1
|
Sow AA, Jamadagni P, Scaturro P, Patten SA, Chatel-Chaix L. A zebrafish-based in vivo model of Zika virus infection unveils alterations of the glutamatergic neuronal development and NS4A as a key viral determinant of neuropathogenesis. PLoS Pathog 2024; 20:e1012756. [PMID: 39621753 PMCID: PMC11637437 DOI: 10.1371/journal.ppat.1012756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/12/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Infection of pregnant women by Zika virus (ZIKV) is associated with severe neurodevelopmental defects in newborns through poorly defined mechanisms. Here, we established a zebrafish in vivo model of ZIKV infection to circumvent limitations of existing mammalian models. Leveraging the unique tractability of this system, we gained unprecedented access to the ZIKV-infected brain at early developmental stages. The infection of zebrafish larvae with ZIKV phenocopied the disease in mammals including a reduced head area and neural progenitor cells (NPC) infection and depletion. Moreover, transcriptomic analyses of NPCs isolated from ZIKV-infected embryos revealed a distinct dysregulation of genes involved in survival and neuronal differentiation, including downregulation of the expression of the glutamate transporter vglut1, resulting in an altered glutamatergic network in the brain. Mechanistically, ectopic expression of ZIKV protein NS4A in the larvae recapitulated the morphological defects observed in infected animals, identifying NS4A as a key determinant of neurovirulence and a promising antiviral target for developing therapies.
Collapse
Affiliation(s)
- Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Priyanka Jamadagni
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | | | - Shunmoogum A. Patten
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Québec, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Québec, Canada
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Québec, Canada
| |
Collapse
|
2
|
Sharma A, Dubey R, Gupta S, Asati V, Kumar V, Kumar D, Mahapatra DK, Jaiswal M, Jain SK, Bharti SK. PIM kinase inhibitors: an updated patent review (2016-present). Expert Opin Ther Pat 2024; 34:365-382. [PMID: 38842051 DOI: 10.1080/13543776.2024.2365411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION PIM Kinases (PIM-1, PIM-2, and PIM-3) have been reported to play crucial role in signaling cascades that govern cell survival, proliferation, and differentiation. Over-expression of these kinases leads to hematological malignancies such as diffuse large B cell lymphomas (DLBCL), multiple myeloma, leukemia, lymphoma and prostate cancer etc. PIM kinases as biomarkers and potential therapeutic targets have shown promise toward precision cancer therapy. The selective PIM-1, PIM-2, and/or PIM-3 isoform inhibitors have shown significant results in patients with advanced stages of cancer including relapsed/refractory cancer. AREAS COVERED A comprehensive literature review of PIM Kinases (PIM-1, PIM-2, and PIM-3) in oncogenesis, the patented PIM kinase inhibitors (2016-Present), and their pharmacological and structural insights have been highlighted. EXPERT OPINION Recently, PIM kinases viz. PIM-1, PIM-2, and PIM-3 (members of the serine/threonine protein kinase family) as therapeutic targets have attracted considerable interest in oncology especially in hematological malignancies. The patented PIM kinase inhibitors comprised of heterocyclic (fused)ring structure(s) like indole, pyridine, pyrazine, pyrazole, pyridazine, piperazine, thiazole, oxadiazole, quinoline, triazolo-pyridine, pyrazolo-pyridine, imidazo-pyridazine, oxadiazole-thione, pyrazolo-pyrimidine, triazolo-pyridazine, imidazo-pyridazine, pyrazolo-quinazoline and pyrazolo-pyridine etc. showed promising results in cancer chemotherapy.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vipul Kumar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Debarshi Kar Mahapatra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Meenakshi Jaiswal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
3
|
Julson JR, Marayati R, Beierle EA, Stafman LL. The Role of PIM Kinases in Pediatric Solid Tumors. Cancers (Basel) 2022; 14:3565. [PMID: 35892829 PMCID: PMC9332273 DOI: 10.3390/cancers14153565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
PIM kinases have been identified as potential therapeutic targets in several malignancies. Here, we provide an in-depth review of PIM kinases, including their structure, expression, activity, regulation, and role in pediatric carcinogenesis. Also included is a brief summary of the currently available pharmaceutical agents targeting PIM kinases and existing clinical trials.
Collapse
Affiliation(s)
- Janet Rae Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Elizabeth Ann Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Laura Lee Stafman
- Division of Pediatric Surgery, Department of Surgery, Vanderbilt University, Nashville, TN 37240, USA;
| |
Collapse
|
4
|
Pathogenesis and treatment of multiple myeloma bone disease. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:164-173. [PMID: 34611468 PMCID: PMC8477206 DOI: 10.1016/j.jdsr.2021.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023] Open
Abstract
Multiple myeloma (Plasma cell myeloma), a malignancy of the plasma cells, exhibits tumor expansion preferentially in the bone marrow and the development of bone-destructive lesions. Multiple myeloma is still an incurable disease with changes in the bone marrow microenvironment in favor of the survival and proliferation of multiple myeloma cells and bone destruction. In this review, we described the recent findings on the regulators involved in the development of myeloma bone diseases, and succinctly summarize currently available therapeutic options and the development of novel bone modifying agents for myeloma treatment.
Collapse
|
5
|
Wang Y, Xiu J, Ren C, Yu Z. Protein kinase PIM2: A simple PIM family kinase with complex functions in cancer metabolism and therapeutics. J Cancer 2021; 12:2570-2581. [PMID: 33854618 PMCID: PMC8040705 DOI: 10.7150/jca.53134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
PIM2 (proviral integration site for Moloney murine leukemia virus 2) kinase plays an important role as an oncogene in multiple cancers, such as leukemia, liver, lung, myeloma, prostate and breast cancers. PIM2 is largely expressed in both leukemia and solid tumors, and it promotes the transcriptional activation of genes involved in cell survival, cell proliferation, and cell-cycle progression. Many tumorigenic signaling molecules have been identified as substrates for PIM2 kinase, and a variety of inhibitors have been developed for its kinase activity, including SMI-4a, SMI-16a, SGI-1776, JP11646 and DHPCC-9. Here, we summarize the signaling pathways involved in PIM2 kinase regulation and PIM2 mechanisms in various neoplastic diseases. We also discuss the current status and future perspectives for the development of PIM2 kinase inhibitors to combat human cancer, and PIM2 will become a therapeutic target in cancers in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Jing Xiu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| |
Collapse
|
6
|
Kronschnabl P, Grünweller A, Hartmann RK, Aigner A, Weirauch U. Inhibition of PIM2 in liver cancer decreases tumor cell proliferation in vitro and in vivo primarily through the modulation of cell cycle progression. Int J Oncol 2019; 56:448-459. [PMID: 31894300 PMCID: PMC6959465 DOI: 10.3892/ijo.2019.4936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 01/05/2023] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related mortality worldwide with limited therapeutic options. Thus, novel treatment strategies are urgently required. While the oncogenic kinase, proviral integration site for Moloney murine leukemia virus 2 (PIM2), has been shown to be overexpressed in liver cancer, little is known about the role of PIM2 in this tumor entity. In this study, we explored the functional relevance and therapeutic potential of PIM2 in liver cancer. Using PIM2-specific siRNAs, we examined the effects of PIM2 knockdown on proliferation (WST-1 assays and spheroid assays), 3D-colony formation and colony spread, apoptosis (flow cytometry and caspase 3/caspase 7 activity), as well as cell cycle progression (flow cytometry, RT-qPCR and western blot analysis) in the two liver cancer cell lines, HepG2 and Huh-7. In subcutaneous liver cancer xenografts, we assessed the effects of PIM2 knockdown on tumor growth via the systemic delivery of polyethylenimine (PEI)-complexed siRNA. The knockdown of PIM2 resulted in potent anti-proliferative effects in cells grown on plastic dishes, as well as in spheroids. This was due to G0/G1 cell cycle blockade and the subsequent downregulation of genes related to the S phase as well as the G2/M phase of the cell cycle, whereas the apoptotic rates remained unaltered. Furthermore, colony formation and colony spread were markedly inhibited by PIM2 knockdown. Notably, we found that HepG2 cells were more sensitive to PIM2 knockdown than the Huh-7 cells. In vivo, the therapeutic nanoparticle-mediated delivery of PIM2 siRNA led to profound anti-tumor effects in a liver cancer xenograft mouse model. On the whole, the findings of this study underscore the oncogenic role of PIM2 and emphasize the potential of targeted therapies based on the specific inhibition of PIM2 in liver cancer.
Collapse
Affiliation(s)
- Pia Kronschnabl
- Rudolf‑Boehm‑Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D‑04107 Leipzig, Germany
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps‑University Marburg, D‑35037 Marburg, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps‑University Marburg, D‑35037 Marburg, Germany
| | - Achim Aigner
- Rudolf‑Boehm‑Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D‑04107 Leipzig, Germany
| | - Ulrike Weirauch
- Rudolf‑Boehm‑Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D‑04107 Leipzig, Germany
| |
Collapse
|
7
|
Cuccioloni M, Bonfili L, Cecarini V, Nabissi M, Pettinari R, Marchetti F, Petrelli R, Cappellacci L, Angeletti M, Eleuteri AM. Exploring the Molecular Mechanisms Underlying the in vitro Anticancer Effects of Multitarget-Directed Hydrazone Ruthenium(II)-Arene Complexes. ChemMedChem 2019; 15:105-113. [PMID: 31701643 DOI: 10.1002/cmdc.201900551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/26/2019] [Indexed: 12/14/2022]
Abstract
The molecular targets and the modes of action behind the cytotoxicity of two structurally established N,O- or N,N-hydrazone ruthenium(II)-arene complexes were explored in human breast adenocarcinoma cells (MCF-7) and paralleled in non-cancerous and cisplatin-resistant counterparts (MCF-10A and MCF-7CR respectively). Both complexes, [Ru(hmb)(L1)Cl] (1, L1=4-((2-(2,4-dinitrophenyl)hydrazono)(phenyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-olate) and [Ru(cym)(L2)Cl] (2, L2=1-((3-methyl-5-oxo-1-phenyl-1H-pyrazol-4(5H)-ylidene)(phenyl)methyl)-2-(pyridin-2-yl)hydrazin-1-ide), reversibly interact with moderate-to-high affinity with a number of molecular targets in cell-free assays, namely serum albumin, DNA, the 20S proteasome and hydroxymethylglutaryl-CoA reductase. Most interestingly, only 2 readily crosses the cell membrane and preserves its binding/modulatory ability toward the targets of interest upon rapid cellular internalization. The resulting action at multiple levels of the cancer cascade is likely the cause for the selective sensitization of tumour cells to p27-mediated apoptotic death, and for the ability of 2 to overcome the drug resistance problem.
Collapse
Affiliation(s)
- Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Riccardo Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Marchetti
- School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| |
Collapse
|
8
|
Yang T, Ren C, Lu C, Qiao P, Han X, Wang L, Wang D, Lv S, Sun Y, Yu Z. Phosphorylation of HSF1 by PIM2 Induces PD-L1 Expression and Promotes Tumor Growth in Breast Cancer. Cancer Res 2019; 79:5233-5244. [PMID: 31409638 DOI: 10.1158/0008-5472.can-19-0063] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Heat shock transcription factor 1 (HSF1) is the master regulator of the proteotoxic stress response, which plays a key role in breast cancer tumorigenesis. However, the mechanisms underlying regulation of HSF1 protein stability are still unclear. Here, we show that HSF1 protein stability is regulated by PIM2-mediated phosphorylation of HSF1 at Thr120, which disrupts the binding of HSF1 to the E3 ubiquitin ligase FBXW7. In addition, HSF1 Thr120 phosphorylation promoted proteostasis and carboplatin-induced autophagy. Interestingly, HSF1 Thr120 phosphorylation induced HSF1 binding to the PD-L1 promoter and enhanced PD-L1 expression. Furthermore, HSF1 Thr120 phosphorylation promoted breast cancer tumorigenesis in vitro and in vivo. PIM2, pThr120-HSF1, and PD-L1 expression positively correlated with each other in breast cancer tissues. Collectively, these findings identify PIM2-mediated HSF1 phosphorylation at Thr120 as an essential mechanism that regulates breast tumor growth and potential therapeutic target for breast cancer. SIGNIFICANCE: These findings identify heat shock transcription factor 1 as a new substrate for PIM2 kinase and establish its role in breast tumor progression.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Dan Wang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shijun Lv
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
9
|
The upregulation of Pim kinases is essential in coordinating the survival, proliferation, and migration of KIT D816V-mutated neoplastic mast cells. Leuk Res 2019; 83:106166. [PMID: 31203104 DOI: 10.1016/j.leukres.2019.106166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/19/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022]
Abstract
About ˜80% of mast cell neoplasm patients harbor the c-Kit activating mutation D816 V, which is associated with c-Kit inhibitor resistance and poor prognosis. However, the molecular basis for these effects is not fully known. To address this issue, in this study we screened molecules whose expression is altered by KIT D816 V mutation and found that Pim kinases were overexpressed in D816V-mutant neoplastic mast cells. This was accompanied by upregulation of signal transducer and activator of transcription (STAT) and mammalian target of rapamycin (mTOR) and downregulation of Akt and extracellular signal-regulated kinase (ERK1/2). Activated Pim kinases promoted the survival of D816 V cells by maintaining mTOR and p70S6K activation even under nutrient starvation. Conversely, cell proliferation was suppressed by inhibiting Pim kinases. The mRNA level of C-X-C chemokine receptor type 4 (CXCR4) was about 2-fold higher in D816 V cells; this was associated with a 2-fold increase in migratory capacity, which was modulated by Pim kinases. We also confirmed that upregulation of Pim kinases is a feature specific to cells with the D816 V mutation and is not observed in cells with the c-Kit activating N822 K mutation. These data suggest Pim kinases as a promising therapeutic target for the treatment of mast cell neoplasms with KIT D816 V mutation.
Collapse
|
10
|
Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen HD, Bastian D, Zhang M, Sofi MH, Chatterjee S, Hill EG, Mehrotra S, Kraft AS, Yu XZ. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest 2018; 128:2787-2801. [PMID: 29781812 DOI: 10.1172/jci95407] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/29/2018] [Indexed: 01/03/2023] Open
Abstract
PIM kinase family members play a crucial role in promoting cell survival and proliferation via phosphorylation of their target substrates. In this study, we investigated the role of the PIM kinases with respect to T cell responses in transplantation and tumor immunity. We found that the PIM-2 isoform negatively regulated T cell responses to alloantigen, in contrast to the PIM-1 and PIM-3 isoforms, which acted as positive regulators. T cells deficient in PIM-2 demonstrated increased T cell differentiation toward Th1 subset, proliferation, and migration to target organs after allogeneic bone marrow transplantation, resulting in dramatically accelerated graft-versus-host disease (GVHD) severity. Restoration of PIM-2 expression markedly attenuated the pathogenicity of PIM-2-deficient T cells to induce GVHD. On the other hand, mice deficient in PIM-2 readily rejected syngeneic tumor, which was primarily dependent on CD8+ T cells. Furthermore, silencing PIM-2 in polyclonal or antigen-specific CD8+ T cells substantially enhanced their antitumor response in adoptive T cell immunotherapy. We conclude that PIM-2 kinase plays a prominent role in suppressing T cell responses, and provide a strong rationale to target PIM-2 for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yongxia Wu
- Department of Microbiology and Immunology
| | | | | | | | | | | | | | - Elizabeth G Hill
- Department of Public Health Science, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Andrew S Kraft
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
11
|
Abstract
Pim kinases are being implicated in oncogenic process in various human cancers. Pim kinases primarily deal with three broad categories of functions such as tumorigenesis, protecting cells from apoptotic signals and evading immune attacks. Here in this review, we discuss the regulation of Pim kinases and their expression, and how these kinases defend cancer cells from therapeutic and immune attacks with special emphasis on how Pim kinases maintain their own expression during apoptosis and cellular transformation, defend mitochondria during apoptosis, defend cancer cells from immune attack, defend cancer cells from therapeutic attack, choose localization, self-regulation, activation of oncogenic transcription, metabolic regulation and so on. In addition, we also discuss how Pim kinases contribute to tumorigenesis by regulating cellular transformation and glycolysis to reinforce the importance of Pim kinases in cancer and cancer stem cells.
Collapse
|
12
|
Xu Y, Xing Y, Xu Y, Huang C, Bao H, Hong K, Cheng X. Pim-2 protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via downregulation of Bim expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:94-102. [PMID: 27770661 DOI: 10.1016/j.etap.2016.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
We know that silencing Bim, a pro-apoptosis protein, significantly attenuates glucose and oxygen-deprived induced apoptosis in cardiomyocytes. However, the mechanisms underlying the regulation of the Bim activation in the heart have remained unknown. Pim-2 is one of three Pim serine/threonine kinase family members thought to be involved in cell survival and proliferation. H9c2 cardiomyocytes were subjected to a hypoxia/reoxygenation (H/R) condition in vitro, mimicking ischemic/reperfusion injury in vivo. H/R augmented the expression of Bim, Cyt C, and Pim-2 and induced H9c2 cell apoptosis. Overexpression of Pim-2 attenuated apoptosis which induced by H/R in H9c2 cells, via downregulation of Bim and Cyt C expression. Silencing of Pim-2 promoted H/R-induced apoptosis via upregulation of Bim and Cyt C expression. Co-IP revealed the interaction between Pim-2 and Bim protein, with Bim Ser65 phosphorylated by Pim-2. Furthermore, blocking proteasome activity by MG132 prevented Bim degradation, and Bim S65A mutation could reverse the anti-apoptotic role of Pim-2 which induced by H/R. These data demonstrated that Pim-2 is a novel Bim-interacting protein, which negatively regulates Bim degradation and protects H9c2 cardiomyocytes from H/R-induced apoptosis.
Collapse
Affiliation(s)
- Yan Xu
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Yawei Xing
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Yanjie Xu
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Chahua Huang
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Huihui Bao
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Kui Hong
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China; Medical Molecular Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaoshu Cheng
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China.
| |
Collapse
|
13
|
Sakurikar N, Eastman A. Critical reanalysis of the methods that discriminate the activity of CDK2 from CDK1. Cell Cycle 2016; 15:1184-8. [PMID: 26986210 DOI: 10.1080/15384101.2016.1160983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cyclin dependent kinases 1 and 2 (CDK1 and CDK2) play crucial roles in regulating cell cycle progression from G1 to S, through S, and G2 to M phase. Both inhibition and aberrant activation of CDK1/2 can be detrimental to cancer cell growth. However, the tools routinely employed to discriminate between the activities of these 2 kinases do not have the selectivity commonly attributed to them. Activation of these kinases is often assayed as a decrease of the inhibitory tyrosine-15 phosphorylation, yet the antibodies used cannot discriminate between phosphorylated CDK1 and CDK2. Inhibitors of these kinases, while partially selective against purified kinases, may lack selectivity when applied to intact cells. High levels of cyclin E are often considered a marker of increased CDK2 activity, yet active CDK2 targets cyclin E for degradation, hence high levels usually reflect inactive CDK2. Finally, inhibition of CDK2 does not arrest cells in S phase suggesting CDK2 is not required for S phase progression. Furthermore, activation of CDK2 in S phase can rapidly induce DNA double-strand breaks in some cell lines. The misunderstandings associated with the use of these tools has led to misinterpretation of results. In this review, we highlight these challenges in the field.
Collapse
Affiliation(s)
- Nandini Sakurikar
- a Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Alan Eastman
- a Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| |
Collapse
|
14
|
Manoharan GB, Enkvist E, Uri A. Combining chemical and genetic approaches for development of responsive FRET-based sensor systems for protein kinases. Biophys Chem 2016; 211:39-48. [PMID: 26874332 DOI: 10.1016/j.bpc.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022]
Abstract
Chemical and genetic approaches were combined for the development of responsive FRET-based sensor systems for protein kinases, using PIM2 as the model kinase. Fusions of PIM2 and a red fluorescent protein, TagRFP were expressed in mammalian cells and small-molecule ARC-Lum photoluminescent probes possessing different phosphorescent and fluorescent properties were constructed. Based on a variety of Förster-type resonant energy transfer (FRET) mechanisms (including intermolecular or intramolecular energy transfer and transfer between singlet-singlet or triplet-singlet electronic states of interacting luminophores) of the probe and that of the fluorescently tagged PIM2, FRET-based sensor systems were constructed. The developed assays can be applied for analysis of PIM2 in biological samples and screening and characterization of PIM2 inhibitors in cell lysates. In screening studies sub-micromolar affinity of a d-arginine-rich peptide, nona(d-arginine) amide [(d-Arg)9-NH2], towards PIM2 was discovered that points to possible specific effect of this widely used transport peptide to cellular protein phosphorylation balance.
Collapse
Affiliation(s)
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia.
| |
Collapse
|
15
|
Control of Pim2 kinase stability and expression in transformed human haematopoietic cells. Biosci Rep 2015; 35:BSR20150217. [PMID: 26500282 PMCID: PMC4672348 DOI: 10.1042/bsr20150217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023] Open
Abstract
The oncogenic Pim2 kinase is overexpressed in several haematological malignancies, such as multiple myeloma and acute myeloid leukaemia (AML), and constitutes a strong therapeutic target candidate. Like other Pim kinases, Pim2 is constitutively active and is believed to be essentially regulated through its accumulation. We show that in leukaemic cells, the three Pim2 isoforms have dramatically short half-lives although the longer isoform is significantly more stable than the shorter isoforms. All isoforms present a cytoplasmic localization and their degradation was neither modified by broad-spectrum kinase or phosphatase inhibitors such as staurosporine or okadaic acid nor by specific inhibition of several intracellular signalling pathways including Erk, Akt and mTORC1. Pim2 degradation was inhibited by proteasome inhibitors but Pim2 ubiquitination was not detected even by blocking both proteasome activity and protein de-ubiquitinases (DUBs). Moreover, Pyr41, an ubiquitin-activating enzyme (E1) inhibitor, did not stabilize Pim2, strongly suggesting that Pim2 was degraded by the proteasome without ubiquitination. In agreement, we observed that purified 20S proteasome particles could degrade Pim2 molecule in vitro. Pim2 mRNA accumulation in UT7 cells was controlled by erythropoietin (Epo) through STAT5 transcription factors. In contrast, the translation of Pim2 mRNA was not regulated by mTORC1. Overall, our results suggest that Pim2 is only controlled by its mRNA accumulation level. Catalytically active Pim2 accumulated in proteasome inhibitor-treated myeloma cells. We show that Pim2 inhibitors and proteasome inhibitors, such as bortezomib, have additive effects to inhibit the growth of myeloma cells, suggesting that Pim2 could be an interesting target for the treatment of multiple myeloma.
Collapse
|
16
|
Gruber HE, Hoelscher GL, Ingram JA, Bethea S, Hanley EN. Autophagy in the Degenerating Human Intervertebral Disc: In Vivo Molecular and Morphological Evidence, and Induction of Autophagy in Cultured Annulus Cells Exposed to Proinflammatory Cytokines-Implications for Disc Degeneration. Spine (Phila Pa 1976) 2015; 40:773-82. [PMID: 26091153 DOI: 10.1097/brs.0000000000000865] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Autophagy-related gene expression and ultrastructural features of autophagy were studied in human discs. OBJECTIVE To obtain molecular/morphological data on autophagy in human disc degeneration and cultured human annulus cells exposed to proinflammatory cytokines. SUMMARY OF BACKGROUND DATA Autophagy is an important process by which cytoplasm and organelles are degraded; this adaptive response to sublethal stresses (such as nutrient deprivation present in disc degeneration) supplies needed metabolites. Little is known about autophagic processes during disc degeneration. METHODS Human disc specimens were obtained after institutional review board approval. Annulus mRNA was analyzed to determine autophagy-related gene expression levels. Immunolocalization and ultrastructural studies for p62, ATG3, ATG4B, ATG4C, ATG7, L3A, ULK-2, and beclin were conducted. In vitro experiments used IL-1β- or TNF-α-treated human annulus cells to test for autophagy-related gene expression. RESULTS More degenerated versus healthier discs showed significantly greater upregulation of well-recognized autophagy-related genes (P ≤ 0.028): beclin 1 (upregulated 1.6-fold); ATG8 (LC3) (upregulated 2.0-fold); ATG12 (upregulated 4.0-fold); presenilin 1 (upregulated 1.6-fold); cathepsin B (upregulated 4.5-fold). p62 was localized, and ultrastructure showed autophagic vacuolization and autophagosomes with complex, redundant whorls of membrane-derived material. In vitro, proinflammatory cytokines significantly upregulated autophagy-related genes (P ≤ 0.04): DRAM1 (6.24-fold); p62 (4.98-fold); PIM-2 oncogene, a positive regulator of autophagy (3-fold); WIPI49 (linked to starvation-induced autophagy) (upregulated 2.3-fold). CONCLUSION Data provide initial molecular and morphological evidence for the presence of autophagy in the degenerating human annulus. In vivo gene analyses showed greater autophagy-related gene expression in more degenerated than healthier discs. In vitro data suggested a mechanism implicating a role of TNF-α and IL-1β in disc autophagy. Findings suggest the importance of future work to investigate the relationship of autophagy to apoptosis, cell death, cell senescence, and mitochondrial dysfunction in the aging and degenerating disc. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Helen E Gruber
- From the Department of Orthopaedic Surgery, Carolinas HealthCare System, Charlotte, NC
| | | | | | | | | |
Collapse
|
17
|
Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol 2014; 10:865-76. [PMID: 24799066 DOI: 10.2217/fon.13.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The PIM kinases represent a family of serine/threonine kinases, which is composed of three different members (PIM1, PIM2 and PIM3). Aberrant expression of PIM kinases is observed in variety of tumors, including pancreatic cancer. The PIM kinases play pivotal roles in the regulation of cell cycle, apoptosis, properties of stem cells, metabolism, autophagy, drug resistance and targeted therapy. The roles of PIM kinases in pancreatic cancer include the regulation of proliferation, apoptosis, cell cycle, formation, angiogenesis and prediction prognosis. Blocking the activities of PIM kinases could prevent pancreatic cancer development. PIM kinases may be a novel target for cancer therapy.
Collapse
Affiliation(s)
- Jianwei Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | | | | | | | | |
Collapse
|
18
|
Zirkin S, Fishman S, Sharim H, Michaeli Y, Don J, Ebenstein Y. Lighting up individual DNA damage sites by in vitro repair synthesis. J Am Chem Soc 2014; 136:7771-6. [PMID: 24802414 DOI: 10.1021/ja503677n] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DNA damage and repair are linked to fundamental biological processes such as metabolism, disease, and aging. Single-strand lesions are the most abundant form of DNA damage; however, methods for characterizing these damage lesions are lacking. To avoid double-strand breaks and genomic instability, DNA damage is constantly repaired by efficient enzymatic machinery. We take advantage of this natural process and harness the repair capacity of a bacterial enzymatic cocktail to repair damaged DNA in vitro and incorporate fluorescent nucleotides into damage sites as part of the repair process. We use single-molecule imaging to detect individual damage sites in genomic DNA samples. When the labeled DNA is extended on a microscope slide, damage sites are visualized as fluorescent spots along the DNA contour, and the extent of damage is easily quantified. We demonstrate the ability to quantitatively follow the damage dose response to different damaging agents as well as repair dynamics in response to UV irradiation in several cell types. Finally, we show the modularity of this single-molecule approach by labeling DNA damage in conjunction with 5-hydroxymethylcytosine in genomic DNA extracted from mouse brain tissue.
Collapse
Affiliation(s)
- Shahar Zirkin
- Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Max and Anna Web Street, Ramat-Gan, Israel 5290002
| | | | | | | | | | | |
Collapse
|
19
|
Yu Z, Zhao X, Ge Y, Zhang T, Huang L, Zhou X, Xie L, Liu J, Huang G. A regulatory feedback loop between HIF-1α and PIM2 in HepG2 cells. PLoS One 2014; 9:e88301. [PMID: 24505470 PMCID: PMC3914973 DOI: 10.1371/journal.pone.0088301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
To survive under hypoxic conditions, cancer cells remodel glucose metabolism to support tumor progression. HIF transcription factor is essential for cellular response to hypoxia. The underlying mechanism how HIF is constitutively activated in cancer cells remains elusive. In the present study, we characterized a regulatory feedback loop between HIF-1α and PIM2 in HepG2 cells. Serine/threonine kinase proto-oncogene PIM2 level was induced upon hypoxia in a HIF-1α-mediated manner in cancer cells. HIF-1α induced PIM2 expression via binding to the hypoxia-responsive elements (HREs) of the PIM2 promoter. In turn, PIM2 interacted with HIF-1α, especially a transactivation domain of HIF-1α. PIM2 as a co-factor but not an upstream kinase of HIF-1α, enhanced HIF-1α effect in response to hypoxia. The positive feedback loop between PIM2 and HIF-1α was correlated with glucose metabolism as well as cell survival in HepG2 cells. Such a regulatory mode may be important for the adaptive responses of cancer cells in antagonizing hypoxia during cancer progression.
Collapse
Affiliation(s)
- Zhenhai Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Ge
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Teng Zhang
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangqian Huang
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xie
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (JL); (GH)
| | - Gang Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- * E-mail: (JL); (GH)
| |
Collapse
|
20
|
Zirkin S, Davidovich A, Don J. The PIM-2 kinase is an essential component of the ultraviolet damage response that acts upstream to E2F-1 and ATM. J Biol Chem 2013; 288:21770-83. [PMID: 23760264 DOI: 10.1074/jbc.m113.458851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oncogenic nature ascribed to the PIM-2 kinase relies mostly on phosphorylation of substrates that act as pro-survival/anti-apoptotic factors. Nevertheless, pro-survival effects can also result from activating DNA repair mechanisms following damage. In this study, we addressed the possibility that PIM-2 plays a role in the cellular response to UV damage, an issue that has never been addressed before. We found that in U2OS cells, PIM-2 expression and activity increased upon exposure to UVC radiation (2-50 mJ/cm(2)), and Pim-2-silenced cells were significantly more sensitive to UV radiation. Overexpression of PIM-2 accelerated removal of UV-induced DNA lesions over time, reduced γH2AX accumulation in damaged cells, and rendered these cells significantly more viable following UV radiation. The protective effect of PIM-2 was mediated by increased E2F-1 and activated ATM levels. Silencing E2F-1 reduced the protective effect of PIM-2, whereas inhibiting ATM activity abrogated this protective effect, irrespective of E2F-1 levels. The results obtained in this study place PIM-2 upstream to E2F-1 and ATM in the UV-induced DNA damage response.
Collapse
Affiliation(s)
- Shahar Zirkin
- Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | | |
Collapse
|