1
|
Martin SA, Riordan RT, Wang R, Yu Z, Aguirre-Burk AM, Wong CP, Olson DA, Branscum AJ, Turner RT, Iwaniec UT, Perez VI. Rapamycin impairs bone accrual in young adult mice independent of Nrf2. Exp Gerontol 2021; 154:111516. [PMID: 34389472 DOI: 10.1016/j.exger.2021.111516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022]
Abstract
Advanced age is the strongest risk factor for osteoporosis. The immunomodulator drug rapamycin extends lifespan in numerous experimental model organisms and is being investigated as a potential therapeutic to slow human aging, but little is known about the effects of rapamycin on bone. We evaluated the impact of rapamycin treatment on bone mass, architecture, and indices of bone turnover in healthy adult (16-20 weeks old at treatment initiation) female wild-type (ICR) and Nrf2-/- mice, a mouse model of oxidative damage and aging-related disease vulnerability. Rapamycin (4 mg/kg bodyweight) was administered by intraperitoneal injection every other day for 12 weeks. Mice treated with rapamycin exhibited lower femur bone mineral content, bone mineral density, and bone volume compared to vehicle-treated mice. In midshaft femur diaphysis (cortical bone), rapamycin-treated mice had lower cortical volume and thickness, and in the distal femur metaphysis (cancellous bone), rapamycin-treated mice had higher trabecular spacing and lower connectivity density. Mice treated with rapamycin exhibited lower bone volume, bone volume fraction, and trabecular thickness in the 5th lumbar vertebra. Rapamycin-treated mice had lower levels of bone formation in the distal femur metaphysis compared to vehicle-treated mice which occurred co-incidentally with increased serum CTX-1, a marker of global bone resorption. Rapamycin had no impact on tibia inflammatory cytokine gene expression, and we found no independent effects of Nrf2 knockout on bone, nor did we find any interactions between genotype and treatment. These data show that rapamycin may have a negative impact on the skeleton of adult mice that should not be overlooked in the clinical context of its usage as a therapy to retard aging and reduce the incidence of age-related pathologies.
Collapse
Affiliation(s)
- Stephen A Martin
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; Biology of Aging Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, USA.
| | - Ruben T Riordan
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Zhen Yu
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Allan M Aguirre-Burk
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Dawn A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Viviana I Perez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Mo LY, Jia XY, Liu CC, Zhou XD, Xu X. [Role of autophagy in the pathogenesis of periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:422-427. [PMID: 31512838 DOI: 10.7518/hxkq.2019.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Periodontitis is a chronic inflammatory disease of periodontal tissues initiated by oral biofilm. Cellular autophagy is an effective weapon against bacterial infection. Recent studies have shown that autophagy not only promotes the removal of bacteria and toxins from infected cells, but also helps to suppress the inflammatory response to maintain the homeostasis of intracellular environment, which is closely related to the development of periodontitis. Here, we reviewed the relationship between autophagy and periodontitis from three aspects: the interactions between autophagy and periodontal pathogen infection, the regulation of autophagy and immune inflammatory responses, and the relationship between autophagy and alveolar bone metabolism. We aim to provide ideas for further study on the mechanisms of autophagy and periodontitis, and ultimately contribute to a better prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Long-Yi Mo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Yue Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Cheng-Cheng Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang D, Yao Z, Yang Z, Jiang X. Mammalian target of rapamycin as a therapeutic target in osteoporosis. J Cell Physiol 2017; 233:3929-3944. [PMID: 28834576 DOI: 10.1002/jcp.26161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Miyamoto K, Ohkawara B, Ito M, Masuda A, Hirakawa A, Sakai T, Hiraiwa H, Hamada T, Ishiguro N, Ohno K. Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS One 2017; 12:e0184388. [PMID: 28926590 PMCID: PMC5604944 DOI: 10.1371/journal.pone.0184388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Abnormal activation of the Wnt/β-catenin signaling is implicated in the osteoarthritis (OA) pathology. We searched for a pre-approved drug that suppresses abnormally activated Wnt/β-catenin signaling and has a potency to reduce joint pathology in OA. We introduced the TOPFlash reporter plasmid into HCS-2/8 human chondrosarcoma cells to estimate the Wnt/β-catenin activity in the presence of 10 μM each compound in a panel of pre-approved drugs. We found that fluoxetine, an antidepressant in the class of selective serotonin reuptake inhibitors (SSRI), down-regulated Wnt/β-catenin signaling in human chondrosarcoma cells. Fluoxetine inhibited both Wnt3A- and LiCl-induced loss of proteoglycans in chondrogenically differentiated ATDC5 cells. Fluoxetine increased expression of Sox9 (the chondrogenic master regulator), and decreased expressions of Axin2 (a marker for Wnt/β-catenin signaling) and Mmp13 (matrix metalloproteinase 13). Fluoxetine suppressed a LiCl-induced increase of total β-catenin and a LiCl-induced decrease of phosphorylated β-catenin in a dose-dependent manner. An in vitro protein-binding assay showed that fluoxetine enhanced binding of β-catenin with Axin1, which is a scaffold protein forming the degradation complex for β-catenin. Fluoxetine suppressed LiCl-induced β-catenin accumulation in human OA chondrocytes. Intraarticular injection of fluoxetine in a rat OA model ameliorated OA progression and suppressed β-catenin accumulation.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Tadahiro Sakai
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Hiraiwa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Hamada
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano AC, Monfregola J, De Gennaro E, Nusco E, Azario I, Lanzara C, Serafini M, Levine B, Ballabio A, Settembre C. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest 2017; 127:3717-3729. [PMID: 28872463 DOI: 10.1172/jci94130] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/18/2017] [Indexed: 11/17/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) kinase promotes cell growth by activating biosynthetic pathways and suppressing catabolic pathways, particularly that of macroautophagy. A prerequisite for mTORC1 activation is its translocation to the lysosomal surface. Deregulation of mTORC1 has been associated with the pathogenesis of several diseases, but its role in skeletal disorders is largely unknown. Here, we show that enhanced mTORC1 signaling arrests bone growth in lysosomal storage disorders (LSDs). We found that lysosomal dysfunction induces a constitutive lysosomal association and consequent activation of mTORC1 in chondrocytes, the cells devoted to bone elongation. mTORC1 hyperphosphorylates the protein UV radiation resistance-associated gene (UVRAG), reducing the activity of the associated Beclin 1-Vps34 complex and thereby inhibiting phosphoinositide production. Limiting phosphoinositide production leads to a blockage of the autophagy flux in LSD chondrocytes. As a consequence, LSD chondrocytes fail to properly secrete collagens, the main components of the cartilage extracellular matrix. In mouse models of LSD, normalization of mTORC1 signaling or stimulation of the Beclin 1-Vps34-UVRAG complex rescued the autophagy flux, restored collagen levels in cartilage, and ameliorated the bone phenotype. Taken together, these data unveil a role for mTORC1 and autophagy in the pathogenesis of skeletal disorders and suggest potential therapeutic approaches for the treatment of LSDs.
Collapse
Affiliation(s)
- Rosa Bartolomeo
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy
| | - Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy
| | - Chiara De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy
| | - Alison Forrester
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Anna Chiara Salzano
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy
| | | | | | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), and
| | - Isabella Azario
- Department of Pediatrics, Dulbecco Telethon Institute at Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza, Italy
| | | | - Marta Serafini
- Department of Pediatrics, Dulbecco Telethon Institute at Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza, Italy
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, and.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| |
Collapse
|
6
|
|
7
|
Li X, Liu YJ, Xia JM, Zeng XY, Liao XX, Wei HY, Hu CL, Jing XL, Dai G. Activation of autophagy improved the neurologic outcome after cardiopulmonary resuscitation in rats. Am J Emerg Med 2016; 34:1511-8. [DOI: 10.1016/j.ajem.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022] Open
|
8
|
Guidotti S, Minguzzi M, Platano D, Cattini L, Trisolino G, Mariani E, Borzì RM. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients. PLoS One 2015; 10:e0143865. [PMID: 26618897 PMCID: PMC4664288 DOI: 10.1371/journal.pone.0143865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy. Methods In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763) were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS) production (2',7'-dichlorofluorescin diacetate staining). Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21), flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining. Results In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10. Conclusions In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via induction of hypertrophy and senescence. Indeed, GSK3β inactivation is responsible for ROS production, triggering oxidative stress and DNA damage response.
Collapse
Affiliation(s)
- Serena Guidotti
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
| | - Manuela Minguzzi
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
| | - Daniela Platano
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie-DIBINEM, Università di Bologna, Bologna, Italy
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Trisolino
- Chirurgia ricostruttiva articolare dell’anca e del ginocchio, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Erminia Mariani
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
- * E-mail:
| |
Collapse
|
9
|
Gabusi E, Paolella F, Manferdini C, Gambari L, Schiavinato A, Lisignoli G. Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. Connect Tissue Res 2015; 56:440-51. [PMID: 26075645 DOI: 10.3109/03008207.2015.1047928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Increased age is the most prominent risk factor for the initiation and progression of osteoarthritis (OA). The effects of human growth hormone (hGH) combined or not with hyaluronan amide derivative (HAD) were evaluated on human OA chondrocytes, to define their biological action and potentiality in OA treatment. MATERIAL AND METHODS Cell viability, metabolic activity, gene expression and factors released were tested at different time points on chondrocytes treated with different concentrations of hGH (0.01-10 μg/ml) alone or in combination with HAD (1 mg/ml). RESULTS We found that OA chondrocytes express GH receptor and that the different doses of hGH tested did not affect cell viability, metabolic activity or the expression of collagen type 2, 1, or 10 nor did it induce the release of IGF-1 or FGF-2. Conversely, hGH treatment increased the expression of hyaluronan receptor CD44. HAD combined with hGH reduced metabolic activity, IL6 release and gene expression, but not the suppressor of cytokine signaling 2 (SOCS2), which was significantly induced and translocated into the nucleus. The parameters analyzed, independently of the treatments used proportionally decreased with increasing age of the patients. CONCLUSIONS hGH only induced CD44 receptor on OA chondrocytes but did not affect other parameters, such as chondrocytic gene markers or IGF-1 or FGF-2 release. HAD reduced all the effects induced by hGH partially through a significant induction of SOCS2. These data show that GH or HAD treatment does not influence the response of the OA chondrocytes, thus the modulation of cellular response is age-independent.
Collapse
Affiliation(s)
- Elena Gabusi
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy
| | | | - Cristina Manferdini
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy .,b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| | - Laura Gambari
- b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| | | | - Gina Lisignoli
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy .,b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| |
Collapse
|
10
|
Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms. Bone 2015; 80:24-36. [PMID: 26453495 PMCID: PMC4600534 DOI: 10.1016/j.bone.2015.04.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/18/2015] [Accepted: 04/07/2015] [Indexed: 12/16/2022]
Abstract
The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists.(1).
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Australia; Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
The consequences of pediatric renal transplantation on bone metabolism and growth. Curr Opin Organ Transplant 2015; 18:555-62. [PMID: 23995376 DOI: 10.1097/mot.0b013e3283651b21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW During childhood, growth retardation, decreased final height and renal osteodystrophy are common complications of chronic kidney disease (CKD). These problems remain present in patients undergoing renal transplantation, even though steroid-sparing strategies are more widely used. In this context, achieving normal height and growth in children after transplantation is a crucial issue for both quality of life and self-esteem. The aim of this review is to provide an overview of pathophysiology of CKD-mineral bone disorder (MBD) in children undergoing renal transplantation and to propose keypoints for its daily management. RECENT FINDINGS In adults, calcimimetics are effective for posttransplant hyperparathyroidism, but data are missing in the pediatric population. Fibroblast growth factor 23 levels are associated with increased risk of rejection, but the underlying mechanisms remain unclear. A recent meta-analysis also demonstrated the effectiveness of rhGH therapy in short transplanted children. SUMMARY In 2013, the daily clinical management of CKD-MBD in transplanted children should still focus on simple objectives: to optimize renal function, to develop and promote steroid-sparing strategies, to provide optimal nutritional support to maximize final height and avoid bone deformations, to equilibrate calcium/phosphate metabolism so as to provide acceptable bone quality and cardiovascular status, to correct all metabolic and clinical abnormalities that can worsen both bone and growth (mainly metabolic acidosis, anemia and malnutrition), promote good lifestyle habits (adequate calcium intake, regular physical activity, no sodas consumption, no tobacco exposure) and eventually to correct native vitamin D deficiency (target of 25-vitamin D >75 nmol/l).
Collapse
|
12
|
Xu HG, Yu YF, Zheng Q, Zhang W, Wang CD, Zhao XY, Tong WX, Wang H, Liu P, Zhang XL. Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification. Bone 2014; 66:232-9. [PMID: 24970040 DOI: 10.1016/j.bone.2014.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 01/08/2023]
Abstract
Calcification of end plate chondrocytes is a major cause of intervertebral disc (IVD) degeneration. However, the underlying molecular mechanism of end plate chondrocyte calcification is still unclear. The aim of this study was to clarify whether autophagy in end plate chondrocytes could protect the calcification of end plate chondrocytes. Previous studies showed that intermittent cyclic mechanical tension (ICMT) contributes to the calcification of end plate chondrocytes in vitro. While autophagy serves as a cell survival mechanism, the relationship of autophagy and induced end plate chondrocyte calcification by mechanical tension in vitro is unknown. Thus, we investigated autophagy, the expression of the autophagy genes, Beclin-1 and LC3, and rat end plate chondrocyte calcification by ICMT. The viability of end plate chondrocytes was examined using the LIVE/DEAD viability/cytotoxicity kit. The reverse transcription-polymerase chain reaction and western blotting were used to detect the expression of Beclin-1; LC3; type I, II and X collagen; aggrecan; and Sox-9 genes. Immunofluorescent and fluorescent microscopy showed decreased autophagy in the 10- and 20-day groups loaded with ICMT. Additionally, Alizarin red and alkaline phosphatase staining detected the palpable calcification of end plate chondrocytes after ICMT treatment. We found that increased autophagy induced by short-term ICMT treatment was accompanied by an insignificant calcification of end plate chondrocytes. To the contrary, the suppressive autophagy inhibited by long-term ICMT was accompanied by a more significant calcification. The process of calcification induced by ICMT was partially resisted by increased autophagy activity induced by rapamycin, implicating that autophagy may prevent end plate chondrocyte calcification.
Collapse
Affiliation(s)
- Hong-guang Xu
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China.
| | - Yun-fei Yu
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Quan Zheng
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Wei Zhang
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Chuang-dong Wang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), 200025, China
| | - Xiao-yn Zhao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), 200025, China
| | - Wen-xue Tong
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), 200025, China
| | - Hong Wang
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Ping Liu
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiao-ling Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), 200025, China.
| |
Collapse
|
13
|
Patterson SE, Dealy CN. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 2014; 243:875-93. [DOI: 10.1002/dvdy.24131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sara E. Patterson
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
| | - Caroline N. Dealy
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
- Center for Regenerative Medicine and Skeletal Development; Department of Orthopedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|
14
|
Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C. Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 2013; 10:7-19. [PMID: 24225636 DOI: 10.4161/auto.26679] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
From an evolutionary perspective, the major function of bone is to provide stable sites for muscle attachment and affording protection of vital organs, especially the heart and lungs (ribs) and spinal cord (vertebrae and intervertebral discs). However, bone has a considerable number of other functions: serving as a store for mineral ions, providing a site for blood cell synthesis and participating in a complex system-wide endocrine system. Not surprisingly, bone and cartilage cell homeostasis is tightly controlled, as is the maintenance of tissue structure and mass. While a great deal of new information is accruing concerning skeletal cell homeostasis, one relatively new observation is that the cells of bone (osteoclasts osteoblasts and osteocytes) and cartilage (chondrocytes) exhibit autophagy. The focus of this review is to examine the significance of this process in terms of the functional demands of the skeleton in health and during growth and to provide evidence that dysregulation of the autophagic response is involved in the pathogenesis of diseases of bone (Paget disease of bone) and cartilage (osteoarthritis and the mucopolysaccharidoses). Delineation of molecular changes in the autophagic process is uncovering new approaches for the treatment of diseases that affect the axial and appendicular skeleton.
Collapse
Affiliation(s)
- Irving M Shapiro
- Jefferson Medical College; Thomas Jefferson University; Philadelphia, PA USA
| | - Robert Layfield
- School of Life Sciences; University of Nottingham Medical School; Nottingham UK
| | - Martin Lotz
- Arthritis Research; The Scripps Research Institute; La Jolla, CA USA
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM); Naples, Italy; Department of Molecular and Human Genetics; Baylor College of Medicine, Houston, TXUSA and Jan and Dan Duncan Neurological Research Institute; Texas Children's Hospital; Houston, TX USA; Medical Genetics; Department of Translational and Medical Science; Federico II University; Naples, Italy
| | - Caroline Whitehouse
- Department of Medical and Molecular Genetics; Kings College London; London UK
| |
Collapse
|