1
|
Li W, Song J, Tu H, Jiang S, Pan B, Li J, Zhao Y, Chen L, Xu Q. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation. Mol Ecol Resour 2024; 24:e13989. [PMID: 38946220 DOI: 10.1111/1755-0998.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jie Song
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huaming Tu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiazhen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yongpeng Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Hu P, Wang Z, Li J, Wang D, Wang Y, Zhao Q, Li C. IGF1R and LOX Modules Are Related to Antler Growth Rate Revealed by Integrated Analyses of Genomics and Transcriptomics. Animals (Basel) 2022; 12:1522. [PMID: 35739859 PMCID: PMC9219449 DOI: 10.3390/ani12121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Deer antlers are organs of bone and have an extremely rapid growth rate. Thus far, the molecular mechanism underlying rapid antler growth has not been properly elucidated, and key genes driving this growth rate have not been fully identified. In this study, based on the newly assembled high-quality sika deer genome, we conducted an integrated analysis of genome-wide association analysis (GWAS) and weighted gene co-expression network analysis (WGCNA) using genome resequencing data from our previous GWAS, with weight and transcriptome sequencing data of faster- vs. slower-growing antlers of sika deer. The expressions of key genes were verified using Fragments Per Kilobase of transcript per Million fragments mapped (FPKM) in different tissue zones of the antler growth center, different types of sika deer tissues and antler tissues collected from faster and slower growth rates. The results show that a total of 49 genes related to antler growth rate were identified, and most of those genes were enriched in the IGF1R and LOX modules. The gene regulation network of antler growth rate through the IGF1R pathway was constructed. In conclusion, the integration of GWAS and WGCNA analyses had great advantages in identifying regulatory genes of complex antler growth traits over using singular methods individually, and we believe that our findings in the present study can provide further insight into unveiling the mechanism underlying extraordinary fast antler growth rate in particular, as well as the regulatory mechanism of rapid tissue proliferation in general.
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China; (P.H.); (Z.W.); (J.L.); (D.W.); (Y.W.)
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China; (P.H.); (Z.W.); (J.L.); (D.W.); (Y.W.)
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China; (P.H.); (Z.W.); (J.L.); (D.W.); (Y.W.)
| | - Dongxu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China; (P.H.); (Z.W.); (J.L.); (D.W.); (Y.W.)
| | - Yusu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China; (P.H.); (Z.W.); (J.L.); (D.W.); (Y.W.)
| | - Quanmin Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China;
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China; (P.H.); (Z.W.); (J.L.); (D.W.); (Y.W.)
| |
Collapse
|
3
|
Zhou C, Zhang W, Wen Q, Bu P, Gao J, Wang G, Jin J, Song Y, Sun X, Zhang Y, Jiang X, Yu H, Peng C, Shen Y, Price M, Li J, Zhang X, Fan Z, Yue B. Comparative Genomics Reveals the Genetic Mechanisms of Musk Secretion and Adaptive Immunity in Chinese Forest Musk Deer. Genome Biol Evol 2019; 11:1019-1032. [PMID: 30903183 PMCID: PMC6450037 DOI: 10.1093/gbe/evz055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2019] [Indexed: 02/05/2023] Open
Abstract
The Chinese forest musk deer (Moschus berezovskii; FMD) is an artiodactyl mammal and is both economically valuable and highly endangered. To investigate the genetic mechanisms of musk secretion and adaptive immunity in FMD, we compared its genome to nine other artiodactyl genomes. Comparative genomics demonstrated that eight positively selected genes (PSGs) in FMD were annotated in three KEGG pathways that were related to metabolic and synthetic activity of musk, similar to previous transcriptome studies. Functional enrichment analysis indicated that many PSGs were involved in the regulation of immune system processes, implying important reorganization of the immune system in FMD. FMD-specific missense mutations were found in two PSGs (MHC class II antigen DRA and ADA) that were classified as deleterious by PolyPhen-2, possibly contributing to immune adaptation to infectious diseases. Functional assessment showed that the FMD-specific mutation enhanced the ADA activity, which was likely to strengthen the immune defense against pathogenic invasion. Single nucleotide polymorphism-based inference showed the recent demographic trajectory for FMD. Our data and findings provide valuable genomic resources not only for studying the genetic mechanisms of musk secretion and adaptive immunity, but also for facilitating more effective management of the captive breeding programs for this endangered species.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Wenbo Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Qinchao Wen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Ping Bu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Jie Gao
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Guannan Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Jiazheng Jin
- Sichuan Engineering Research Center for Medicinal Animals, Xichang, P.R. China
| | - Yinjie Song
- Center of Infectious Diseases, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, P.R. China
| | - Xiaohong Sun
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yifan Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Xue Jiang
- Sichuan Engineering Research Center for Medicinal Animals, Xichang, P.R. China
| | - Haoran Yu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Changjun Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yongmei Shen
- Sichuan Engineering Research Center for Medicinal Animals, Xichang, P.R. China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
4
|
Positive Selection of Squalene Synthase in Cucurbitaceae Plants. Int J Genomics 2019; 2019:5913491. [PMID: 31211131 PMCID: PMC6532303 DOI: 10.1155/2019/5913491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022] Open
Abstract
Triterpenoid saponins are secondary metabolites synthesized through isoprenoid pathways in plants. Cucurbitaceae represent an important plant family in which many species contain cucurbitacins as secondary metabolites synthesized through isoprenoid and triterpenoid pathways. Squalene synthase (SQS) is required for the biosynthesis of isoprenoids, but the forces driving the evolution of SQS remain undetermined. In this study, 10 SQS cDNA sequences cloned from 10 species of Cucurbitaceae and 49 sequences of SQS downloaded from GenBank and UniProt databases were analyzed in a phylogenetic framework to identify the evolutionary forces for functional divergence. Through phylogenetic construction and positive selection analysis, we found that SQS sequences are under positive selection. The sites of positive selection map to functional and transmembrane domains. 180L, 189S, 194S, 196S, 265I, 289P, 389P, 390T, 407S, 408A, 410R, and 414N were identified as sites of positive selection that are important during terpenoid synthesis and map to transmembrane domains. 196S and 407S are phosphorylated and influence SQS catalysis and triterpenoid accumulation. These results reveal that positive selection is an important evolutionary force for SQS in plants. This provides new information into the molecular evolution of SQS within the Cucurbitaceae family.
Collapse
|
5
|
Hu P, Wang T, Liu H, Xu J, Wang L, Zhao P, Xing X. Full-length transcriptome and microRNA sequencing reveal the specific gene-regulation network of velvet antler in sika deer with extremely different velvet antler weight. Mol Genet Genomics 2018; 294:431-443. [DOI: 10.1007/s00438-018-1520-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/03/2018] [Indexed: 11/29/2022]
|
6
|
Ishengoma E, Agaba M, Cavener DR. Evolutionary analysis of vision genes identifies potential drivers of visual differences between giraffe and okapi. PeerJ 2017; 5:e3145. [PMID: 28396824 PMCID: PMC5385128 DOI: 10.7717/peerj.3145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
Background The capacity of visually oriented species to perceive and respond to visual signal is integral to their evolutionary success. Giraffes are closely related to okapi, but the two species have broad range of phenotypic differences including their visual capacities. Vision studies rank giraffe’s visual acuity higher than all other artiodactyls despite sharing similar vision ecological determinants with many of them. The extent to which the giraffe’s unique visual capacity and its difference with okapi is reflected by changes in their vision genes is not understood. Methods The recent availability of giraffe and okapi genomes provided opportunity to identify giraffe and okapi vision genes. Multiple strategies were employed to identify thirty-six candidate mammalian vision genes in giraffe and okapi genomes. Quantification of selection pressure was performed by a combination of branch-site tests of positive selection and clade models of selection divergence through comparing giraffe and okapi vision genes and orthologous sequences from other mammals. Results Signatures of selection were identified in key genes that could potentially underlie giraffe and okapi visual adaptations. Importantly, some genes that contribute to optical transparency of the eye and those that are critical in light signaling pathway were found to show signatures of adaptive evolution or selection divergence. Comparison between giraffe and other ruminants identifies significant selection divergence in CRYAA and OPN1LW. Significant selection divergence was identified in SAG while positive selection was detected in LUM when okapi is compared with ruminants and other mammals. Sequence analysis of OPN1LW showed that at least one of the sites known to affect spectral sensitivity of the red pigment is uniquely divergent between giraffe and other ruminants. Discussion By taking a systemic approach to gene function in vision, the results provide the first molecular clues associated with giraffe and okapi vision adaptations. At least some of the genes that exhibit signature of selection may reflect adaptive response to differences in giraffe and okapi habitat. We hypothesize that requirement for long distance vision associated with predation and communication with conspecifics likely played an important role in the adaptive pressure on giraffe vision genes.
Collapse
Affiliation(s)
- Edson Ishengoma
- The School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania; Mkwawa University of College of Education, University of Dar-es-Salaam, Iringa, Tanzania
| | - Morris Agaba
- The School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology , Arusha , Tanzania
| | - Douglas R Cavener
- Department of Biology and the Huck Institute of Life Sciences, Pennsylvania State University , University Park , PA , United States
| |
Collapse
|
7
|
Liu HQ, Wei JK, Li B, Wang MS, Wu RQ, Rizak JD, Zhong L, Wang L, Xu FQ, Shen YY, Hu XT, Zhang YP. Divergence of dim-light vision among bats (order: Chiroptera) as estimated by molecular and electrophysiological methods. Sci Rep 2015; 5:11531. [PMID: 26100095 PMCID: PMC5155579 DOI: 10.1038/srep11531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
Dim-light vision is present in all bats, but is divergent among species. Old-World fruit bats (Pteropodidae) have fully developed eyes; the eyes of insectivorous bats are generally degraded, and these bats rely on well-developed echolocation. An exception is the Emballonuridae, which are capable of laryngeal echolocation but prefer to use vision for navigation and have normal eyes. In this study, integrated methods, comprising manganese-enhanced magnetic resonance imaging (MEMRI), f-VEP and RNA-seq, were utilized to verify the divergence. The results of MEMRI showed that Pteropodidae bats have a much larger superior colliculus (SC)/ inferior colliculus (IC) volume ratio (3:1) than insectivorous bats (1:7). Furthermore, the absolute visual thresholds (log cd/m(2)•s) of Pteropodidae (-6.30 and -6.37) and Emballonuridae (-3.71) bats were lower than those of other insectivorous bats (-1.90). Finally, genes related to the visual pathway showed signs of positive selection, convergent evolution, upregulation and similar gene expression patterns in Pteropodidae and Emballonuridae bats. Different results imply that Pteropodidae and Emballonuridae bats have more developed vision than the insectivorous bats and suggest that further research on bat behavior is warranted.
Collapse
Affiliation(s)
- He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jing-Kuan Wei
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rui-Qi Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Joshua D. Rizak
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Zhong
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
| | - Lu Wang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
| | - Fu-Qiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yong-Yi Shen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, 515041, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| |
Collapse
|
8
|
Marcos Gorresen P, Cryan PM, Dalton DC, wolf S, Bonaccorso FJ. Ultraviolet Vision May be Widespread in Bats. ACTA CHIROPTEROLOGICA 2015. [DOI: 10.3161/15081109acc2015.17.1.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ai WM, Chen SB, Chen X, Shen XJ, Shen YY. Parallel evolution of IDH2 gene in cetaceans, primates and bats. FEBS Lett 2014; 588:450-4. [PMID: 24374336 DOI: 10.1016/j.febslet.2013.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 02/05/2023]
Abstract
Cetaceans and primates both have large brains that require large amounts of aerobic energy metabolism. In bats, the cost of flight makes locomotion energetically demanding. These mammalian groups may represent three independent evolutionary origins of an energy-demanding lifestyle in mammals. IDH2 encodes an enzyme in the tricarboxylic acid cycle in the mitochondrion, which plays a key role in aerobic energy metabolism. In this study, we cloned and sequenced this gene in two cetaceans, and 19 bat species, and compared the data with available primate sequences to test its evolution. We found significant signals of parallel evolution in this gene among these three groups. Parallel evolution of this gene may reflect their parallel evolution towards a higher demand for energy.
Collapse
Affiliation(s)
- Wei-Ming Ai
- Department of Marine Science, School of Life Science, Wenzhou Medical College, Wenzhou 325035, China
| | - Shao-Bo Chen
- Department of Marine Science, School of Life Science, Wenzhou Medical College, Wenzhou 325035, China
| | - Xiao Chen
- Department of Marine Science, School of Life Science, Wenzhou Medical College, Wenzhou 325035, China; Guangxi Key Lab for Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai 536000, China
| | - Xue-Juan Shen
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China
| | - Yong-Yi Shen
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
10
|
Jones G, Teeling EC, Rossiter SJ. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front Physiol 2013; 4:117. [PMID: 23755015 PMCID: PMC3667242 DOI: 10.3389/fphys.2013.00117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/07/2013] [Indexed: 01/06/2023] Open
Abstract
Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biological Sciences, University of Bristol Bristol, UK
| | | | | |
Collapse
|