1
|
Tawfeeq HR, Lackey AI, Zhou Y, Diolintzi A, Zacharisen SM, Lau YH, Quadro L, Storch J. Tissue-Specific Ablation of Liver Fatty Acid-Binding Protein Induces a Metabolically Healthy Obese Phenotype in Female Mice. Nutrients 2025; 17:753. [PMID: 40077623 PMCID: PMC11901660 DOI: 10.3390/nu17050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high-fat (HF)-fed LFABP knockout (LFABP-/-) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. Since LFABP is expressed in both liver and intestine, in the present study, we generated LFABP conditional knockout (cKO) mice to determine the contributions of LFABP specifically within the liver or within the intestine, to the whole-body phenotype of the global knockout. Methods: Female liver-specific LFABP knockout (LFABPliv-/-), intestine-specific LFABP knockout (LFABPint-/-), and "floxed" LFABP (LFABPfl/fl) control mice were fed a 45% Kcal fat semipurified HF diet for 12 weeks. Results: While not as dramatic as found for whole-body LFABP-/- mice, both LFABPliv-/- and LFABPint-/- mice had significantly higher body weights and fat mass compared with LFABPfl/fl control mice. As with the global LFABP nulls, both LFABPliv-/- and LFABPint-/- mice remained normoglycemic and normoinsulinemic. Despite their greater fat mass, the LFABPliv-/- mice did not develop hepatic steatosis. Additionally, LFABPliv-/- and LFABPint-/- mice had higher endurance exercise capacity when compared with LFABPfl/fl control mice. Conclusions: The results suggest, therefore, that either liver-specific or intestine-specific ablation of LFABP in female mice is sufficient to induce, at least in part, the MHO phenotype observed following whole-body ablation of LFABP.
Collapse
Affiliation(s)
- Hiba Radhwan Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Anastasia Diolintzi
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Sophia M. Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yin Hei Lau
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Loredana Quadro
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
- Department of Food Science, Rutgers University, New Brunswick, NJ 07102, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Tawfeeq HR, Lackey AI, Zhou Y, Diolointzi A, Zacharisen S, Lau YH, Quadro L, Storch J. Tissue-Specific Ablation of Liver Fatty Acid-Binding Protein Induces a Metabolically Healthy Obese Phenotype in Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631082. [PMID: 39803463 PMCID: PMC11722216 DOI: 10.1101/2025.01.02.631082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Background/Objectives Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high fat (HF) fed LFABP knockout (LFABP-/-) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. LFABP is expressed in both liver and intestine, thus in the present study, LFABP conditional knockout (cKO) mice were generated to determine the contributions of LFABP specifically within the liver or the intestine to the whole body phenotype of the global knockout. Methods Female liver-specific LFABP knockout (LFABPliv-/-), intestine-specific LFABP knockout (LFABPint-/-), and floxed LFABP (LFABPfl/fl) control mice were fed a 45% Kcal fat semipurified HF diet for 12 weeks. Results While not as dramatic as found for whole-body LFABP-/- mice, both LFABPliv-/- and LFABPint-/- mice had significantly higher body weights and fat mass compared with LFABPfl/fl control mice. As with the global LFABP nulls, both LFABPliv-/- and LFABPint-/- mice remained normoglycemic and normoinsulinemic. Despite their greater fat mass, the LFABPliv-/- mice did not develop hepatic steatosis. Additionally, LFABPliv-/- and LFABPint-/- mice had higher endurance exercise capacity when compared with LFABPfl/fl control mice. Conclusions The results suggest, therefore, that either liver-specific or intestine-specific ablation of LFABP in female mice is sufficient to induce, at least in part, the MHO phenotype observed following whole-body ablation of LFABP.
Collapse
Affiliation(s)
- Hiba Radhwan Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Anastasia Diolointzi
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Sophia Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Yin Hei Lau
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Loredana Quadro
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
- Department of Food Science, Rutgers University, New Brunswick, New Jersey
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
3
|
Sadat‐Shirazi M, Nouri Zadeh‐Tehrani S, Akbarabadi A, Mokri A, Taleb Zadeh Kasgari B, Zarrindast M. Exercise can restore behavioural and molecular changes of intergenerational morphine effects. Addict Biol 2022; 27:e13122. [PMID: 34931742 DOI: 10.1111/adb.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022]
Abstract
In our previous studies, the offspring of morphine-exposed parents (MEO) showed pharmacological tolerance to the morphine's reinforcing effect. According to the role of exercise in treatment of morphine addiction, the current study was designed to utilize exercise to improve the effect of parental morphine exposure on the morphine's reinforcing effect. Male and female rats received morphine for 10 days and were drug-free for another 10 days. Each morphine-exposed animal was allowed to mate either with a drug-naïve or a morphine-exposed rat. The offspring were divided into two groups: (1) offspring that were subjected to treadmill exercise and (2) offspring that were not subjected to exercise. The reinforcing effect of morphine was evaluated using conditioned place preference (CPP) and two-bottle choice (TBC) tests. Levels of dopamine receptors (D1DR and D2DR), μ-opioid receptor (MOR), and ΔFosB were evaluated in the nucleus accumbens. The MEO obtained lower preference scores in CPP and consumed morphine more than the control group in TBC. After 3 weeks of exercise, the reinforcing effect of morphine in the MEO was similar to the control. D1DR, D2DR, and MOR were increased in MEO compared with the controls before exercise. Levels of D1DR and MOR were decreased after exercise in the MEO; however, D1DR was increased in control. D2DR level did not change after exercise in MEO, but it increased in control group. Moreover, the level of ΔFosB was decreased among MEO while it was increased after exercise. In conclusion, exercise might modulate the reinforcing effect of morphine via alteration in levels of D1DR, MOR, and ΔFosB.
Collapse
Affiliation(s)
| | | | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
| | - Azarakhsh Mokri
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- Roozbeh Hospital Tehran University of Medical Sciences Tehran Iran
| | - Bahar Taleb Zadeh Kasgari
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- School of Biology, College of Science University of Tehran Tehran Iran
| | - Mohammad‐Reza Zarrindast
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Islamic Azad University Tehran Iran
- Endocrinology and Metabolism Research Institute Tehran University of Medical Science Tehran Iran
| |
Collapse
|
4
|
Sheppard PAS, Puri TA, Galea LAM. Sex Differences and Estradiol Effects in MAPK and Akt Cell Signaling across Subregions of the Hippocampus. Neuroendocrinology 2022; 112:621-635. [PMID: 34407537 DOI: 10.1159/000519072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rapid effects of estrogens within the hippocampus of rodents are dependent upon cell-signaling cascades, and activation of these cascades by estrogens varies by sex. Whether these pathways are rapidly activated within the dentate gyrus (DG) and CA1 by estrogens across sex and the anatomical longitudinal axis has been overlooked. METHODS Gonadally intact female and male rats were given either vehicle or physiological systemic low (1.1 µg/kg) or high (37.3 µg/kg) doses of 17β-estradiol 30 min prior to tissue collection. To control for the effects of circulating estrogens, an additional group of female rats was ovariectomized (OVX) and administered 17β-estradiol. Brains were extracted, and tissue punches of the CA1 and DG were taken along the longitudinal hippocampal axis (dorsal and ventral) and analyzed for key mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) cascade phosphoproteins. RESULTS Intact females had higher Akt pathway phosphoproteins (pAkt, pGSK-3β, and pp70S6K) than males in the DG (dorsal and ventral) and lower pERK1/2 in the dorsal DG. Most effects of 17β-estradiol on cell signaling occurred in OVX animals. In OVX animals, 17β-estradiol increased cell signaling of MAPK and Akt phosphoproteins (pERK1/2, pJNK, pAkt, and pGSK-3β) in the CA1 and pERK1/2 and pJNK DG. DISCUSSION/CONCLUSIONS Systemic 17β-estradiol treatment rapidly alters phosphoprotein levels in the hippocampus, dependent on reproductive status, and intact females have greater expression of Akt phosphoproteins than that in intact males in the DG. These findings shed light on underlying mechanisms of sex differences in hippocampal function and response to interventions that affect MAPK or Akt signaling.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanvi A Puri
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Zhou XA, Blackmore DG, Zhuo J, Nasrallah FA, To X, Kurniawan ND, Carlisle A, Vien KY, Chuang KH, Jiang T, Bartlett PF. Neurogenic-dependent changes in hippocampal circuitry underlie the procognitive effect of exercise in aging mice. iScience 2021; 24:103450. [PMID: 34877505 PMCID: PMC8633984 DOI: 10.1016/j.isci.2021.103450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
We have shown that the improvement in hippocampal-based learning in aged mice following physical exercise observed is dependent on neurogenesis in the dentate gyrus (DG) and is regulated by changes in growth hormone levels. The changes in neurocircuitry, however, which may underlie this improvement, remain unclear. Using in vivo multimodal magnetic resonance imaging to track changes in aged mice exposed to exercise, we show the improved spatial learning is due to enhanced DG connectivity, particularly the strengthening of the DG-Cornu Ammonis 3 and the DG-medial entorhinal cortex connections in the dorsal hippocampus. Moreover, we provide evidence that these changes in circuitry are dependent on neurogenesis since they were abrogated by ablation of newborn neurons following exercise. These findings identify the specific changes in hippocampal circuitry that underlie the cognitive improvements resulting from physical activity and show that they are dependent on the activation of neurogenesis in aged animals.
Collapse
Affiliation(s)
- Xiaoqing Alice Zhou
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel G. Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Junjie Zhuo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Fatima A. Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - XuanVinh To
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alison Carlisle
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - King-Year Vien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tianzi Jiang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Perry F. Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
A Runner's High for New Neurons? Potential Role for Endorphins in Exercise Effects on Adult Neurogenesis. Biomolecules 2021; 11:biom11081077. [PMID: 34439743 PMCID: PMC8392752 DOI: 10.3390/biom11081077] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
Physical exercise has wide-ranging benefits to cognitive functioning and mental state, effects very closely resembling enhancements to hippocampal functioning. Hippocampal neurogenesis has been implicated in many of these mental benefits of exercise. However, precise mechanisms behind these effects are not well known. Released peripherally during exercise, beta-endorphins are an intriguing candidate for moderating increases in neurogenesis and the related behavioral benefits of exercise. Although historically ignored due to their peripheral release and status as a peptide hormone, this review highlights reasons for further exploring beta-endorphin as a key mediator of hippocampal neurogenesis. This includes possible routes for beta-endorphin signaling into the hippocampus during exercise, direct effects of beta-endorphin on cell proliferation and neurogenesis, and behavioral effects of manipulating endogenous opioid signaling. Together, beta-endorphin appears to be a promising mechanism for understanding the specific ways that exercise promotes adult neurogenesis specifically and brain health broadly.
Collapse
|
7
|
Antidepressant-like and pro-neurogenic effects of physical exercise: the putative role of FNDC5/irisin pathway. J Neural Transm (Vienna) 2020; 127:355-370. [DOI: 10.1007/s00702-020-02143-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
8
|
Rosa JM, Pazini FL, Olescowicz G, Camargo A, Moretti M, Gil-Mohapel J, Rodrigues ALS. Prophylactic effect of physical exercise on Aβ 1-40-induced depressive-like behavior: Role of BDNF, mTOR signaling, cell proliferation and survival in the hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109646. [PMID: 31078612 DOI: 10.1016/j.pnpbp.2019.109646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive impairments as well as non-cognitive symptoms such as depressed mood. Physical exercise has been proposed as a preventive strategy against AD and depression, an effect that may be related, at least partially, to its ability to prevent impairments on cell proliferation and neuronal survival in the hippocampus, a structure implicated in both cognition and affective behavior. Here, we investigated the ability of treadmill exercise (4 weeks) to counteract amyloid β1-40 peptide-induced depressive-like and anxiety-like behavior in mice. Moreover, we addressed the role of the BDNF/mTOR intracellular signaling pathway as well as hippocampal cell proliferation and survival in the effects of physical exercise and/or Aβ1-40. Aβ1-40 administration (400 pmol/mouse, i.c.v.) increased immobility time and reduced the latency to immobility in the forced swim test, a finding indicative of depressive-like behavior. In addition, Aβ1-40 administration also decreased time spent in the center of the open field and increased grooming and defecation, alterations indicative of anxiety-like behavior. These behavioral alterations were accompanied by a reduction in the levels of mature BDNF and mTOR (Ser2448) phosphorylation in the hippocampus. In addition, Aß1-40 administration reduced cell proliferation and survival in the ventral, dorsal and entire dentate gyrus of the hippocampus. Importantly, most of these behavioral, neurochemical and structural impairments induced by Aβ1-40 were not observed in mice subjected to 4 weeks of treadmill exercise. These findings indicate that physical exercise has the potential to prevent the occurrence of early emotional disturbances associated with AD and this appears to be mediated, at least in part, by modulation of hippocampal BDNF and mTOR signaling as well as through promotion of cell proliferation and survival in the hippocampal DG.
Collapse
Affiliation(s)
- Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, British Columbia, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
9
|
Abstract
Exercise intervention has long been used as one adjunctive treatment for drug abuse. Both animal studies and human trials suggest that exercise training effectively prevents addiction formation, suppresses drug-seeking behaviors, and ceases addictions. Moreover, exercise improves both mental and cognitive deficits that commonly occur during drug withdrawal. Those observations are supported by neurobiological studies in which exercise training modulates several neural networks including the dopaminergic reward system, and regulates neurogenesis and spinogenesis that affect cognitive behaviors and mental health. In sum, exercise training is a safe and effective way to relieve substance abuse, although both intervention guideline and biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory for Psychotic disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, China.
| |
Collapse
|
10
|
Feter N, Penny J, Freitas M, Rombaldi A. Effect of physical exercise on hippocampal volume in adults: Systematic review and meta-analysis. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Hippocampal distribution of parvalbumin neurons in female and male rats submitted to the same volume and intensity of aerobic exercise. Neurosci Lett 2018; 690:162-166. [PMID: 30336195 DOI: 10.1016/j.neulet.2018.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/28/2018] [Accepted: 10/14/2018] [Indexed: 01/27/2023]
Abstract
Several studies report the influence of gender on physical exercise-induced brain plasticity, including neurotrophic factor levels, neurogenesis, and navigation strategies in spatial memory task. However, it has been noted that females are physically more active than males in animal models of physical exercise. With this in mind, we conducted an experimental study to investigate the effect of sex on the brain of rats submitted to same volume and intensity of aerobic exercise. To do so, we used calcium-binding protein parvalbumin as neuroplastic marker to explore the hippocampal formation (a brain neurogenic/mnemonic region) of male and female rats submitted to 4 weeks of aerobic exercise on a treadmill at 12 m/min, 30 min per day. Our results show that, in both sexes, physical exercise increased hippocampal density of parvalbumin neurons in the cornus ammonis (CA1, CA2/3) and hilus subfields, but not in the dentate gyrus and subiculum. No difference in exercise-induced hipocampal parvalbumin density was found between male and female rats. These findings suggest that aerobic exercise promotes similar effects on hippocampal distribution of parvalbumin neurons of male and female rats, especially when they are submitted to the same volume and intensity of physical exercise.
Collapse
|
12
|
Short- and Long-term Exposure to Low and High Dose Running Produce Differential Effects on Hippocampal Neurogenesis. Neuroscience 2017; 369:202-211. [PMID: 29175485 DOI: 10.1016/j.neuroscience.2017.11.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
Abstract
Continuous running wheel (RW) exercise increases adult hippocampal neurogenesis in the dentate gyrus (DG) of rodents. Evidence suggests that greater amounts of RW exercise does not always equate to more adult-generated neurons in hippocampus. It can also be argued that continuous access to a RW results in exercise levels not representative of human exercise patterns. This study tested if RW paradigms that more closely represent human exercise patterns (e.g. shorter bouts, alternating daily exercise) alter neurogenesis. Neurogenesis was measured by examining the survival and fate of bromodeoxyuridine (BrdU)-labeled proliferating cells in the DG of male Sprague-Dawley rats after acute (14 days) or chronic (30 days) RW access. Rats were assigned to experimental groups based on the number of hours that they had access to a RW over two days: 0 h, 4 h, 8 h, 24 h, and 48 h. After acute RW access, rats that had unlimited access to the RW on alternating days (24 h) had a stronger neurogenic response compared to those rats that ran modest distances (4 h, 8 h) or not at all (0 h). In contrast, following chronic RW access, rats that ran a moderate amount (4 h, 8 h) had significantly more surviving cells compared to 0 h, 24 h, and 48 h. Linear regression analysis established a negative relationship between running distance and surviving BrdU+ cells in the chronic RW access cohort (R2 = 0.40). These data demonstrate that in rats moderate amounts of RW exercise are superior to continuous daily RW exercise paradigms at promoting hippocampal neurogenesis in the long-term.
Collapse
|
13
|
Özbeyli D, Sarı G, Özkan N, Karademir B, Yüksel M, Çilingir Kaya ÖT, Kasımay Çakır Ö. Protective effects of different exercise modalities in an Alzheimer’s disease-like model. Behav Brain Res 2017; 328:159-177. [DOI: 10.1016/j.bbr.2017.03.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
14
|
Nishijima T, Kamidozono Y, Ishiizumi A, Amemiya S, Kita I. Negative rebound in hippocampal neurogenesis following exercise cessation. Am J Physiol Regul Integr Comp Physiol 2017; 312:R347-R357. [PMID: 28052868 DOI: 10.1152/ajpregu.00397.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
Abstract
Physical exercise can improve brain function, but the effects of exercise cessation are largely unknown. This study examined the time-course profile of hippocampal neurogenesis following exercise cessation. Male C57BL/6 mice were randomly assigned to either a control (Con) or an exercise cessation (ExC) group. Mice in the ExC group were reared in a cage with a running wheel for 8 wk and subsequently placed in a standard cage to cease the exercise. Exercise resulted in a significant increase in the density of doublecortin (DCX)-positive immature neurons in the dentate gyrus (at week 0). Following exercise cessation, the density of DCX-positive neurons gradually decreased and was significantly lower than that in the Con group at 5 and 8 wk after cessation, indicating that exercise cessation leads to a negative rebound in hippocampal neurogenesis. Immunohistochemistry analysis suggests that the negative rebound in neurogenesis is caused by diminished cell survival, not by suppression of cell proliferation and neural maturation. Neither elevated expression of ΔFosB, a transcription factor involved in neurogenesis regulation, nor increased plasma corticosterone, were involved in the negative neurogenesis rebound. Importantly, exercise cessation suppressed ambulatory activity, and a significant correlation between change in activity and DCX-positive neuron density suggested that the decrease in activity is involved in neurogenesis impairment. Forced treadmill running following exercise cessation failed to prevent the negative neurogenesis rebound. This study indicates that cessation of exercise or a decrease in physical activity is associated with an increased risk for impaired hippocampal function, which might increase vulnerability to stress-induced mood disorders.
Collapse
Affiliation(s)
- Takeshi Nishijima
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshika Kamidozono
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Ishiizumi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Seiichiro Amemiya
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Ichiro Kita
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
15
|
Cobianchi S, Arbat-Plana A, López-Álvarez VM, Navarro X. Neuroprotective Effects of Exercise Treatments After Injury: The Dual Role of Neurotrophic Factors. Curr Neuropharmacol 2017; 15:495-518. [PMID: 27026050 PMCID: PMC5543672 DOI: 10.2174/1570159x14666160330105132] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shared connections between physical activity and neuroprotection have been studied for decades, but the mechanisms underlying this effect of specific exercise were only recently brought to light. Several evidences suggest that physical activity may be a reasonable and beneficial method to improve functional recovery in both peripheral and central nerve injuries and to delay functional decay in neurodegenerative diseases. In addition to improving cardiac and immune functions, physical activity may represent a multifunctional approach not only to improve cardiocirculatory and immune functions, but potentially modulating trophic factors signaling and, in turn, neuronal function and structure at times that may be critical for neurodegeneration and regeneration. METHODS Research content related to the effects of physical activity and specific exercise programs in normal and injured nervous system have been reviewed. RESULTS Sustained exercise, particularly if applied at moderate intensity and early after injury, exerts anti-inflammatory and pro-regenerative effects, and may boost cognitive and motor functions in aging and neurological disorders. However, newest studies show that exercise modalities can differently affect the production and function of brain-derived neurotrophic factor and other neurotrophins involved in the generation of neuropathic conditions. These findings suggest the possibility that new exercise strategies can be directed to nerve injuries with therapeutical benefits. CONCLUSION Considering the growing burden of illness worldwide, understanding of how modulation of neurotrophic factors contributes to exercise-induced neuroprotection and regeneration after peripheral nerve and spinal cord injuries is a relevant topic for research, and represents the beginning of a new non-pharmacological therapeutic approach for better rehabilitation of neural disorders.
Collapse
Affiliation(s)
- Stefano Cobianchi
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ariadna Arbat-Plana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Víctor M. López-Álvarez
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
16
|
Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh I, Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic Biol Med 2016; 98:187-196. [PMID: 26828019 DOI: 10.1016/j.freeradbiomed.2016.01.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, regulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS-mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well known neuroprotective effects of exercise are partly due to redox-associated adaptation.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary; Graduate School of Sport Sciences, Waseda University, Saitama, Japan.
| | - Katsuhiko Suzuki
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Mitsuru Higuchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Laszlo Balogh
- Institute of Physical Education and Sport Science, University of Szeged, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erika Koltai
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary
| |
Collapse
|
17
|
Sex differences in drug addiction and response to exercise intervention: From human to animal studies. Front Neuroendocrinol 2016; 40:24-41. [PMID: 26182835 PMCID: PMC4712120 DOI: 10.1016/j.yfrne.2015.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023]
Abstract
Accumulated research supports the idea that exercise could be an option of potential prevention and treatment for drug addiction. During the past few years, there has been increased interest in investigating of sex differences in exercise and drug addiction. This demonstrates that sex-specific exercise intervention strategies may be important for preventing and treating drug addiction in men and women. However, little is known about how and why sex differences are found when doing exercise-induced interventions for drug addiction. In this review, we included both animal and human that pulled subjects from a varied age demographic, as well as neurobiological mechanisms that may highlight the sex-related differences in these potential to assess the impact of sex-specific roles in drug addiction and exercise therapies.
Collapse
|
18
|
Nagai MK, Marquez-Chin C, Popovic MR. Why Is Functional Electrical Stimulation Therapy Capable of Restoring Motor Function Following Severe Injury to the Central Nervous System? Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Duarte-Guterman P, Yagi S, Chow C, Galea LAM. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74:37-52. [PMID: 26122299 DOI: 10.1016/j.yhbeh.2015.05.024] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". There are sex differences in hippocampus-dependent cognition and neurogenesis suggesting that sex hormones are involved. Estrogens modulate certain forms of spatial and contextual memory and neurogenesis in the adult female rodent, and to a lesser extent male, hippocampus. This review focuses on the effects of sex and estrogens on hippocampal learning, memory, and neurogenesis in the young and aged adult rodent. We discuss how factors such as the type of estrogen, duration and dose of treatment, timing of treatment, and type of memory influence the effects of estrogens on cognition and neurogenesis. We also address how reproductive experience (pregnancy and mothering) and aging interact with estrogens to modulate hippocampal cognition and neurogenesis in females. Given the evidence that adult hippocampal neurogenesis plays a role in long-term spatial memory and pattern separation, we also discuss the functional implications of regulating neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Shunya Yagi
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Carmen Chow
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Liisa A M Galea
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
20
|
Afzalpour ME, Chadorneshin HT, Foadoddini M, Eivari HA. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol Behav 2015; 147:78-83. [DOI: 10.1016/j.physbeh.2015.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/27/2015] [Accepted: 04/06/2015] [Indexed: 01/05/2023]
|
21
|
Quarta E, Bravi R, Scambi I, Mariotti R, Minciacchi D. Increased anxiety-like behavior and selective learning impairments are concomitant to loss of hippocampal interneurons in the presymptomatic SOD1(G93A) ALS mouse model. J Comp Neurol 2015; 523:1622-38. [DOI: 10.1002/cne.23759] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Eros Quarta
- Department of Experimental and Clinical Medicine, Physiological Sciences Section; University of Florence; Florence I-50134 Italy
| | - Riccardo Bravi
- Department of Experimental and Clinical Medicine, Physiological Sciences Section; University of Florence; Florence I-50134 Italy
| | - Ilaria Scambi
- Department of Neurological and Movement Sciences; University of Verona; Verona I-37134 Italy
| | - Raffaella Mariotti
- Department of Neurological and Movement Sciences; University of Verona; Verona I-37134 Italy
| | - Diego Minciacchi
- Department of Experimental and Clinical Medicine, Physiological Sciences Section; University of Florence; Florence I-50134 Italy
| |
Collapse
|
22
|
Gujral S, Manuck SB, Ferrell RE, Flory JD, Erickson KI. The BDNF Val66Met polymorphism does not moderate the effect of self-reported physical activity on depressive symptoms in midlife. Psychiatry Res 2014; 218:93-7. [PMID: 24745471 PMCID: PMC4059542 DOI: 10.1016/j.psychres.2014.03.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 11/29/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met single nucleotide polymorphism may be associated with clinical and subsyndromal depression, but physical activity improves mood and increases BDNF expression. The aim of the study was to examine whether the BDNF polymorphism moderates an effect of physical activity on depressive symptoms. BDNF genotype, physical activity measured by the Paffenbarger Questionnaire, and depressive symptoms using the Center for Epidemiology Depression Scale (CES-D) were collected on 1072 participants (mean age=44). Multiple linear regression was used to examine the association between BDNF genotype, physical activity, and depressive symptoms. After adjusting for family income, age, and education, depressive symptoms were higher in Met carriers compared to Val homozygotes (p=0.03), but this was only significant in men. Physical activity was associated with fewer depressive symptoms, but only in women (p=0.01). BDNF genotype did not moderate the effect of physical activity on depressive symptoms (p=0.94). In midlife, the BDNF Val66Met polymorphism neither attenuates nor magnifies the effect of physical activity on depressive symptoms.
Collapse
Affiliation(s)
- Swathi Gujral
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Stephen B. Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Robert E. Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA USA
| | - Janine D. Flory
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY USA
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA,Corresponding Author: Kirk I. Erickson, PhD, 3107 Sennott Square, 210 S. Bouquet St., Pittsburgh, PA 15213, , Phone: 412-624-4533, Fax: 412-624-4428
| |
Collapse
|
23
|
In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 2013; 220:361-83. [PMID: 24178679 DOI: 10.1007/s00429-013-0660-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/15/2013] [Indexed: 12/16/2022]
Abstract
The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis.
Collapse
|
24
|
Galea LAM, Wainwright SR, Roes MM, Duarte-Guterman P, Chow C, Hamson DK. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol 2013; 25:1039-61. [PMID: 23822747 DOI: 10.1111/jne.12070] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/23/2013] [Accepted: 06/29/2013] [Indexed: 12/12/2022]
Abstract
The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress.
Collapse
Affiliation(s)
- L A M Galea
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Effects of Treadmill Exercise on Neural Stem Cells, Cell Proliferation, and Neuroblast Differentiation in the Subgranular Zone of the Dentate Gyrus in Cyclooxygenase-2 Knockout Mice. Neurochem Res 2013; 38:2559-69. [DOI: 10.1007/s11064-013-1169-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 01/26/2023]
|
26
|
Epp JR, Chow C, Galea LAM. Hippocampus-dependent learning influences hippocampal neurogenesis. Front Neurosci 2013; 7:57. [PMID: 23596385 PMCID: PMC3627134 DOI: 10.3389/fnins.2013.00057] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/28/2013] [Indexed: 12/26/2022] Open
Abstract
The structure of the mammalian hippocampus continues to be modified throughout life by continuous addition of neurons in the dentate gyrus. Although the existence of adult neurogenesis is now widely accepted the function that adult generated granule cells play is a topic of intense debate. Many studies have argued that adult generated neurons, due to unique physiological characteristics, play a unique role in hippocampus-dependent learning and memory. However, it is not currently clear whether this is the case or what specific capability adult generated neurons may confer that developmentally generated neurons do not. These questions have been addressed in numerous ways, from examining the effects of increasing or decreasing neurogenesis to computational modeling. One particular area of research has examined the effects of hippocampus dependent learning on proliferation, survival, integration and activation of immature neurons in response to memory retrieval. Within this subfield there remains a range of data showing that hippocampus dependent learning may increase, decrease or alternatively may not alter these components of neurogenesis in the hippocampus. Determining how and when hippocampus-dependent learning alters adult neurogenesis will help to further clarify the role of adult generated neurons. There are many variables (such as age of immature neurons, species, strain, sex, stress, task difficulty, and type of learning) as well as numerous methodological differences (such as marker type, quantification techniques, apparatus size etc.) that could all be crucial for a clear understanding of the interaction between learning and neurogenesis. Here, we review these findings and discuss the different conditions under which hippocampus-dependent learning impacts adult neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Jonathan R. Epp
- *Correspondence: Jonathan R. Epp, Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada. e-mail: ;
| | | | - Liisa A. M. Galea
- Department of Psychology, Program in Neuroscience, Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
27
|
Abstract
The oldest-old are the fastest growing segment of the Western population. Over half of the oldest-old will have dementia, but the etiology is yet unknown. Age is the only risk factor consistently associated with dementia in the oldest-old. Many of the risk and protective factors for dementia in the young elderly, such as ApoE genotype, physical activity, and healthy lifestyle, are not relevant for the oldest-old. Neuropathology is abundant in the oldest-old brains, but specific pathologies of Alzheimer's disease (AD) or vascular dementia are not necessarily correlated with cognition, as in younger persons. It has been suggested that accumulation of both AD-like and vascular pathologies, loss of synaptic proteins, and neuronal loss contribute to the cognitive decline observed in the oldest-old. Several characteristics of the oldest-old may confound the diagnosis of dementia in this age group. A gradual age-related cognitive decline, particularly in executive function and mental speed, is evident even in non-demented oldest-old. Hearing and vision losses, which are also prevalent in the oldest-old and found in some cases to precede/predict cognitive decline, may mechanically interfere in neuropsychological evaluations. Difficulties in carrying out everyday activities, observed in the majority of the oldest-old, may be the result of motor or physical dysfunction and of neurodegenerative processes. The oldest-old appear to be a select population, who escapes major illnesses or delays their onset and duration toward the end of life. Dementia in the oldest-old may be manifested when a substantial amount of pathology is accumulated, or with a composition of a variety of pathologies. Investigating the clinical and pathological features of dementia in the oldest-old is of great importance in order to develop therapeutic strategies and to provide the most elderly of our population with good quality of life.
Collapse
Affiliation(s)
- Efrat Kravitz
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel; ; Parkinson's Disease and Movement Disorders Clinic, Department of Neurology, Sheba Medical Center, Ramat Gan, Israel; and
| | | | | |
Collapse
|