1
|
Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, Mishra V, Singh A, Pearson AT, Goldberg ER, Goldberger S, Flaum B, Hasina R, London NR, Gallia GL, Bettegowda C, Young S, Sandulache V, Melville J, Shum J, O'Neill SE, Aydin E, Zhavoronkov A, Vidal A, Soto A, Alonso MJ, Rosenberg AJ, Lingen MW, D'Cruz A, Agrawal N, Izumchenko E. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun 2022; 13:4829. [PMID: 35977936 PMCID: PMC9385702 DOI: 10.1038/s41467-022-31859-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Despite therapeutic advancements, oral cavity squamous cell carcinoma (OCSCC) remains a difficult disease to treat. Systemic platinum-based chemotherapy often leads to dose-limiting toxicity (DLT), affecting quality of life. PRV111 is a nanotechnology-based system for local delivery of cisplatin loaded chitosan particles, that penetrate tumor tissue and lymphatic channels while avoiding systemic circulation and toxicity. Here we evaluate PRV111 using animal models of oral cancer, followed by a clinical trial in patients with OCSCC. In vivo, PRV111 results in elevated cisplatin retention in tumors and negligible systemic levels, compared to the intravenous, intraperitoneal or intratumoral delivery. Furthermore, PRV111 produces robust anti-tumor responses in subcutaneous and orthotopic cancer models and results in complete regression of carcinogen-induced premalignant lesions. In a phase 1/2, open-label, single-arm trial (NCT03502148), primary endpoints of efficacy (≥30% tumor volume reduction) and safety (incidence of DLTs) of neoadjuvant PRV111 were reached, with 69% tumor reduction in ~7 days and over 87% response rate. Secondary endpoints (cisplatin biodistribution, loco-regional control, and technical success) were achieved. No DLTs or drug-related serious adverse events were reported. No locoregional recurrences were evident in 6 months. Integration of PRV111 with current standard of care may improve health outcomes and survival of patients with OCSCC.
Collapse
Affiliation(s)
- Manijeh Goldberg
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
- Privo Technologies, Peabody, MA, USA.
| | - Aaron Manzi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
- Privo Technologies, Peabody, MA, USA
| | | | | | | | | | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alka Singh
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | | | | | - Rifat Hasina
- Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gary L Gallia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simon Young
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vlad Sandulache
- Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James Melville
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jonathan Shum
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sonya E O'Neill
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Erkin Aydin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anxo Vidal
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Atenea Soto
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Maria Jose Alonso
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Anil D'Cruz
- Department of Oncology, Apollo Hospital, Mumbai, India
| | - Nishant Agrawal
- Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA.
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Ouyang J, Hu Z, Tong J, Yang Y, Wang J, Chen X, Luo T, Yu S, Wang X, Huang S. Construction and evaluation of a nomogram for predicting survival in patients with lung cancer. Aging (Albany NY) 2022; 14:2775-2792. [PMID: 35321944 PMCID: PMC9004553 DOI: 10.18632/aging.203974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Lung cancer is a heterogeneous disease with a severe disease burden. Because the prognosis of patients with lung cancer varies, it is critical to identify effective biomarkers for prognosis prediction. METHODS A total of 2325 lung cancer patients were integrated into four independent sets (training set, validation set I, II and III) after removing batch effects in our study. We applied the microarray data algorithm to screen the differentially expressed genes in the training set. The most robust markers for prognosis were identified using the LASSO-Cox regression model, which was then used to create a Cox model and nomogram. RESULTS Through LASSO and multivariate Cox regression analysis, eight genes were identified as prognosis-associated hub genes, followed by the creation of prognosis-associated risk scores (PRS). The results of the Kaplan-Meier analysis in the three validation sets demonstrate the good predictive performance of PRS, with hazard ratios of 2.38 (95% confidence interval (CI), 1.61-3.53) in the validation set I, 1.35 (95% CI, 1.06-1.71) in the validation set II, and 2.71 (95% CI, 1.77-4.18) in the validation set III. Additionally, the PRS demonstrated superior survival prediction in subgroups by age, gender, p-stage, and histologic type (p < 0.0001). The complex model integrating PRS and clinical risk factors also have a good predictive performance for 3-year overall survival. CONCLUSIONS In this study, we developed a PRS signature to help predict the survival of lung cancer. By combining it with clinical risk factors, a nomogram was established to quantify the individual risk assessments.
Collapse
Affiliation(s)
- Jin Ouyang
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.,SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China
| | - Zhijian Hu
- Laboratory Department, Jiujiang University Clinical Medical College, Jiujiang University Hospital, Jiujiang, Jiangxi 332000, PR China
| | - Jianlin Tong
- Laboratory Department, Jiujiang University Clinical Medical College, Jiujiang University Hospital, Jiujiang, Jiangxi 332000, PR China
| | - Yong Yang
- SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China
| | - Juan Wang
- SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China
| | - Xi Chen
- SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China
| | - Ting Luo
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China
| | - Shiqun Yu
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China
| | - Xin Wang
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China
| | - Shaoxin Huang
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China.,SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China.,School of Public Health, Qingdao University, Qingdao 266100, PR China
| |
Collapse
|
3
|
Hayes M, Corbin S, Nunn C, Pottorff M, Kay CD, Lila MA, Iorrizo M, Ferruzzi MG. Influence of simulated food and oral processing on carotenoid and chlorophyll in vitro bioaccessibility among six spinach genotypes. Food Funct 2021; 12:7001-7016. [PMID: 34151926 DOI: 10.1039/d1fo00600b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Increasing the density of micronutrients and phytochemicals in vegetable foods through plant breeding and processing is of value for consumers. However, the extent to which interactions between genetics and processing (G × P) can be leveraged for green leafy vegetables to improve the delivery of such compounds is unknown. Using spinach as a model, a three-phase in vitro digestion method with and without simulated oral processing (mastication) and coupling to a Caco-2 human intestinal cell culture model was used to determine whether bioaccessibility and intestinal uptake of carotenoids and chlorophylls can be modified from six spinach genotypes, fresh or processed as blanched, sterilized, and juiced products. Carotenoid and chlorophyll bioaccessibility varied significantly with the genotype (p < 0.001) and processing treatment (p < 0.001), with processing having a more profound influence on the bioaccessibility, decreasing micellarization of phytochemicals from juiced (25.8-29.3%), to fresh (19.5-27.9%), to blanched (14.9-20.5%), and sterilized spinach (10.4-13.0%). Oral mastication had a significant influence on the carotenoid bioaccessible content of sterilized spinach (0.3-0.5 μmoles per g DW) as compared to fresh spinach (0.1-0.3 μmoles per g DW), most likely due to the additive effect of thermal processing and mastication on facilitating digestive breakdown of the spinach matrix. Caco-2 accumulation of carotenoid and chlorophyll was modestly but significantly (<0.001) lower in fresh spinach (2.4%) compared to other treatment samples (3.7-4.8%). These results suggest that the genotype, processing treatment, and genotype × processing (G × P) interaction may affect carotenoid and chlorophyll bioaccessibility in spinach and that food processing remains a dominant factor in modulating the bioavailability of these phytochemicals.
Collapse
Affiliation(s)
- Micaela Hayes
- North Carolina State University, Department of Food, Bioprocessing & Nutrition Sciences, Raleigh, North Carolina 27695, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sun Y, Ren J, Wang F. [6]-Gingerol impedes 7,12-dimethylbenz(a)anthracene-induced inflammation and cell proliferation-associated hamster buccal pouch carcinogenesis through modulating Nrf2 signaling events. J Biochem Mol Toxicol 2020; 35:e22689. [PMID: 33347680 DOI: 10.1002/jbt.22689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/22/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
The present study examines the chemopreventive role of [6]-gingerol, an active component of ginger, on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis models. The HBP has been developed with an addition of 0.5% of DMBA to the HBP area three times per week, up to the end of the 16th experimental week. At the end of the experiment, we noticed 100% tumor incidence and precancerous lesions, such as dysplasia, hyperplasia, keratosis, and well-differentiated squamous cell carcinoma, in DMBA-induced HBP. Furthermore, we observed that [6]-gingerol inhibited the increased thiobarbituric acid-reactive substances and decreased antioxidant levels in DMBA-induced hamsters. Moreover, [6]-gingerol inhibits DMBA-exposed over expression of inflammatory markers (inducible nitric oxide synthase, interleukin [IL]-1β, IL-6, cyclooxygenase-2, and tumor necrosis factor-α) and cell proliferation markers (cyclin D1, proliferating cell nuclear antigen); induces proapoptotic markers in HBP. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a major antioxidant transcription factor, which regulates the antioxidant gene-dependent scavenge of tumor proliferation and apoptosis. Overexpression of Nrf2 signaling plays a pivotal role and can be a novel target in preventing carcinogenesis. In this study, [6]-gingerol restores the DMBA-induced depletion of Nrf2 signaling and thereby prevents buccal pouch carcinogenesis in hamsters. These results point out that [6]-gingerol impedes the responses of inflammatory and cell proliferation-associated progression of cancer through the action of Nrf2 signaling.
Collapse
Affiliation(s)
- Yugang Sun
- Oral and maxillofacial surgery, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Jinmin Ren
- Health Management Center, Binzhou Municipal Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Fang Wang
- Department of Oncology, The Second People Hospital of Dezhou, Dezhou, Shandong, China
| |
Collapse
|
5
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|
6
|
Zheng H, You Y, Hua M, Wu P, Liu Y, Chen Z, Zhang L, Wei H, Li Y, Luo M, Zeng Y, Liu Y, Luo DX, Zhang J, Feng M, Hu R, Pandol SJ, Han YP. Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice. Front Physiol 2018; 9:1671. [PMID: 30564133 PMCID: PMC6288434 DOI: 10.3389/fphys.2018.01671] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is an abnormal wound healing response and a common consequence of chronic liver diseases from infection or alcohol/xenobiotic exposure. At the cellular level, liver fibrosis is mediated by trans-differentiation of hepatic stellate cells (HSCs), which is driven by persistent hepatic and systemic inflammation. However, impaired enterohepatic circulation and gut dysbiosis may indirectly contribute to the liver fibrogenesis. The composition of the gut microbiota depends on diet composition and host factors. In this study, we examined chlorophyllin, derived from green pigment chlorophyll, on gut microbiota, the intestinal mucosal barrier, and liver fibrosis. BALB/c mice received carbon tetrachloride through intraperitoneal injection to induce liver fibrosis and chlorophyllin was administrated in drinking water. The effects of chlorophyllin on liver fibrosis were evaluated for (1) survival rate, (2) hepatic morphologic analysis, (3) inflammatory factors in both the small intestine and liver, and (4) gut microbiota. Our results indicate that oral administration of chlorophyllin could attenuate intestinal and hepatic inflammation and ameliorate liver fibrosis. Importantly, oral administration of chlorophyllin promptly rebalanced the gut microbiota, exhibiting down-regulation of the phylum Firmicutes and up-regulation of the phylum Bacteroidetes. In vitro experiments on intestinal epithelial cells showed that chlorophyllin exposure could inhibit NF-κB pathway via IKK-phosphorylation suppression. In conclusion, this study demonstrates potential application of chlorophyllin to regulate the intestinal microbiota and ameliorate hepatic fibrosis.
Collapse
Affiliation(s)
- Han Zheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang You
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Meiyun Hua
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Zishuo Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoche Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Li
- Chengdu Tongde Pharmaceutical Ltd., Chengdu, China
| | - Mei Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China.,Public Health and Clinical Center of Chengdu, Chengdu, China
| | - Yilan Zeng
- Public Health and Clinical Center of Chengdu, Chengdu, China
| | - Yong Liu
- Public Health and Clinical Center of Chengdu, Chengdu, China
| | - Dong-Xia Luo
- Public Health and Clinical Center of Chengdu, Chengdu, China
| | - Jie Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Feng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Richard Hu
- Olive View-UCL Medical Center, Los Angeles, CA, United States
| | | | - Yuan-Ping Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Cai Y, Zhang J, Chen NG, Shi Z, Qiu J, He C, Chen M. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins. Med Res Rev 2016; 37:665-701. [PMID: 28004409 DOI: 10.1002/med.21422] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 08/28/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Abstract
Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (-)-epigallocatechin-3-gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off-taste, and shorter half-life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents.
Collapse
Affiliation(s)
- Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Nelson G Chen
- Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiange Qiu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
8
|
Evidence supporting the conceptual framework of cancer chemoprevention in canines. Sci Rep 2016; 6:26500. [PMID: 27216246 PMCID: PMC4877707 DOI: 10.1038/srep26500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 11/08/2022] Open
Abstract
As with human beings, dogs suffer from the consequences of cancer. We investigated the potential of a formulation comprised of resveratrol, ellagic acid, genistein, curcumin and quercetin to modulate biomarkers indicative of disease prevention. Dog biscuits were evaluated for palatability and ability to deliver the chemopreventive agents. The extent of endogenous DNA damage in peripheral blood lymphocytes from dogs given the dietary supplement or placebo showed no change. However, H2O2-inducible DNA damage was significantly decreased after consumption of the supplement. The expression of 11 of 84 genes related to oxidative stress was altered. Hematological parameters remained in the reference range. The concept of chemoprevention for the explicit benefit of the canine is compelling since dogs are an important part of our culture. Our results establish a proof-of-principle and provide a framework for improving the health and well-being of “man’s best friend”.
Collapse
|
9
|
Ismail T, Calcabrini C, Diaz AR, Fimognari C, Turrini E, Catanzaro E, Akhtar S, Sestili P. Ellagitannins in Cancer Chemoprevention and Therapy. Toxins (Basel) 2016; 8:toxins8050151. [PMID: 27187472 PMCID: PMC4885066 DOI: 10.3390/toxins8050151] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 12/30/2022] Open
Abstract
It is universally accepted that diets rich in fruit and vegetables lead to reduction in the risk of common forms of cancer and are useful in cancer prevention. Indeed edible vegetables and fruits contain a wide variety of phytochemicals with proven antioxidant, anti-carcinogenic, and chemopreventive activity; moreover, some of these phytochemicals also display direct antiproliferative activity towards tumor cells, with the additional advantage of high tolerability and low toxicity. The most important dietary phytochemicals are isothiocyanates, ellagitannins (ET), polyphenols, indoles, flavonoids, retinoids, tocopherols. Among this very wide panel of compounds, ET represent an important class of phytochemicals which are being increasingly investigated for their chemopreventive and anticancer activities. This article reviews the chemistry, the dietary sources, the pharmacokinetics, the evidence on chemopreventive efficacy and the anticancer activity of ET with regard to the most sensitive tumors, as well as the mechanisms underlying their clinically-valuable properties.
Collapse
Affiliation(s)
- Tariq Ismail
- Institute of Food Science & Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan Road, Multan 60800, Punjab, Pakistan; (T.I.); (S.A.)
| | - Cinzia Calcabrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino (PU), Italy;
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini (RN), Italy; (C.C.); (C.F.); (E.T.); (E.C.)
| | - Anna Rita Diaz
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino (PU), Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini (RN), Italy; (C.C.); (C.F.); (E.T.); (E.C.)
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini (RN), Italy; (C.C.); (C.F.); (E.T.); (E.C.)
| | - Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini (RN), Italy; (C.C.); (C.F.); (E.T.); (E.C.)
| | - Saeed Akhtar
- Institute of Food Science & Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan Road, Multan 60800, Punjab, Pakistan; (T.I.); (S.A.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino (PU), Italy;
- Correspondence: ; Tel.: +39-(0)-722-303-414
| |
Collapse
|
10
|
Abstract
The hamster buccal pouch (HBP) carcinogenesis model is one of the most well-characterized animal tumor models used as a prelude to investigate multistage oral carcinogenesis and to assess the efficacy of chemointervention. Hamster buccal pouch carcinomas induced by 7,12-dimethylbenz[a]anthracene (DMBA) show extensive similarities to human oral squamous cell carcinomas. The HBP model offers a number of advantages including a simple and predictable tumor induction procedure, easy accessibility for examination and follow-up of lesions, and reproducibility. This model can be used to test both chemopreventive and chemotherapeutic agents.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India.
| | - Jaganathan Kowshik
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
| |
Collapse
|
11
|
Bundela S, Sharma A, Bisen PS. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine. PLoS One 2015; 10:e0141719. [PMID: 26536350 PMCID: PMC4633227 DOI: 10.1371/journal.pone.0141719] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine.
Collapse
Affiliation(s)
- Saurabh Bundela
- Defence Research Development Establishment, Defence Research Development Organization, Ministry of Defence, Govt. of India, Gwalior, Madhya Pradesh, India
- Department of Postgraduate Studies & Research in Biological Sciences, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
| | - Anjana Sharma
- Department of Postgraduate Studies & Research in Biological Sciences, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
| | - Prakash S. Bisen
- Defence Research Development Establishment, Defence Research Development Organization, Ministry of Defence, Govt. of India, Gwalior, Madhya Pradesh, India
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
12
|
Wang D, Zhu Y, Wang Y, Li Z, Yuan C, Zhang W, Yuan H, Ye J, Yang J, Jiang H, Cheng J. The pluripotency factor LIN28B is involved in oral carcinogenesis and associates with tumor aggressiveness and unfavorable prognosis. Cancer Cell Int 2015; 15:99. [PMID: 26478718 PMCID: PMC4608152 DOI: 10.1186/s12935-015-0252-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Objective LIN28B is a conserved RNA-binding protein critically involved in development, cellular metabolism and tumorigenesis. It is frequently overexpressed in human cancers and correlates with tumor aggressiveness as well as unfavorable prognosis. However, the expression pattern and oncogenic roles of LIN28B during oral squamous cell carcinoma (OSCC) development and progression has not been well established yet. Here, we sought to determine the expression of LIN28B and its clinical significance using chemical-induced OSCC animal model, cell lines and primary specimens. Method The OSCC animal model was induced using 7,12-dimethyl-1,2-bezan-tracene (DMBA) painting in the hamster buccal pouch. Buccal lesions from animals were obtained from different time points and subjected to routine histological analyses and immunohistochemical staining of LIN28B. The mRNA, protein abundance and subcellular localization of LIN28B was determined in a panel of OSCC cell lines by real-time RT-PCR, western blot and immunofluorescence. The expression levels of LIN28B in human primary OSCC samples were further evaluated by immunohistochemical staining. Moreover, the relationship between LIN28B and several clinicopathological parameters as well as patients’ prognosis were also assessed. Results Our results revealed that negative or low LIN28B expression was commonly observed in normal epithelial, whereas more LIN28B abundance was identified in epithelial dysplasia and invasive SCC in the DMBA-induced OSCC animal model. Overexpression of LIN28B was identified in a major fraction of OSCC samples(39/58) and significantly associated with tumor size (P = 0.049) and advanced clinical stages (P = 0.0286). Patients with increased LIN28B had markedly reduced overall survival as compared to those with low LIN28B. Multivariate survival analyses further indicated that LIN28B abundance served as an independent prognostic factor for patients’ overall survival. Conclusions Our findings reveal that LIN28B is critically involved in OSCC initiation and progression and aberrantly overexpressed in human OSCC. It might represent a novel diagnostic and prognostic biomarker for oral cancer.
Collapse
Affiliation(s)
- Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, 210029 China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029 China
| | - Yuming Zhu
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, 210029 China
| | - Yanling Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, 210029 China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029 China
| | - Zhongwu Li
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, 210029 China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029 China
| | - Chunping Yuan
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, 210029 China
| | - Wei Zhang
- Department of Oral and Maxillofacial Pathology, Nanjing Medical University, Nanjing, 210029 China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029 China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, 210029 China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029 China
| | - Jianrong Yang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029 China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, 210029 China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029 China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Nanjing, 210029 China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
13
|
García-Niño WR, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97:84-103. [DOI: 10.1016/j.phrs.2015.04.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/23/2022]
|
14
|
Wang Y, Zhang X, Zhang Y, Zhu Y, Yuan C, Qi B, Zhang W, Wang D, Ding X, Wu H, Cheng J. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biol Ther 2015; 16:839-45. [PMID: 25970228 PMCID: PMC4622565 DOI: 10.1080/15384047.2015.1030551] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/05/2015] [Accepted: 03/08/2015] [Indexed: 12/24/2022] Open
Abstract
Abnormal glucose metabolism mediated by pyruvate kinase M2 (PKM2) fuels cancer overgrowth and propagation. However, its expression and oncogenic roles in in oral squamous cell carcinoma (OSCC) remains incompletely known. Here, we aimed to investigate the expression of PKM2, its prognostic values and oncogenic functions using 7,12-dimethyl-1,2-bezan-tracene (DMBA)-induced hamster buccal pouch SCC model, primary OSCC specimens as well as in vitro cellular assays. We found that in DMBA-induced OSCC model, negative PKM2 expression was commonly observed in normal epithelial, while more PKM2 abundance was detected in hyperplasia, dysplasia and SCC. Overexpression of PKM2 in a major fraction of OSCC significantly associated with tumor size (P = 0.027), cervical node metastasis (P = 0.004) and clinical stages (P = 0.000). Patients with increased PKM2 had remarkably reduced overall and disease-free survival. Multivariate survival analysis further revealed that PKM served as a critical independent prognostic factor for patients' overall survival. Furthermore, impaired cell proliferation and migration, and reduced apoptosis were detected upon PKM2 knockdown in HN4 and HN12 cells. Taken together, our findings reveal that PKM2 is critically involved in OSCC initiation and progression probably by promoting cell proliferation and migration as well as reducing apoptosis. Its overexpression correlates with aggressive clinicopathological features and poor patients' outcome.
Collapse
Affiliation(s)
- Yanling Wang
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
- These authors equally contributed to this work.
| | - Xiaomin Zhang
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
- These authors equally contributed to this work.
| | - Yuchao Zhang
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| | - Yuming Zhu
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| | - Chunping Yuan
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| | - Bin Qi
- Department of Oral Pathology; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| | - Wei Zhang
- Department of Oral Pathology; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| | - Dongmiao Wang
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatological Hospital; Nanjing Medical University; Nanjing, PR China
| |
Collapse
|
15
|
Nagini S, Palitti F, Natarajan AT. Chemopreventive potential of chlorophyllin: a review of the mechanisms of action and molecular targets. Nutr Cancer 2015; 67:203-11. [PMID: 25650669 DOI: 10.1080/01635581.2015.990573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chlorophyllin (CHL), a water soluble semisynthetic derivative of the ubiquitous plant pigment chlorophyll used as a food additive, is recognized to confer a wide range of health benefits. CHL has been shown to exhibit potent antigenotoxic, anti-oxidant, and anticancer effects. Numerous experimental and epidemiological studies have demonstrated that dietary supple-mentation of CHL lowers the risk of cancer. CHL inhibits cancer initiation and progression by targeting multiple molecules and pathways involved in the metabolism of carcinogens, cell cycle progression, apoptosis evasion, invasion, and angiogenesis. The modulatory effects of CHL on the hallmark capabilities of cancer appear to be mediated via abrogation of key oncogenic signal transduction pathways such as nuclear factor kappa B, Wnt/β-catenin, and phosphatidylinositol-3-kinase/Akt signaling. This review provides insights into the molecular mechanisms of the anticancer effects of dietary CHL.
Collapse
Affiliation(s)
- Siddavaram Nagini
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Tamil Nadu , India
| | | | | |
Collapse
|
16
|
Feng M, Feng C, Yu Z, Fu Q, Ma Z, Wang F, Wang F, Yu L. Histopathological alterations during breast carcinogenesis in a rat model induced by 7,12-Dimethylbenz (a) anthracene and estrogen-progestogen combinations. Int J Clin Exp Med 2015; 8:346-357. [PMID: 25785005 PMCID: PMC4358460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Studies have shown that the development of breast cancer (BC) is a multi-step process that occurs sequentially from normal to usual hyperplasia, atypical hyperplasia, carcinoma in situ, and finally the invasive stages of carcinoma. Our study investigated the histopathological alterations in breast tissue in a Sprague-Dawley (SD) rat model induced by 7,12-Dimethylbenz (a) anthracene (DMBA) and estrogen-progestogen (E-P). Fifty rats were randomly divided into five groups (n = 10 each) and administered the E-P/DMBA combination. After the induction of BC, breast tissue samples were obtained from the rats and stained with hematoxylin-eosin (HE). Breast tissues from 10 rats and 10 human patients were obtained for comparison. The expression of P63, CK5/6 and CK34βE12 was observed and analyzed using the SPSS 17.0 software. The HE results showed ductal epithelial hyperplasia with forming a second lumen or papillary structure, atypical hyperplasia with atypical proliferative cells, forming a cross-bridge or cribriform structure in breast tissues from the rats samples. The IHC results showed that the expression of P63 was not significantly different between rat and human breast tissue (P > 0.05), but its expression in rat and human tissue was significantly different between UDH, ADH, DCIS and IDC (P < 0.01). A similar trend was observed for the expression of CK5/6 and CK34βE12 too. Thus, the findings in this model may reflect the histopathological changes that occur during the progression of human BC. Therefore, this model could be used for the establishment of BC models to investigate the prevention and treatment of BC.
Collapse
Affiliation(s)
- Man Feng
- Department of Breast Surgery, The Second Hospital of Shandong Univeristy247 Bei Yuan Street, Jinan 250033, China
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong Academy of Medical Sciences38 Wu Yingshan Road, Jinan 250031, China
| | - Chang Feng
- Department of Anesthesiology, The Second Hospital of Shandong Univeristy247 Bei Yuan Street, Jinan 250033, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong Univeristy247 Bei Yuan Street, Jinan 250033, China
| | - Qinye Fu
- Department of Breast Surgery, The Second Hospital of Shandong Univeristy247 Bei Yuan Street, Jinan 250033, China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong Univeristy247 Bei Yuan Street, Jinan 250033, China
| | - Feng Wang
- Department of Breast Surgery, The Second Hospital of Shandong Univeristy247 Bei Yuan Street, Jinan 250033, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital of Shandong Univeristy247 Bei Yuan Street, Jinan 250033, China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong Univeristy247 Bei Yuan Street, Jinan 250033, China
| |
Collapse
|
17
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 2014; 12:208. [PMID: 25048361 PMCID: PMC4110933 DOI: 10.1186/1479-5876-12-208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dietary chlorophyllin abrogates TGFβ signaling to modulate the hallmark capabilities of cancer in an animal model of forestomach carcinogenesis. Tumour Biol 2014; 35:6725-37. [PMID: 24715303 DOI: 10.1007/s13277-014-1849-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor (TGF) β signaling pathway plays a central role in the regulation of a wide range of cellular processes involved in the acquisition of the malignant phenotype. The objective of the present study was to examine the effect of chlorophyllin, a semisynthetic derivative of chlorophyll on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)--induced rat forestomach carcinogenesis based on the modulation of TGFβ signaling and the downstream target genes associated with cell proliferation, apoptosis evasion, angiogenesis, invasion, and metastasis. We determined the effect of dietary chlorophyllin on TGFβ signaling and the downstream events-cell proliferation, apoptosis evasion, angiogenesis, invasion, and metastasis by semiquantitative and quantitative reverse transcription (RT)-PCR, Western blot, and immunohistochemical analyses. We further validated the inhibition of TGFβ signaling by chlorophyllin by performing molecular docking studies. We found that dietary supplementation of chlorophyllin at 4-mg/kg bw inhibits the development of MNNG-induced forestomach carcinomas by downregulating the expression of TGFβ RI, TGFβ RII, and Smad 2 and 4 and upregulating Smad 7, thereby abrogating canonical TGFβ signaling. Docking interactions also confirmed the inhibition of TGFβ signaling by chlorophyllin via inactivating TGFβ RI. Furthermore, attenuation of TGFβ signaling by chlorophyllin also blocked cell proliferation, angiogenesis, invasion, and metastasis, and induced mitochondria-mediated cell death. Dietary chlorophyllin that simultaneously abrogates TGFβ signaling pathway and the key hallmark events of cancer appear to be an ideal candidate for cancer chemoprevention.
Collapse
|
19
|
Kavitha K, Kranthi Kiran Kishore T, Bhatnagar RS, Nagini S. Cytomodulin-1, a synthetic peptide abrogates oncogenic signaling pathways to impede invasion and angiogenesis in the hamster cheek pouch carcinogenesis model. Biochimie 2014; 102:56-67. [PMID: 24582832 DOI: 10.1016/j.biochi.2014.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/14/2014] [Indexed: 01/21/2023]
Abstract
Constitutive activation of the various oncogenic signaling pathways plays a pivotal role in promoting malignant transformation. The aim of this study was to investigate the therapeutic potential of a synthetic bioactive heptapeptide cytomodulin-1 (CM-1) against hamster cheek pouch carcinomas based on its influence on the predominant carcinogenic signaling pathways - NF-κB, TGFβ, and Wnt/β-catenin and their downstream target events invasion and angiogenesis. Topical application of CM-1 to DMBA-painted hamsters significantly inhibited activation of the canonical NF-κB pathway by blocking kinase activity of IKKβ and increasing the cytosolic accumulation of the inhibitor IκB-α. In addition, CM-1 inactivated IKKβ by disrupting IKKβ/Nemo interactions. CM-1 also hampered the activation of TGFβ and Wnt/β-catenin signaling by averting the phosphorylation of the key upstream ser/thr kinases TGFβ RI and GSK-3β respectively. Attenuation of these oncogenic signaling pathways by CM-1 also mitigated invasion and angiogenesis by suppressing the expression of pro-invasive matrix metalloproteinases, pro-angiogenic VEGF and HIF-1α and upregulating the anti-angiogenic TIMP-2. Synthetic peptides such as CM-1 that target multiple key molecules in oncogenic signaling pathways and their downstream events are ideal candidate agents for cancer chemotherapy.
Collapse
Affiliation(s)
- K Kavitha
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - T Kranthi Kiran Kishore
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - R S Bhatnagar
- Bioengineering, University of California, San Francisco and Berkeley, USA
| | - S Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.
| |
Collapse
|
20
|
Natella F, Leoni G, Maldini M, Natarelli L, Comitato R, Schonlau F, Virgili F, Canali R. Absorption, metabolism, and effects at transcriptome level of a standardized French oak wood extract, Robuvit, in healthy volunteers: pilot study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:443-453. [PMID: 24354337 DOI: 10.1021/jf403493a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The consumption of wine and spirits, traditionally aged in oak barrels, exposes humans to roburin ingestion. These molecules belong to a class of ellagitannins (ETs), and their only known source is oak wood. Very little is currently known about roburin bioavailability and biological activity. We reported for the first time human absorption of roburins from a French oak wood (Quercus robur) water extract (Robuvit) by measuring the increase of total phenols (from 0.63 ± 0.06 to 1.26 ± 0.18 μg GAE equiv/mL plasma) and the appearance of roburin metabolites (three different glucoronidate urolithins and ellagic acid), in plasma, after 5 days of supplementation. Robuvit supplementation induced also the increase of plasma antioxidant capacity from 1.8 ± 0.05 to 1.9 ± 0.01 nmol Trolox equiv/mL plasma. Moreover, utilizing a combined ex vivo cell culture approach, we assessed the effect of Q. robur metabolites (present in human serum after supplementation) on gene expression modulation, utilizing an Affymetrix array matrix, in endothelial, neuronal, and keratinocyte cell lines. The functional analysis reveals that Robuvit metabolites affect ribosome, cell cycle, and spliceosome pathways.
Collapse
Affiliation(s)
- Fausta Natella
- Consiglio per la Ricerca e Sperimentazione in Agricoltura, Food and Nutrition Research Centre , via Ardeatina 546, 00178 Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lin KH, Hsu CY, Huang YP, Lai JY, Hsieh WB, Huang MY, Yang CM, Chao PY. Chlorophyll-related compounds inhibit cell adhesion and inflammation in human aortic cells. J Med Food 2013; 16:886-98. [PMID: 24066944 PMCID: PMC3806384 DOI: 10.1089/jmf.2012.2558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 06/23/2013] [Indexed: 12/30/2022] Open
Abstract
The objectives of this study were to investigate the effects of chlorophyll-related compounds (CRCs) and chlorophyll (Chl) a+b on inflammation in human aortic endothelial cells. Adhesion molecule expression and interleukin (IL)-8, nuclear factor (NF)-κB p65 protein, and NF-κB and activator protein (AP)-1 DNA binding were assessed. The effects of CRCs on inflammatory signaling pathways of signal transducers and activators of transcription 3 (STAT3) and mothers against decapentaplegic homolog 4, respectively induced by IL-6 and transforming growth factor (TGF)-β, in human aortic smooth muscle cells cultured in vitro were also investigated. HAECs were pretreated with 10 μM of CRCs, Chl a+b, and aspirin (Asp) for 18 h followed by tumor necrosis factor (TNF)-α (2 ng/mL) for 6 h, and U937 cell adhesion was determined. TNF-α-induced monocyte-endothelial cell adhesion was significantly inhibited by CRCs. Moreover, CRCs and Chl a+b significantly attenuated vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and IL-8 expressions. Treatments also significantly decreased in NF-κB expression, DNA binding, and AP-1 DNA binding by CRCs and Asp. Thus, CRCs exert anti-inflammatory effects through modulation of NF-κB and AP-1 signaling. Ten micromoles of CRCs and Asp upregulated the expression of mothers against decapentaplegic homolog 4 (Drosophila) (SMAD4) in the TGF-β receptor signaling pathway, and SMAD3/4 transcription activity was also increased. Ten micromoles of CRCs were able to potently inhibit STAT3-binding activity by repressing IL-6-induced STAT3 expression. Our results provide a potential mechanism that explains the anti-inflammatory activities of these CRCs.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ya-Ping Huang
- Graduate Institute of Applied Science of Living, Chinese Culture University, Taipei, Taiwan
| | - Jun-You Lai
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Wen-Bin Hsieh
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Meng-Yuan Huang
- Research Center for Biodiversity, Academia Sinica, Nankang, Taiwan
| | - Chi-Ming Yang
- Research Center for Biodiversity, Academia Sinica, Nankang, Taiwan
| | - Pi-Yu Chao
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
22
|
Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs 2013; 11:3425-71. [PMID: 24022731 PMCID: PMC3806458 DOI: 10.3390/md11093425] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022] Open
Abstract
Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section.
Collapse
|
23
|
Yedida GR, Nagini S, Mishra R. The importance of oncogenic transcription factors for oral cancer pathogenesis and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:179-88. [PMID: 23619350 DOI: 10.1016/j.oooo.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 01/03/2023]
Abstract
Oral squamous cell carcinoma is a major cause of morbidity and mortality worldwide. Current experimental evidence shows that most important risk factors for oral cancer include tobacco use and excessive alcohol consumption and less well-defined risks include viral infection and a diet deficient in antioxidants. The positive correlation between various risk/etiologic factors of oral cancer and the activation of various transcription factors (TFs) has been reported in the literature. Although initially, TFs were considered to be very difficult targets for use in clinical treatment, recent technological advances have provided the ability to control these factors of cancer progression. This review focuses on the role of oncogenic transcription factors in oral cancer, their modes of activation through various biological pathways, the promises and pitfalls in viewing them as potent oncotargets, the way they can be controlled based on the current understanding, and the future research to be done in this area.
Collapse
Affiliation(s)
- Govinda Raju Yedida
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | | | | |
Collapse
|