome; there are three main levels of epigenetic control on genome: DNA methylation, post-translational histone modification and microRNA expression. The term Epigenetics has been widened by NIH to include “both heritable changes in gene activity and expression but also stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable.” These changes might be produced mostly by the early life environment and might affect health influencing the susceptibility to develop diseases, from cancer to mental disorder, during the entire life span. The most studied environmental influences acting on epigenome are diet, infections, wasting, child care, smoking and environmental pollutants, in particular endocrine disrupters (EDs). These are environmental xenobiotics able to interfere with the normal development of the male and female reproductive systems of wildlife, of experimental animals and possibly of humans, disrupting the normal reproductive functions. Data from literature indicate that EDs can act at different levels of epigenetic control, in some cases transgenerationally, in particular when the exposure to these compounds occurs during the prenatal and earliest period of life. Some of the best characterized EDs will be considered in this review. Among the EDs, vinclozolin (VZ), and methoxychlor (MXC) promote epigenetic transgenerational effects. Polychlorinated biphenils (PCBs), the most widespread environmental EDs, affect histone post-translational modifications in a dimorphic way, possibly as the result of an alteration of gene expression of the enzymes involved in histone modification, as the demethylase Jarid1b, an enzyme also involved in regulating the interaction of androgens with their receptor.
Collapse
Affiliation(s)
- Lavinia Casati
- Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Ramon Sendra
- Departament de Bioquímica i Biologia Molecular, Universitat de València Valencia, Spain
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| |
Collapse
|
13
|
Brieño-Enríquez MA, García-López J, Cárdenas DB, Guibert S, Cleroux E, Děd L, Hourcade JDD, Pěknicová J, Weber M, del Mazo J. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS One 2015; 10:e0124296. [PMID: 25897752 PMCID: PMC4405367 DOI: 10.1371/journal.pone.0124296] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.
Collapse
Affiliation(s)
- Miguel A. Brieño-Enríquez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - David B. Cárdenas
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Sylvain Guibert
- Biotechnology and Cell Signaling, CNRS UMR7242, University of Strasbourg, Strasbourg, France
| | - Elouan Cleroux
- Biotechnology and Cell Signaling, CNRS UMR7242, University of Strasbourg, Strasbourg, France
| | - Lukas Děd
- Institute of Biotechnology AS CR, v. v. i., Prague, Czech Republic
| | - Juan de Dios Hourcade
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jana Pěknicová
- Institute of Biotechnology AS CR, v. v. i., Prague, Czech Republic
| | - Michael Weber
- Biotechnology and Cell Signaling, CNRS UMR7242, University of Strasbourg, Strasbourg, France
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Rajesh P, Balasubramanian K. Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. J Endocrinol 2014; 223:47-66. [PMID: 25232145 DOI: 10.1530/joe-14-0111] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP) is an endocrine-disrupting chemical (EDC), widely used as a plasticiser. Developmental exposure to EDCs could alter epigenetic programming and result in adult-onset disease. We investigated whether DEHP exposure during development affects glucose homoeostasis in the F1 offspring as a result of impaired insulin signal transduction in gastrocnemius muscle. Pregnant Wistar rats were administered DEHP (0, 1, 10 and 100 mg/kg per day) from embryonic days 9-21 orally. DEHP-exposed offspring exhibited elevated blood glucose, impaired serum insulin, glucose tolerance and insulin tolerance, along with reduced insulin receptor, glucose uptake and oxidation in the muscle at postnatal day 60. The levels of insulin signalling molecules and their phosphorylation were down-regulated in DEHP-exposed offspring. However, phosphorylated IRS1(Ser636/639), which impedes binding of downstream effectors and the negative regulator (PTEN) of PIP3, was increased in DEHP-exposed groups. Down-regulation of glucose transporter 4 (Glut4 (Slc2a4)) gene expression and increased GLUT4(Ser488) phosphorylation, which decreases its intrinsic activity and translocation towards the plasma membrane, were recorded. Chromatin immunoprecipitation assays detected decreased MYOD binding and increased histone deacetylase 2 interaction towards Glut4, indicative of the tight chromatin structure at the Glut4 promoter. Increased DNMTs and global DNA methylation levels were also observed. Furthermore, methylation of Glut4 at the MYOD-binding site was increased in DEHP-exposed groups. These findings indicate that, gestational DEHP exposure predisposes F1 offspring to glucometabolic dysfunction at adulthood by down-regulating the expression of critical genes involved in the insulin signalling pathway. Furthermore, DEHP-induced epigenetic alterations in Glut4 appear to play a significant role in disposition towards this metabolic abnormality.
Collapse
Affiliation(s)
- Parsanathan Rajesh
- Department of EndocrinologyDr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - Karundevi Balasubramanian
- Department of EndocrinologyDr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| |
Collapse
|
15
|
Hernández-Montes G, Argüello JM, Valderrama B. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC Microbiol 2012; 12:249. [PMID: 23122209 PMCID: PMC3548706 DOI: 10.1186/1471-2180-12-249] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022] Open
Abstract
Background Different systems contributing to copper homeostasis in bacteria have been described in recent years involving periplasmic and transport proteins that provide resistance via metal efflux to the extracellular media (CopA/Cue, Cus, Cut, and Pco). The participation of these proteins in the assembly of membrane, periplasmic and secreted cuproproteins has also been postulated. The integration and interrelation of these systems and their apparent redundancies are less clear since they have been studied in alternative systems. Based on the idea that cellular copper is not free but rather it is transferred via protein-protein interactions, we hypothesized that systems would coevolve and be constituted by set numbers of essential components. Results By the use of a phylogenomic approach we identified the distribution of 14 proteins previously characterized as members of homeostasis systems in the genomes of 268 gamma proteobacteria. Only 3% of the genomes presented the complete systems and 5% of them, all intracellular parasites, lacked the 14 genes. Surprisingly, copper homeostatic pathways did not behave as evolutionary units with particular species assembling different combinations of basic functions. The most frequent functions, and probably because of its distribution the most vital, were copper extrusion from the cytoplasm to the periplasm performed by CopA and copper export from the cytoplasm to the extracellular space performed by CusC, which along with the remaining 12 proteins, assemble in nine different functional repertoires. Conclusions These observations suggest complex evolutionary dynamics and still unexplored interactions to achieve copper homeostasis, challenging some of the molecular transport mechanism proposed for these systems.
Collapse
Affiliation(s)
- Georgina Hernández-Montes
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001 Col, Chamilpa, Cuernavaca, Mor CP 62210, México
| | | | | |
Collapse
|