1
|
Connacher R, Williams M, Prem S, Yeung PL, Matteson P, Mehta M, Markov A, Peng C, Zhou X, McDermott CR, Pang ZP, Flax J, Brzustowicz L, Lu CW, Millonig JH, DiCicco-Bloom E. Autism NPCs from both idiopathic and CNV 16p11.2 deletion patients exhibit dysregulation of proliferation and mitogenic responses. Stem Cell Reports 2022; 17:1380-1394. [PMID: 35623351 PMCID: PMC9214070 DOI: 10.1016/j.stemcr.2022.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
Neural precursor cell (NPC) dysfunction has been consistently implicated in autism. Induced pluripotent stem cell (iPSC)-derived NPCs from two autism groups (three idiopathic [I-ASD] and two 16p11.2 deletion [16pDel]) were used to investigate if proliferation is commonly disrupted. All five individuals display defects, with all three macrocephalic individuals (two 16pDel, one I-ASD) exhibiting hyperproliferation and the other two I-ASD subjects displaying hypoproliferation. NPCs were challenged with bFGF, and all hyperproliferative NPCs displayed blunted responses, while responses were increased in hypoproliferative cells. mRNA expression studies suggest that different pathways can result in similar proliferation phenotypes. Since 16pDel deletes MAPK3, P-ERK was measured. P-ERK is decreased in hyperproliferative but increased in hypoproliferative NPCs. While these P-ERK changes are not responsible for the phenotypes, P-ERK and bFGF response are inversely correlated with the defects. Finally, we analyzed iPSCs and discovered that 16pDel displays hyperproliferation, while idiopathic iPSCs were normal. These data suggest that NPC proliferation defects are common in ASD.
Collapse
Affiliation(s)
- Robert Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Madeline Williams
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Percy L Yeung
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Anna Markov
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Cynthia Peng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Courtney R McDermott
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Judy Flax
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | | | - Che-Wei Lu
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Cheng YW, Chuang YC, Huang SW, Liu CC, Wang JR. An auto-antibody identified from phenotypic directed screening platform shows host immunity against EV-A71 infection. J Biomed Sci 2022; 29:10. [PMID: 35130884 PMCID: PMC8822709 DOI: 10.1186/s12929-022-00794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background Enterovirus A71 (EV-A71) is a neurotropic virus which may cause severe neural complications, especially in infants and children. The clinical manifestations include hand-foot-and-mouth disease, herpangina, brainstem encephalitis, pulmonary edema, and other severe neurological diseases. Although there are some vaccines approved, the post-marketing surveillance is still unavailable. In addition, there is no antiviral drugs against EV-A71 available. Methods In this study, we identified a novel antibody that could inhibit viral growth through a human single chain variable fragment (scFv) library expressed in mammalian cells and panned by infection with lethal dose of EV-A71. Results We identified that the host protein α-enolase (ENO1) is the target of this scFv, and anti-ENO1 antibody was found to be more in mild cases than severe EV-A71 cases. Furthermore, we examined the antiviral activity in a mouse model. We found that the treatment of the identified 07-human IgG1 antibody increased the survival rate after virus challenge, and significantly decreased the viral RNA and the level of neural pathology in brain tissue. Conclusions Collectively, through a promising intracellular scFv library expression and screening system, we found a potential scFv/antibody which targets host protein ENO1 and can interfere with the infection of EV-A71. The results indicate that the usage and application of this antibody may offer a potential treatment against EV-A71 infection.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Leadgene Biomedical, Inc., Tainan, Taiwan
| | - Yung-Chun Chuang
- Leadgene Biomedical, Inc., Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan. .,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
3
|
Jiang ZQ, Wu HY, Tian J, Li N, Hu XX. Targeting lentiviral vectors to primordial germ cells (PGCs): An efficient strategy for generating transgenic chickens. Zool Res 2020; 41:281-291. [PMID: 32274905 PMCID: PMC7231476 DOI: 10.24272/j.issn.2095-8137.2020.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission efficiency still limit the broad usage of this method in creating transgenic chickens. In this study, we implemented a simple strategy using modified lentiviral vectors targeted to chicken primordial germ cells (PGCs) to generate transgenic chickens. The lentiviral vectors were pseudotyped with a modified Sindbis virus envelope protein (termed M168) and conjugated with an antibody specific to PGC membrane proteins. We demonstrated that these optimized M168-pseudotyped lentiviral vectors conjugated with SSEA4 antibodies successfully targeted transduction of PGCs in vitro and in vivo. Compared with the control, 50.0%-66.7% of chicken embryos expressed green fluorescent protein (GFP) in gonads transduced by the M168-pseudotyped lentivirus. This improved the targeted transduction efficiency by 30.0%-46.7%. Efficient chimerism of exogenous genes was also observed. This targeting technology could improve the efficiency of germ line transmission and provide greater opportunities for transgenic poultry studies.
Collapse
Affiliation(s)
- Zi-Qin Jiang
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | - Han-Yu Wu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | - Jing Tian
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | - Ning Li
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | - Xiao-Xiang Hu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China. E-mail:
| |
Collapse
|
4
|
Reprogrammed Cells Display Distinct Proteomic Signatures Associated with Colony Morphology Variability. Stem Cells Int 2019; 2019:8036035. [PMID: 31827534 PMCID: PMC6885794 DOI: 10.1155/2019/8036035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are of high interest because they can be differentiated into a vast range of different cell types. Ideally, reprogrammed cells should sustain long-term culturing in an undifferentiated state. However, some reprogrammed cell lines represent an unstable state by spontaneously differentiating and changing their cellular phenotype and colony morphology. This phenomenon is not fully understood, and no method is available to predict it reliably. In this study, we analyzed and compared the proteome landscape of 20 reprogrammed cell lines classified as stable and unstable based on long-term colony morphology. We identified distinct proteomic signatures associated with stable colony morphology and with unstable colony morphology, although the typical pluripotency markers (POU5F1, SOX2) were present with both morphologies. Notably, epithelial to mesenchymal transition (EMT) protein markers were associated with unstable colony morphology, and the transforming growth factor beta (TGFB) signalling pathway was predicted as one of the main regulator pathways involved in this process. Furthermore, we identified specific proteins that separated the stable from the unstable state. Finally, we assessed both spontaneous embryonic body (EB) formation and directed differentiation and showed that reprogrammed lines with an unstable colony morphology had reduced differentiation capacity. To conclude, we found that different defined patterns of colony morphology in reprogrammed cells were associated with distinct proteomic profiles and different outcomes in differentiation capacity.
Collapse
|
5
|
Nishimura K, Ishiwata H, Sakuragi Y, Hayashi Y, Fukuda A, Hisatake K. Live-cell imaging of subcellular structures for quantitative evaluation of pluripotent stem cells. Sci Rep 2019; 9:1777. [PMID: 30741960 PMCID: PMC6370783 DOI: 10.1038/s41598-018-37779-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Pluripotent stem cells (PSCs) have various degrees of pluripotency, which necessitates selection of PSCs with high pluripotency before their application to regenerative medicine. However, the quality control processes for PSCs are costly and time-consuming, and it is essential to develop inexpensive and less laborious selection methods for translation of PSCs into clinical applications. Here we developed an imaging system, termed Phase Distribution (PD) imaging system, which visualizes subcellular structures quantitatively in unstained and unlabeled cells. The PD image and its derived PD index reflected the mitochondrial content, enabling quantitative evaluation of the degrees of somatic cell reprogramming and PSC differentiation. Moreover, the PD index allowed unbiased grouping of PSC colonies into those with high or low pluripotency without the aid of invasive methods. Finally, the PD imaging system produced three-dimensional images of PSC colonies, providing further criteria to evaluate pluripotency of PSCs. Thus, the PD imaging system may be utilized for screening of live PSCs with potentially high pluripotency prior to more rigorous quality control processes.
Collapse
Affiliation(s)
- Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Hiroshi Ishiwata
- Optical Technology R&D Department 2, Optical System Development Division, Olympus Corporation, 67-4 Takakura-machi, Hachioji, Tokyo, 192-0033, Japan
| | - Yuta Sakuragi
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
6
|
Versatile targeting system for lentiviral vectors involving biotinylated targeting molecules. Virology 2018; 525:170-181. [PMID: 30290312 DOI: 10.1016/j.virol.2018.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022]
Abstract
Conjugating certain types of lentiviral vectors with targeting ligands can redirect the vectors to specifically transduce desired cell types. However, extensive genetic and/or biochemical manipulations are required for conjugation, which hinders applications for targeting lentiviral vectors for broader research fields. We developed envelope proteins fused with biotin-binding molecules to conjugate the pseudotyped vectors with biotinylated targeting molecules by simply mixing them. The envelope proteins fused with the monomeric, but not tetrameric, biotin-binding molecules can pseudotype lentiviral vectors and be conjugated with biotinylated targeting ligands. The conjugation is stable enough to redirect lentiviral transduction in the presence of serum, indicating their potential in in vivo . When a signaling molecule is conjugated with the vector, the conjugation facilitates transduction and signaling in a receptor-specific manner. This simple method of ligand conjugation and ease of obtaining various types of biotinylated ligands will make targeted lentiviral transduction easily applicable to broad fields of research.
Collapse
|
7
|
Yamazaki T, Liu L, Lazarev D, Al-Zain A, Fomin V, Yeung PL, Chambers SM, Lu CW, Studer L, Manley JL. TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes Dev 2018; 32:1161-1174. [PMID: 30115631 PMCID: PMC6120717 DOI: 10.1101/gad.316984.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Yamazaki et al. show that alternative splicing creates two TCF3 isoforms (E12 and E47) and identified two related splicing factors, hnRNPs H1 and F (hnRNP H/F), that regulate TCF3 splicing. Expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12. Alternative splicing (AS) plays important roles in embryonic stem cell (ESC) differentiation. In this study, we first identified transcripts that display specific AS patterns in pluripotent human ESCs (hESCs) relative to differentiated cells. One of these encodes T-cell factor 3 (TCF3), a transcription factor that plays important roles in ESC differentiation. AS creates two TCF3 isoforms, E12 and E47, and we identified two related splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNPs) H1 and F (hnRNP H/F), that regulate TCF3 splicing. We found that hnRNP H/F levels are high in hESCs, leading to high E12 expression, but decrease during differentiation, switching splicing to produce elevated E47 levels. Importantly, hnRNP H/F knockdown not only recapitulated the switch in TCF3 AS but also destabilized hESC colonies and induced differentiation. Providing an explanation for this, we show that expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Denis Lazarev
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Amr Al-Zain
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vitalay Fomin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Percy Luk Yeung
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stuart M Chambers
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Chi-Wei Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
8
|
Malhotra N. Induced Pluripotent Stem (iPS) Cells in Dentistry: A Review. Int J Stem Cells 2016; 9:176-185. [PMID: 27572712 PMCID: PMC5155713 DOI: 10.15283/ijsc16029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2016] [Indexed: 12/15/2022] Open
Abstract
iPS cells are derived from somatic cells via transduction and expression of selective transcription factors. Both viral-integrating (like retroviral) and non-integrating (like, mRNA or protein-based) techniques are available for the production of iPS cells. In the field of dentistry, iPS cells have been derived from stem cells of apical papilla, dental pulp stem cells, and stem cells from exfoliated deciduous teeth, gingival and periodontal ligament fibroblasts, and buccal mucosa fibroblasts. iPS cells have the potential to differentiate into all derivatives of the 3 primary germ layers i.e. ectoderm, endoderm, and mesoderm. They are autogeneically accessible, and can produce patient-specific or disease-specific cell lines without the issue of ethical controversy. They have been successfully tested to produce mesenchymal stem cells-like cells, neural crest-like cells, ameloblasts-like cells, odontoblasts-like cells, and osteoprogenitor cells. These cells can aid in regeneration of periodontal ligament, alveolar bone, cementum, dentin-pulp complex, as well as possible Biotooth formation. However certain key issues like, epigenetic memory of iPS cells, viral-transduction, tumorgenesis and teratoma formation need to be overcome, before they can be successfully used in clinical practice. The article discusses the sources, pros and cons, and current applications of iPS cells in dentistry with an emphasis on encountered challenges and their solutions.
Collapse
Affiliation(s)
- Neeraj Malhotra
- Department of Conservative Dentistry and Endodontics, Faculty of Dentistry, SEGi University, Kota Damansara, Selangor, Malaysia
| |
Collapse
|
9
|
Parametric analysis of colony morphology of non-labelled live human pluripotent stem cells for cell quality control. Sci Rep 2016; 6:34009. [PMID: 27667091 PMCID: PMC5036041 DOI: 10.1038/srep34009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/06/2016] [Indexed: 11/17/2022] Open
Abstract
Given the difficulties inherent in maintaining human pluripotent stem cells (hPSCs) in a healthy state, hPSCs should be routinely characterized using several established standard criteria during expansion for research or therapeutic purposes. hPSC colony morphology is typically considered an important criterion, but it is not evaluated quantitatively. Thus, we designed an unbiased method to evaluate hPSC colony morphology. This method involves a combination of automated non-labelled live-cell imaging and the implementation of morphological colony analysis algorithms with multiple parameters. To validate the utility of the quantitative evaluation method, a parent cell line exhibiting typical embryonic stem cell (ESC)-like morphology and an aberrant hPSC subclone demonstrating unusual colony morphology were used as models. According to statistical colony classification based on morphological parameters, colonies containing readily discernible areas of differentiation constituted a major classification cluster and were distinguishable from typical ESC-like colonies; similar results were obtained via classification based on global gene expression profiles. Thus, the morphological features of hPSC colonies are closely associated with cellular characteristics. Our quantitative evaluation method provides a biological definition of ‘hPSC colony morphology’, permits the non-invasive monitoring of hPSC conditions and is particularly useful for detecting variations in hPSC heterogeneity.
Collapse
|
10
|
Friedel T, Jung-Klawitter S, Sebe A, Schenk F, Modlich U, Ivics Z, Schumann GG, Buchholz CJ, Schneider IC. CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification. Stem Cells Dev 2016; 25:729-39. [PMID: 26956718 DOI: 10.1089/scd.2015.0386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.
Collapse
Affiliation(s)
- Thorsten Friedel
- 1 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany
| | | | - Attila Sebe
- 2 Medical Biotechnology, Paul-Ehrlich-Institut , Langen, Germany
| | - Franziska Schenk
- 3 Research Group for Gene Modification in Stem Cells, LOEWE Center of Cell and Gene Therapy Frankfurt , Paul-Ehrlich-Institut, Langen, Germany
| | - Ute Modlich
- 3 Research Group for Gene Modification in Stem Cells, LOEWE Center of Cell and Gene Therapy Frankfurt , Paul-Ehrlich-Institut, Langen, Germany
| | - Zoltán Ivics
- 2 Medical Biotechnology, Paul-Ehrlich-Institut , Langen, Germany
| | | | - Christian J Buchholz
- 1 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany
| | - Irene C Schneider
- 1 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany
| |
Collapse
|
11
|
Buchholz CJ, Friedel T, Büning H. Surface-Engineered Viral Vectors for Selective and Cell Type-Specific Gene Delivery. Trends Biotechnol 2015; 33:777-790. [PMID: 26497425 DOI: 10.1016/j.tibtech.2015.09.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022]
Abstract
Recent progress in gene transfer technology enables the delivery of genes precisely to the application-relevant cell type ex vivo on cultivated primary cells or in vivo on local or systemic administration. Gene vectors based on lentiviruses or adeno-associated viruses can be engineered such that they use a cell surface marker of choice for cell entry instead of their natural receptors. Binding to the surface marker is mediated by a targeting ligand displayed on the vector particle surface, which can be a peptide, single-chain antibody, or designed ankyrin repeat protein. Examples include vectors that deliver genes to specialized endothelial cells or lymphocytes, tumor cells, or particular cells of the nervous system with potential applications in gene function studies and molecular medicine.
Collapse
Affiliation(s)
- Christian J Buchholz
- Paul-Ehrlich-Institut, 63225 Langen, Germany; German Cancer Consortium, 69120 Heidelberg, Germany.
| | | | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner sites Bonn-Cologne and Hannover-Braunschweig, Germany
| |
Collapse
|
12
|
Wu DT, Roth MJ. MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials 2014; 35:8416-26. [PMID: 24997480 DOI: 10.1016/j.biomaterials.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/17/2022]
Abstract
We have developed nanoparticles based on Murine Leukemia Virus virus-like-particles (VLPs) that efficiently deliver therapeutic bioactive proteins in their native state into target cells. Nuclear transcription factors and toxic proteins were incorporated into the VLPs from stable producer cells without transducing viral-encoded genetic material. Delivery of nuclear transcription factors required incorporation of nuclear export signals (NESs) into the vector backbone for the efficient formation of VLPs. In the presence of an appropriate targeting Env glycoprotein, transcription factors delivered and activated nuclear transcription in the target cells. Additionally, we show delivery of the bacterial toxin, MazF, which is an ACA-specific mRNA interferase resulted in the induction of cell death. The stable producer cells are protected from the toxin through co-expression of the anti-toxin MazE and continuously released MazF incorporating VLPs. This highly adaptable platform can be harnessed to alter and regulate cellular processes by bioactive protein delivery.
Collapse
Affiliation(s)
- Dai-Tze Wu
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane Rm 636, Piscataway, NJ, USA
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane Rm 636, Piscataway, NJ, USA.
| |
Collapse
|
13
|
Systematic improvement of lentivirus transduction protocols by antibody fragments fused to VSV-G as envelope glycoprotein. Biomaterials 2014; 35:4204-12. [DOI: 10.1016/j.biomaterials.2014.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
|
14
|
Ou W, Li P, Reiser J. Targeting of herpes simplex virus 1 thymidine kinase gene sequences into the OCT4 locus of human induced pluripotent stem cells. PLoS One 2013; 8:e81131. [PMID: 24312266 PMCID: PMC3843684 DOI: 10.1371/journal.pone.0081131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/15/2013] [Indexed: 11/23/2022] Open
Abstract
The in vitro differentiation of human induced pluripotent stem cells (hiPSC) to generate specific types of cells is inefficient, and the remaining undifferentiated cells may form teratomas. This raises safety concerns for clinical applications of hiPSC-derived cellular products. To improve the safety of hiPSC, we attempted to site-specifically insert a herpes simplex virus 1 thymidine kinase (HSV1-TK) suicide gene at the endogenous OCT4 (POU5F1) locus of hiPSC. Since the endogenous OCT4 promoter is active in undifferentiated cells only, we speculated that the HSV1-TK suicide gene will be transcribed in undifferentiated cells only and that the remaining undifferentiated cells can be depleted by treating them with the prodrug ganciclovir (GCV) prior to transplantation. To insert the HSV1-TK gene at the OCT4 locus, we cotransfected hiPSC with a pair of plasmids encoding an OCT4-specific zinc finger nuclease (ZFN) and a donor plasmid harboring a promoter-less transgene cassette consisting of HSV1-TK and puromycin resistance gene sequences, flanked by OCT4 gene sequences. Puromycin resistant clones were established and characterized regarding their sensitivity to GCV and the site of integration of the HSV1-TK/puromycin resistance gene cassette. Of the nine puromycin-resistant iPSC clones analyzed, three contained the HSV1-TK transgene at the OCT4 locus, but they were not sensitive to GCV. The other six clones were GCV-sensitive, but the TK gene was located at off-target sites. These TK-expressing hiPSC clones remained GCV sensitive for up to 90 days, indicating that TK transgene expression was stable. Possible reasons for our failed attempt to selectively target the OCT4 locus are discussed.
Collapse
Affiliation(s)
- Wu Ou
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, United States of America
| | - Pingjuan Li
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, United States of America
| | - Jakob Reiser
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Mazari PM, Roth MJ. Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 2013; 8:107-21. [PMID: 23252496 DOI: 10.2217/fmb.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene- and cell-based therapies hold great potential for the advancement of the personalized medicine movement. Gene therapy vectors have made dramatic leaps forward since their inception. Retroviral-based vectors were the first to gain clinical attention and still offer the best hope for the long-term correction of many disorders. The fear of nonspecific transduction makes targeting a necessary feature for most clinical applications. However, this remains a difficult feature to optimize, with specificity often coming at the expense of efficiency. The aim of this article is to discuss the various methods employed to retarget retroviral entry. Our focus will lie on the modification of gammaretroviral envelope proteins with an in-depth discussion of the creation and screening of envelope libraries.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine & Dentistry of NJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
16
|
Wu N, Liu C, Bai C, Han YP, Cho WCS, Li Q. Over-expression of deubiquitinating enzyme USP14 in lung adenocarcinoma promotes proliferation through the accumulation of β-catenin. Int J Mol Sci 2013; 14:10749-10760. [PMID: 23702845 PMCID: PMC3709700 DOI: 10.3390/ijms140610749] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/11/2013] [Accepted: 05/03/2013] [Indexed: 02/08/2023] Open
Abstract
The deubiquitinating enzyme USP14 has been identified and biochemically studied, but its role in lung cancer remains to be elucidated. The aim of this study was to evaluate the prognostic significance of USP14 in patients with lung adenocarcinoma and to define its role in lung cancer cell proliferation. USP14 mRNA levels in different non-small cell lung cancer (NSCLC) cell lines were detected by real-time qPCR. USP14 protein levels in surgically resected samples from NSCLC patients, and in NSCLC cell lines, were detected by immunohistochemistry or Western blot. The correlation of USP14 expression with clinical characteristics and prognosis was determined by survival analysis. After silencing USP14, cell proliferation was assessed by MTT assay and the cell cycle was measured by FACS assay. It was found that USP14 expression was upregulated in NSCLC cells, especially in adenocarcinoma cells. Over-expression of USP14 was associated with shorter overall survival of patients. Downregulation of USP14 expression arrested the cell cycle, which may be related to β-catenin degradation. Over-expression of USP14 was associated with poor prognosis in NSCLC patients and promoted tumor cell proliferation, which suggests that USP14 is a tumor-promoting factor and a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ning Wu
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; E-Mails: (N.W.); (C.B.); (Y.-P.H.)
| | - Cong Liu
- Department of Radiation Medicine, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | - Chong Bai
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; E-Mails: (N.W.); (C.B.); (Y.-P.H.)
| | - Yi-Ping Han
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; E-Mails: (N.W.); (C.B.); (Y.-P.H.)
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China; E-Mail:
| | - Qiang Li
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; E-Mails: (N.W.); (C.B.); (Y.-P.H.)
| |
Collapse
|