1
|
Ott J, Sehr J, Schmidt N, Schliebs W, Erdmann R. Comparison of human PEX knockout cell lines suggests a dual role of PEX1 in peroxisome biogenesis. Biol Chem 2023; 404:209-219. [PMID: 36534601 DOI: 10.1515/hsz-2022-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.
Collapse
Affiliation(s)
- Julia Ott
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Jessica Sehr
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Nadine Schmidt
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
2
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Samuel AZ, Horii S, Nakashima T, Shibata N, Ando M, Takeyama H. Raman Microspectroscopy Imaging Analysis of Extracellular Vesicles Biogenesis by Filamentous Fungus Penicilium chrysogenum. Adv Biol (Weinh) 2022; 6:e2101322. [PMID: 35277945 DOI: 10.1002/adbi.202101322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Indexed: 01/27/2023]
Abstract
The mechanism of production of extracellular vesicles (EVs) and their molecular contents are of great interest due to their diverse roles in biological systems and are far from being completely understood. Even though cellular cargo releases mediated by EVs have been demonstrated in several cases, their role in secondary metabolite production and release remains elusive. In this study, this aspect is investigated in detail using Raman microspectroscopic imaging. Considerable evidence is provided to suggest that the release of antibiotic penicillin by the filamentous fungus Penicillium chrysogenum involves EVs. Further, the study also reveals morphological modifications of the fungal body during biogenesis, changes in cell composition at the locus of biogenesis, and major molecular contents of the released EVs. The results suggest a possible general role of EVs in the release of antibiotics from the producing organisms.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Shumpei Horii
- Department of Advanced Science Engineering, Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Takuji Nakashima
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Naoko Shibata
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Masahiro Ando
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
4
|
Wei X, Maharjan Y, Dorotea D, Dutta RK, Kim D, Kim H, Mu Y, Park C, Park R. Knockdown of PEX16 Induces Autophagic Degradation of Peroxisomes. Int J Mol Sci 2021; 22:ijms22157989. [PMID: 34360754 PMCID: PMC8348608 DOI: 10.3390/ijms22157989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 01/16/2023] Open
Abstract
Peroxisome abundance is regulated by homeostasis between the peroxisomal biogenesis and degradation processes. Peroxin 16 (PEX16) is a peroxisomal protein involved in trafficking membrane proteins for de novo peroxisome biogenesis. The present study demonstrates that PEX16 also modulates peroxisome abundance through pexophagic degradation. PEX16 knockdown in human retinal pigment epithelial-1 cells decreased peroxisome abundance and function, represented by reductions in the expression of peroxisome membrane protein ABCD3 and the levels of cholesterol and plasmalogens, respectively. The activation of pexophagy under PEX16 knockdown was shown by (i) abrogated peroxisome loss under PEX16 knockdown in autophagy-deficient ATG5 knockout cell lines, and (ii) increased autophagy flux and co-localization of p62-an autophagy adaptor protein-with ABCD3 in the presence of the autophagy inhibitor chloroquine. However, the levels of cholesterol and plasmalogens did not recover despite the restoration of peroxisome abundance following chloroquine treatment. Thus, PEX16 is indispensable for maintaining peroxisome homeostasis by regulating not only the commonly known biogenesis pathway but also the autophagic degradation of peroxisomes.
Collapse
|
5
|
Jansen RLM, Santana-Molina C, van den Noort M, Devos DP, van der Klei IJ. Comparative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins. Front Cell Dev Biol 2021; 9:654163. [PMID: 34095119 PMCID: PMC8172628 DOI: 10.3389/fcell.2021.654163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
PEX genes encode proteins involved in peroxisome biogenesis and proliferation. Using a comparative genomics approach, we clarify the evolutionary relationships between the 37 known PEX proteins in a representative set of eukaryotes, including all common model organisms, pathogenic unicellular eukaryotes and human. A large number of previously unknown PEX orthologs were identified. We analyzed all PEX proteins, their conservation and domain architecture and defined the core set of PEX proteins that is required to make a peroxisome. The molecular processes in peroxisome biogenesis in different organisms were put into context, showing that peroxisomes are not static organelles in eukaryotic evolution. Organisms that lack peroxisomes still contain a few PEX proteins, which probably play a role in alternative processes. Finally, the relationships between PEX proteins of two large families, the Pex11 and Pex23 families, were analyzed, thereby contributing to the understanding of their complicated and sometimes incorrect nomenclature. We provide an exhaustive overview of this important eukaryotic organelle.
Collapse
Affiliation(s)
- Renate L M Jansen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Marco van den Noort
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Lubbers RJM, Dilokpimol A, Visser J, de Vries RP. Aspergillus niger uses the peroxisomal CoA-dependent β-oxidative genes to degrade the hydroxycinnamic acids caffeic acid, ferulic acid, and p-coumaric acid. Appl Microbiol Biotechnol 2021; 105:4199-4211. [PMID: 33950281 PMCID: PMC8140964 DOI: 10.1007/s00253-021-11311-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Abstract Aromatic compounds are important molecules which are widely applied in many industries and are mainly produced from nonrenewable sources. Renewable sources such as plant biomass are interesting alternatives for the production of aromatic compounds. Ferulic acid and p-coumaric acid, a precursor for vanillin and p-vinyl phenol, respectively, can be released from plant biomass by the fungus Aspergillus niger. The degradation of hydroxycinnamic acids such as caffeic acid, ferulic acid, and p-coumaric acid has been observed in many fungi. In A. niger, multiple metabolic pathways were suggested for the degradation of hydroxycinnamic acids. However, no genes were identified for these hydroxycinnamic acid metabolic pathways. In this study, several pathway genes were identified using whole-genome transcriptomic data of A. niger grown on different hydroxycinnamic acids. The genes are involved in the CoA-dependent β-oxidative pathway in fungi. This pathway is well known for the degradation of fatty acids, but not for hydroxycinnamic acids. However, in plants, it has been shown that hydroxycinnamic acids are degraded through this pathway. We identified genes encoding hydroxycinnamate-CoA synthase (hcsA), multifunctional β-oxidation hydratase/dehydrogenase (foxA), 3-ketoacyl CoA thiolase (katA), and four thioesterases (theA-D) of A. niger, which were highly induced by all three tested hydroxycinnamic acids. Deletion mutants revealed that these genes were indeed involved in the degradation of several hydroxycinnamic acids. In addition, foxA and theB are also involved in the degradation of fatty acids. HcsA, FoxA, and KatA contained a peroxisomal targeting signal and are therefore predicted to be localized in peroxisomes. Key points • Metabolism of hydroxycinnamic acid was investigated in Aspergillus niger • Using transcriptome data, multiple CoA-dependent β-oxidative genes were identified. • Both foxA and theB are involved in hydroxycinnamate but also fatty acid metabolism. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11311-0.
Collapse
Affiliation(s)
- R J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - J Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - R P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Tian Y, Zhang L, Li Y, Gao J, Yu H, Guo Y, Jia L. Variant analysis of PEX11B gene from a family with peroxisome biogenesis disorder 14B by whole exome sequencing. Mol Genet Genomic Med 2019; 8. [PMID: 31724321 PMCID: PMC6978261 DOI: 10.1002/mgg3.1042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/30/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Peroxisome biogenesis disorder 14B (PBD14B) is an autosomal recessive peroxisome biogenesis disorder characterized clinically by mild intellectual disability, congenital cataracts, progressive hearing loss, and polyneuropathy peroxisome biogenesis disorders are genetically heterogeneous group of disorders caused by biallelic mutations in peroxin (PEX) genes. METHODOLOGY/LABORATORY EXAMINATION DNA of the family was extracted and sequenced by whole exome sequencing. The results were validated with Sanger sequencing analyzed with Bioinformatics software. RESULTS Sequencing result showed that the patient has carried a homozygous variant of c.277C>T of the PEX11B gene. The patient's brother has carried a homozygous variant of c.277C>T of the PEX11B gene and their variants of c.277C>T of the PEX11B gene were inherited, respectively, from his mother and father. DISCUSSION AND CONCLUSION The homozygous variant of c.277C>T of the PEX11B gene probably underlie the disease in this child and her brother.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinshuang Gao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Yu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaqing Guo
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liting Jia
- Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Burkhart SE, Llinas RJ, Bartel B. PEX16 contributions to peroxisome import and metabolism revealed by viable Arabidopsis pex16 mutants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:853-870. [PMID: 30761735 PMCID: PMC6613983 DOI: 10.1111/jipb.12789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Peroxisomes rely on peroxins (PEX proteins) for biogenesis, importing membrane and matrix proteins, and fission. PEX16, which is implicated in peroxisomal membrane protein targeting and forming nascent peroxisomes from the endoplasmic reticulum (ER), is unusual among peroxins because it is inserted co-translationally into the ER and localizes to both ER and peroxisomal membranes. PEX16 mutations in humans, yeast, and plants confer some common peroxisomal defects; however, apparent functional differences have impeded the development of a unified model for PEX16 action. The only reported pex16 mutant in plants, the Arabidopsis shrunken seed1 mutant, is inviable, complicating analysis of PEX16 function after embryogenesis. Here, we characterized two viable Arabidopsis pex16 alleles that accumulate negligible PEX16 protein levels. Both mutants displayed impaired peroxisome function - slowed consumption of stored oil bodies, decreased import of matrix proteins, and increased peroxisome size. Moreover, one pex16 allele exhibited reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxisomally processed hormone precursors, and worsened or improved peroxisome function in combination with other pex mutants. Because the mutations impact different regions of the PEX16 gene, these viable pex16 alleles allow assessment of the importance of Arabidopsis PEX16 and its functional domains.
Collapse
|
9
|
Pex16 is involved in peroxisome and Woronin body formation in the white koji fungus, Aspergillus luchuensis mut. kawachii. J Biosci Bioeng 2019; 127:85-92. [DOI: 10.1016/j.jbiosc.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/10/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022]
|
10
|
Roles of Peroxisomes in the Rice Blast Fungus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9343417. [PMID: 27610388 PMCID: PMC5004026 DOI: 10.1155/2016/9343417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity.
Collapse
|
11
|
Paths and determinants for Penicillium janthinellum to resist low and high copper. Sci Rep 2015; 5:10590. [PMID: 26265593 PMCID: PMC4642507 DOI: 10.1038/srep10590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 01/21/2023] Open
Abstract
Copper (Cu) tolerance was well understood in fungi yeasts but not in filamentous fungi. Filamentous fungi are eukaryotes but unlike eukaryotic fungi yeasts, which are a collection of various fungi that are maybe classified into different taxa but all characterized by growth as filamentous hyphae cells and with a complex morphology. The current knowledge of Cu resistance of filamentous fungi is still fragmental and therefore needs to be bridged. In this study, we characterized Cu resistance of Penicillium janthinellum strain GXCR and its Cu-resistance-decreasing mutants (EC-6 and UC-8), and conducted sequencing of a total of 6 transcriptomes from wild-type GXCR and mutant EC-6 grown under control and external Cu. Taken all the results together, Cu effects on the basal metabolism were directed to solute transport by two superfamilies of solute carrier and major facilitator, the buffering free CoA and Acyl-CoA pool in the peroxisome, F-type H(+)-transporting ATPases-based ATP production, V-type H(+)-transporting ATPases-based transmembrane transport, protein degradation, and alternative splicing of pre-mRNAs. Roles of enzymatic and non-enzymatic antioxidants in resistance to low and high Cu were defined. The backbone paths, signaling systems, and determinants that involve resistance of filamentous fungi to high Cu were determined, discussed and outlined in a model.
Collapse
|
12
|
Wang J, Li L, Zhang Z, Qiu H, Li D, Fang Y, Jiang H, Chai RY, Mao X, Wang Y, Sun G. One of Three Pex11 Family Members Is Required for Peroxisomal Proliferation and Full Virulence of the Rice Blast Fungus Magnaporthe oryzae. PLoS One 2015. [PMID: 26218097 PMCID: PMC4517885 DOI: 10.1371/journal.pone.0134249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes play important roles in metabolisms of eukaryotes and infection of plant fungal pathogens. These organelles proliferate by de novo formation or division in response to environmental stimulation. Although the assembly of peroxisomes was documented in fungal pathogens, their division and its relationship to pathogenicity remain obscure. In present work, we analyzed the roles of three Pex11 family members in peroxisomal division and pathogenicity of the rice blast fungus Magnaporthe oryzae. Deletion of MoPEX11A led to fewer but enlarged peroxisomes, and impaired the separation of Woronin bodies from peroxisomes, while deletion of MoPEX11B or MoPEX11C put no evident impacts to peroxisomal profiles. MoPEX11A mutant exhibited typical peroxisome related defects, delayed conidial germination and appressoria formation, and decreased appressorial turgor and host penetration. As a result, the virulence of MoPEX11A mutant was greatly reduced. Deletion of MoPEX11B and MoPEX11C did not alter the virulence of the fungus. Further, double or triple deletions of the three genes were unable to enhance the virulence decrease in MoPEX11A mutant. Our data indicated that MoPEX11A is the main factor modulating peroxisomal division and is required for full virulence of the fungus.
Collapse
Affiliation(s)
- Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ling Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Agricultural and Food Sciences, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongmei Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Fang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rong Yao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail:
| |
Collapse
|
13
|
Chang J, Klute MJ, Tower RJ, Mast FD, Dacks JB, Rachubinski RA. An ancestral role in peroxisome assembly is retained by the divisional peroxin Pex11 in the yeast Yarrowia lipolytica. J Cell Sci 2015; 128:1327-40. [PMID: 25663700 DOI: 10.1242/jcs.157743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The peroxin Pex11 has a recognized role in peroxisome division. Pex11p remodels and elongates peroxisomal membranes prior to the recruitment of dynamin-related GTPases that act in membrane scission to divide peroxisomes. We performed a comprehensive comparative genomics survey to understand the significance of the evolution of the Pex11 protein family in yeast and other eukaryotes. Pex11p is highly conserved and ancestral, and has undergone numerous lineage-specific duplications, whereas other Pex11 protein family members are fungal-specific innovations. Functional characterization of the in-silico-predicted Pex11 protein family members of the yeast Yarrowia lipolytica, i.e. Pex11p, Pex11Cp and Pex11/25p, demonstrated that Pex11Cp and Pex11/25p have a role in the regulation of peroxisome size and number characteristic of Pex11 protein family members. Unexpectedly, deletion of PEX11 in Y. lipolytica produces cells that lack morphologically identifiable peroxisomes, mislocalize peroxisomal matrix proteins and preferentially degrade peroxisomal membrane proteins, i.e. they exhibit the classical pex mutant phenotype, which has not been observed previously in cells deleted for the PEX11 gene. Our results are consistent with an unprecedented role for Pex11p in de novo peroxisome assembly.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mary J Klute
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Robert J Tower
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Fred D Mast
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
14
|
Maruyama JI, Kitamoto K. Expanding functional repertoires of fungal peroxisomes: contribution to growth and survival processes. Front Physiol 2013; 4:177. [PMID: 23882222 PMCID: PMC3713238 DOI: 10.3389/fphys.2013.00177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/23/2013] [Indexed: 11/14/2022] Open
Abstract
It has long been regarded that the primary function of fungal peroxisomes is limited to the β-oxidation of fatty acids, as mutants lacking peroxisomal function fail to grow in minimal medium containing fatty acids as the sole carbon source. However, studies in filamentous fungi have revealed that peroxisomes have diverse functional repertoires. This review describes the essential roles of peroxisomes in the growth and survival processes of filamentous fungi. One such survival mechanism involves the Woronin body, a Pezizomycotina-specific organelle that plugs the septal pore upon hyphal lysis to prevent excessive cytoplasmic loss. A number of reports have demonstrated that Woronin bodies are derived from peroxisomes. Specifically, the Woronin body protein Hex1 is targeted to peroxisomes by peroxisomal targeting sequence 1 (PTS1) and forms a self-assembled structure that buds from peroxisomes to form the Woronin body. Peroxisomal deficiency reduces the ability of filamentous fungi to prevent excessive cytoplasmic loss upon hyphal lysis, indicating that peroxisomes contribute to the survival of these multicellular organisms. Peroxisomes were also recently found to play a vital role in the biosynthesis of biotin, which is an essential cofactor for various carboxylation and decarboxylation reactions. In biotin-prototrophic fungi, peroxisome-deficient mutants exhibit growth defects when grown on glucose as a carbon source due to biotin auxotrophy. The biotin biosynthetic enzyme BioF (7-keto-8-aminopelargonic acid synthase) contains a PTS1 motif that is required for both peroxisomal targeting and biotin biosynthesis. In plants, the BioF protein contains a conserved PTS1 motif and is also localized in peroxisomes. These findings indicate that the involvement of peroxisomes in biotin biosynthesis is evolutionarily conserved between fungi and plants, and that peroxisomes play a key role in fungal growth.
Collapse
|
15
|
Abstract
Peroxisomes are ubiquitous and versatile cell organelles. They consist of a single membrane that encloses a proteinaceous matrix. Conserved functions are fatty acid β-oxidation and hydrogen peroxide metabolism. In filamentous fungi, many other metabolic functions have been identified. Also, they contain highly specialized peroxisome-derived structures termed Woronin bodies, which have a structural function in plugging septal pores in order to prevent cytoplasmic bleeding of damaged hyphae.In filamentous fungi peroxisomes play key roles in the production of a range of secondary metabolites such as antibiotics. Most likely the atlas of fungal peroxisomal metabolic pathways is still far from complete. Relative recently discovered functions include their role in biotin biosynthesis as well as in the production of several toxins, among which polyketides. Finally, in filamentous fungi peroxisomes are important for development and pathogenesis.In this contribution we present an overview of our current knowledge on fungal peroxisome formation as well as on their functional diversity.
Collapse
Affiliation(s)
- Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 11103, 9700CC, Groningen, The Netherlands,
| | | |
Collapse
|