1
|
Moura S, Hartl I, Brumovska V, Calabrese PP, Yasari A, Striedner Y, Bishara M, Mair T, Ebner T, Schütz GJ, Sevcsik E, Tiemann-Boege I. Exploring FGFR3 Mutations in the Male Germline: Implications for Clonal Germline Expansions and Paternal Age-Related Dysplasias. Genome Biol Evol 2024; 16:evae015. [PMID: 38411226 PMCID: PMC10898338 DOI: 10.1093/gbe/evae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Delayed fatherhood results in a higher risk of inheriting a new germline mutation that might result in a congenital disorder in the offspring. In particular, some FGFR3 mutations increase in frequency with age, but there are still a large number of uncharacterized FGFR3 mutations that could be expanding in the male germline with potentially early- or late-onset effects in the offspring. Here, we used digital polymerase chain reaction to assess the frequency and spatial distribution of 10 different FGFR3 missense substitutions in the sexually mature male germline. Our functional assessment of the receptor signaling of the variants with biophysical methods showed that 9 of these variants resulted in a higher activation of the receptor´s downstream signaling, resulting in 2 different expansion behaviors. Variants that form larger subclonal expansions in a dissected postmortem testis also showed a positive correlation of the substitution frequency with the sperm donor's age, and a high and ligand-independent FGFR3 activation. In contrast, variants that measured high FGFR3 signaling and elevated substitution frequencies independent of the donor's age did not result in measurable subclonal expansions in the testis. This suggests that promiscuous signal activation might also result in an accumulation of mutations before the sexual maturation of the male gonad with clones staying relatively constant in size throughout time. Collectively, these results provide novel insights into our understanding of the mutagenesis of driver mutations and their resulting mosaicism in the male germline with important consequences for the transmission and recurrence of associated disorders.
Collapse
Affiliation(s)
- Sofia Moura
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, USA
| | - Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Peter P Calabrese
- Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Atena Yasari
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria
| | | | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | |
Collapse
|
2
|
Striedner Y, Arbeithuber B, Moura S, Nowak E, Reinhardt R, Muresan L, Salazar R, Ebner T, Tiemann-Boege I. Exploring the Micro-Mosaic Landscape of FGFR3 Mutations in the Ageing Male Germline and Their Potential Implications in Meiotic Differentiation. Genes (Basel) 2024; 15:191. [PMID: 38397181 PMCID: PMC10888257 DOI: 10.3390/genes15020191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Advanced paternal age increases the risk of transmitting de novo germline mutations, particularly missense mutations activating the receptor tyrosine kinase (RTK) signalling pathway, as exemplified by the FGFR3 mutation, which is linked to achondroplasia (ACH). This risk is attributed to the expansion of spermatogonial stem cells carrying the mutation, forming sub-clonal clusters in the ageing testis, thereby increasing the frequency of mutant sperm and the number of affected offspring from older fathers. While prior studies proposed a correlation between sub-clonal cluster expansion in the testis and elevated mutant sperm production in older donors, limited data exist on the universality of this phenomenon. Our study addresses this gap by examining the testis-expansion patterns, as well as the increases in mutations in sperm for two FGFR3 variants-c.1138G>A (p.G380R) and c.1948A>G (p.K650E)-which are associated with ACH or thanatophoric dysplasia (TDII), respectively. Unlike the ACH mutation, which showed sub-clonal expansion events in an aged testis and a significant increase in mutant sperm with the donor's age, as also reported in other studies, the TDII mutation showed focal mutation pockets in the testis but exhibited reduced transmission into sperm and no significant age-related increase. The mechanism behind this divergence remains unclear, suggesting potential pleiotropic effects of aberrant RTK signalling in the male germline, possibly hindering differentiation requiring meiosis. This study provides further insights into the transmission risks of micro-mosaics associated with advanced paternal age in the male germline.
Collapse
Affiliation(s)
- Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria;
| | - Sofia Moura
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Elisabeth Nowak
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Ronja Reinhardt
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 2EL, UK;
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Renato Salazar
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria;
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| |
Collapse
|
3
|
Salazar R, Arbeithuber B, Ivankovic M, Heinzl M, Moura S, Hartl I, Mair T, Lahnsteiner A, Ebner T, Shebl O, Pröll J, Tiemann-Boege I. Discovery of an unusually high number of de novo mutations in sperm of older men using duplex sequencing. Genome Res 2022; 32:499-511. [PMID: 35210354 PMCID: PMC8896467 DOI: 10.1101/gr.275695.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
De novo mutations (DNMs) are important players in heritable diseases and evolution. Of particular interest are highly recurrent DNMs associated with congenital disorders that have been described as selfish mutations expanding in the male germline, thus becoming more frequent with age. Here, we have adapted duplex sequencing (DS), an ultradeep sequencing method that renders sequence information on both DNA strands; thus, one mutation can be reliably called in millions of sequenced bases. With DS, we examined ∼4.5 kb of the FGFR3 coding region in sperm DNA from older and younger donors. We identified sites with variant allele frequencies (VAFs) of 10-4 to 10-5, with an overall mutation frequency of the region of ∼6 × 10-7 Some of the substitutions are recurrent and are found at a higher VAF in older donors than in younger ones or are found exclusively in older donors. Also, older donors harbor more mutations associated with congenital disorders. Other mutations are present in both age groups, suggesting that these might result from a different mechanism (e.g., postzygotic mosaicism). We also observe that independent of age, the frequency and deleteriousness of the mutational spectra are more similar to COSMIC than to gnomAD variants. Our approach is an important strategy to identify mutations that could be associated with a gain of function of the receptor tyrosine kinase activity, with unexplored consequences in a society with delayed fatherhood.
Collapse
Affiliation(s)
- Renato Salazar
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | | | - Maja Ivankovic
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Monika Heinzl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Sofia Moura
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | | | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital, Linz, Austria 4020
| | - Omar Shebl
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital, Linz, Austria 4020
| | - Johannes Pröll
- Center for Medical Research, Faculty of Medicine, Johannes Kepler University, Linz, Austria 4020
| | | |
Collapse
|
4
|
Povysil G, Heinzl M, Salazar R, Stoler N, Nekrutenko A, Tiemann-Boege I. Increased yields of duplex sequencing data by a series of quality control tools. NAR Genom Bioinform 2021; 3:lqab002. [PMID: 33575654 PMCID: PMC7872198 DOI: 10.1093/nargab/lqab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Duplex sequencing is currently the most reliable method to identify ultra-low frequency DNA variants by grouping sequence reads derived from the same DNA molecule into families with information on the forward and reverse strand. However, only a small proportion of reads are assembled into duplex consensus sequences (DCS), and reads with potentially valuable information are discarded at different steps of the bioinformatics pipeline, especially reads without a family. We developed a bioinformatics toolset that analyses the tag and family composition with the purpose to understand data loss and implement modifications to maximize the data output for the variant calling. Specifically, our tools show that tags contain polymerase chain reaction and sequencing errors that contribute to data loss and lower DCS yields. Our tools also identified chimeras, which likely reflect barcode collisions. Finally, we also developed a tool that re-examines variant calls from raw reads and provides different summary data that categorizes the confidence level of a variant call by a tier-based system. With this tool, we can include reads without a family and check the reliability of the call, that increases substantially the sequencing depth for variant calling, a particular important advantage for low-input samples or low-coverage regions.
Collapse
Affiliation(s)
- Gundula Povysil
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria
| | - Monika Heinzl
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria
| | - Renato Salazar
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria
| | - Nicholas Stoler
- Graduate Program in Bioinformatics and Genomics, The Huck Institutes for Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anton Nekrutenko
- Graduate Program in Bioinformatics and Genomics, The Huck Institutes for Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
5
|
O’Connell GC, Smothers CG. Optimized methodology for product recovery following emulsion PCR: applications for amplification of aptamer libraries and other complex templates. J Biol Methods 2020; 7:e128. [PMID: 32201710 PMCID: PMC7081054 DOI: 10.14440/jbm.2020.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 11/23/2022] Open
Abstract
Bias and background issues make efficient amplification of complex template mixes such as aptamer and genomic DNA libraries via conventional PCR methods difficult; emulsion PCR is being increasingly used in such scenarios to circumvent these problems. However, before products generated via emulsion PCR can be used in downstream workflows, they need to be recovered from the water-in-oil emulsion. Often, emulsions are broken following amplification using volatile organic solvents, and product is subsequently isolated via precipitation. Unfortunately, the use of such solvents requires the implementation of special environmental controls, and the yield and purity of DNA isolated by precipitation can be highly variable. Here, we describe the optimization of a simple protocol which can be used to recover products following emulsion PCR using a 2-butanol extraction and subsequent DNA isolation via a commercially available clean-up kit. This protocol avoids the use of volatile solvents and precipitation steps, and we demonstrate that it can be used to reliably recover DNA from water-in-oil emulsions with efficiencies as high as 90%. Furthermore, we illustrate the practical applicability of this protocol by demonstrating how it can be implemented to recover a complex random aptamer library following amplification via emulsion PCR.
Collapse
Affiliation(s)
- Grant C. O’Connell
- School of Nursing, Case Western Reserve University, Cleveland, OH 44106-4904, USA
| | | |
Collapse
|
6
|
Challenging the proposed causes of the PCR plateau phase. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100082. [PMID: 30886826 PMCID: PMC6403077 DOI: 10.1016/j.bdq.2019.100082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/08/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Despite the wide-spread use of the polymerase chain reaction (PCR) in various life-science applications, the causes of arrested amplicon generation in late cycles have not been confidently identified. This so-called plateau phase has been attributed to depletion or thermal break-down of primers or nucleotides, thermal inactivation of the DNA polymerase, and product accumulation resulting in competition between primer annealing and product re-hybridization as well as blocking of DNA polymerase by double-stranded amplicons. In the current study, we experimentally investigate the proposed limiting factors of PCR product formation. By applying robust and validated qPCR assays, we elucidate the impact of adding non-target and target amplicons to the reactions, mimicking the high amount of products in late PCR cycles. Further, the impact of increased primer concentrations and thermal stability of reagents are explored. Our results show that high amounts of non-target amplicons inhibit amplification by binding to the DNA polymerase, but that this effect is counteracted by addition of more DNA polymerase or prolonged annealing/extension times. Adding high amounts of target amplicons that also act as templates in the reaction is far less inhibitory to amplification, although a decrease in amplification rate is seen. When primer concentrations are increased, both amplification rates and end-product yields are elevated. Taken together, our results suggest that the main cause of PCR plateau formation is primer depletion and not product accumulation or degradation of reagents. We stress that a PCR plateau caused by primer depletion is assay-dependent, i.e. dependent on the primer design and primer characteristics such as the probability of primer-dimer formation. Our findings contribute to an improved understanding of the major parameters controlling the PCR dynamics at later cycles and the limitations of continued product formation, which in the end can facilitate PCR optimization.
Collapse
|
7
|
Discovery of Rare Haplotypes by Typing Millions of Single-Molecules with Bead Emulsion Haplotyping (BEH). Methods Mol Biol 2017. [PMID: 28138851 DOI: 10.1007/978-1-4939-6750-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Characterizing polymorphisms on single molecules renders the phase of different alleles, and thus, haplotype information. Here, we describe a high-throughput method to genotype hundreds-of thousands single molecules in parallel using bead-emulsion haplotyping (BEH). Haplotyping via BEH is an emulsion-PCR-based method that was adapted to amplify multiple DNA fragments on paramagnetic, microscopic beads within a compartment formed by an aqueous-oil emulsion. This generates beads covered by thousands of clonal copies from several polymorphic regions of an initial DNA molecule that are then genotyped with fluorescently labeled probes. With BEH, up to three different polymorphisms (or more if several polymorphisms are within an amplicon) can be typed within a fragment of several kilobases in a singleexperiment, rendering haplotype information of a very large number of initial single molecules. The high throughput and digital nature of the method makes it ideal to quantify rare haplotypes or to assess the haplotype diversity in complex samples.
Collapse
|
8
|
Arbeithuber B, Makova KD, Tiemann-Boege I. Artifactual mutations resulting from DNA lesions limit detection levels in ultrasensitive sequencing applications. DNA Res 2016; 23:547-559. [PMID: 27477585 PMCID: PMC5144678 DOI: 10.1093/dnares/dsw038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/25/2016] [Indexed: 11/13/2022] Open
Abstract
The need in cancer research or evolutionary biology to detect rare mutations or variants present at very low frequencies (<10−5) poses an increasing demand on lowering the detection limits of available methods. Here we demonstrated that amplifiable DNA lesions introduce important error sources in ultrasensitive technologies such as single molecule PCR (smPCR) applications (e.g. droplet-digital PCR), or next-generation sequencing (NGS) based methods. Using templates with known amplifiable lesions (8-oxoguanine, deaminated 5-methylcytosine, uracil, and DNA heteroduplexes), we assessed with smPCR and duplex sequencing that templates with these lesions were amplified very efficiently by proofreading polymerases (except uracil), leading to G->T, and to a lesser extent, to unreported G->C substitutions at 8-oxoguanine lesions, and C->T transitions in amplified uracil containing templates. Long heat incubations common in many DNA extraction protocols significantly increased the number of G->T substitutions. Moreover, in ∼50-80% smPCR reactions we observed the random amplification preference of only one of both DNA strands explaining the known ‘PCR jackpot effect’, with the result that a lesion became indistinguishable from a true mutation or variant. Finally, we showed that artifactual mutations derived from uracil and 8-oxoguanine could be significantly reduced by DNA repair enzymes.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, Linz 4020, Austria.,Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
9
|
Pitfalls of haplotype phasing from amplicon-based long-read sequencing. Sci Rep 2016; 6:21746. [PMID: 26883533 PMCID: PMC4756330 DOI: 10.1038/srep21746] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/26/2016] [Indexed: 01/17/2023] Open
Abstract
The long-read sequencers from Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT) offer the opportunity to phase mutations multiple kilobases apart directly from sequencing reads. In this study, we used long-range PCR with ONT and PacBio sequencing to phase two variants 9 kb apart in the RET gene. We also re-analysed data from a recent paper which had apparently successfully used ONT to phase clinically important haplotypes at the CYP2D6 and HLA loci. From these analyses, we demonstrate PCR-chimera formation during PCR amplification and reference alignment bias are pitfalls that need to be considered when attempting to phase variants using amplicon-based long-read sequencing technologies. These methodological pitfalls need to be avoided if the opportunities provided by long-read sequencers are to be fully exploited.
Collapse
|
10
|
Orton RJ, Wright CF, Morelli MJ, King DJ, Paton DJ, King DP, Haydon DT. Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data. BMC Genomics 2015; 16:229. [PMID: 25886445 PMCID: PMC4425905 DOI: 10.1186/s12864-015-1456-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND RNA viruses have high mutation rates and exist within their hosts as large, complex and heterogeneous populations, comprising a spectrum of related but non-identical genome sequences. Next generation sequencing is revolutionising the study of viral populations by enabling the ultra deep sequencing of their genomes, and the subsequent identification of the full spectrum of variants within the population. Identification of low frequency variants is important for our understanding of mutational dynamics, disease progression, immune pressure, and for the detection of drug resistant or pathogenic mutations. However, the current challenge is to accurately model the errors in the sequence data and distinguish real viral variants, particularly those that exist at low frequency, from errors introduced during sequencing and sample processing, which can both be substantial. RESULTS We have created a novel set of laboratory control samples that are derived from a plasmid containing a full-length viral genome with extremely limited diversity in the starting population. One sample was sequenced without PCR amplification whilst the other samples were subjected to increasing amounts of RT and PCR amplification prior to ultra-deep sequencing. This enabled the level of error introduced by the RT and PCR processes to be assessed and minimum frequency thresholds to be set for true viral variant identification. We developed a genome-scale computational model of the sample processing and NGS calling process to gain a detailed understanding of the errors at each step, which predicted that RT and PCR errors are more likely to occur at some genomic sites than others. The model can also be used to investigate whether the number of observed mutations at a given site of interest is greater than would be expected from processing errors alone in any NGS data set. After providing basic sample processing information and the site's coverage and quality scores, the model utilises the fitted RT-PCR error distributions to simulate the number of mutations that would be observed from processing errors alone. CONCLUSIONS These data sets and models provide an effective means of separating true viral mutations from those erroneously introduced during sample processing and sequencing.
Collapse
Affiliation(s)
- Richard J Orton
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| | | | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia at the IFOM-IEO Campus, Via Adamello 16, Milano, 20139, Italy.
| | - David J King
- Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
| | - David J Paton
- Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
| | - Donald P King
- Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
| | - Daniel T Haydon
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
11
|
Aquaporin 5 expression in mouse mammary gland cells is not driven by promoter methylation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:460598. [PMID: 25767807 PMCID: PMC4342075 DOI: 10.1155/2015/460598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/16/2015] [Indexed: 11/17/2022]
Abstract
Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5), a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex) to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs) in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type.
Collapse
|
12
|
Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc Natl Acad Sci U S A 2015; 112:2109-14. [PMID: 25646453 DOI: 10.1073/pnas.1416622112] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination.
Collapse
|
13
|
Sharma H, Kinoshita Y, Fujiu S, Nomura S, Sawada M, Ahmed S, Shibuya M, Shirai K, Takamatsu S, Watanabe T, Yamazaki H, Kamiyama R, Kobayashi T, Arai H, Suzuki M, Nemoto N, Ando K, Uchida H, Kitamura K, Takei O, Nishigaki K. Establishment of a reborn MMV-microarray technology: realization of microbiome analysis and other hitherto inaccessible technologies. BMC Biotechnol 2014; 14:78. [PMID: 25141858 PMCID: PMC4153446 DOI: 10.1186/1472-6750-14-78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 08/15/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND With the accelerating development of bioscience, the problem of research cost has become important. We previously devised and developed a novel concept microarray with manageable volumes (MMV) using a soft gel. It demonstrated the great potential of the MMV technology with the examples of 1024-parallel-cell culture and PCR experiments. However, its full potential failed to be expressed, owing to the nature of the material used for the MMV chip. RESULTS In the present study, by developing plastic-based MMVs and associated technologies, we introduced novel technologies such as C2D2P (in which the cells in each well are converted from DNA to protein in 1024-parallel), NGS-non-dependent microbiome analysis, and other powerful applications. CONCLUSIONS The reborn MMV-microarray technology has proven to be highly efficient and cost-effective (with approximately 100-fold cost reduction) and enables us to realize hitherto unattainable technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Koichi Nishigaki
- Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Saitama 338-8570, Japan.
| |
Collapse
|
14
|
Roberts CH, Jiang W, Jayaraman J, Trowsdale J, Holland MJ, Traherne JA. Killer-cell Immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR. Genome Med 2014; 6:20. [PMID: 24597950 PMCID: PMC4062048 DOI: 10.1186/gm537] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
The Killer-cell Immunoglobulin-like Receptor (KIR) gene complex has considerable biomedical importance. Patterns of polymorphism in the KIR region include variability in the gene content of haplotypes and diverse structural arrangements. Droplet digital PCR (ddPCR) was used to identify different haplotype motifs and to enumerate KIR copy number variants (CNVs). ddPCR detected a variety of KIR haplotype configurations in DNA from well-characterized cell lines. Mendelian segregation of ddPCR-estimated KIR2DL5 CNVs was observed in Gambian families and CNV typing of other KIRs was shown to be accurate when compared to an established quantitative PCR method.
Collapse
Affiliation(s)
- Chrissy H Roberts
- London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Wei Jiang
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK ; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Jyothi Jayaraman
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK ; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - John Trowsdale
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK ; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Martin J Holland
- London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - James A Traherne
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK ; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
15
|
Shinde DN, Elmer DP, Calabrese P, Boulanger J, Arnheim N, Tiemann-Boege I. New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. Hum Mol Genet 2013; 22:4117-26. [PMID: 23740942 PMCID: PMC3781639 DOI: 10.1093/hmg/ddt260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There are certain de novo germline mutations associated with genetic disorders whose mutation rates per generation are orders of magnitude higher than the genome average. Moreover, these mutations occur exclusively in the male germ line and older men have a higher probability of having an affected child than younger ones, known as the paternal age effect (PAE). The classic example of a genetic disorder exhibiting a PAE is achondroplasia, caused predominantly by a single-nucleotide substitution (c.1138G>A) in FGFR3. To elucidate what mechanisms might be driving the high frequency of this mutation in the male germline, we examined the spatial distribution of the c.1138G>A substitution in a testis from an 80-year-old unaffected man. Using a technology based on bead-emulsion amplification, we were able to measure mutation frequencies in 192 individual pieces of the dissected testis with a false-positive rate lower than 2.7 × 10−6. We observed that most mutations are clustered in a few pieces with 95% of all mutations occurring in 27% of the total testis. Using computational simulations, we rejected the model proposing an elevated mutation rate per cell division at this nucleotide site. Instead, we determined that the observed mutation distribution fits a germline selection model, where mutant spermatogonial stem cells have a proliferative advantage over unmutated cells. Combined with data on several other PAE mutations, our results support the idea that the PAE, associated with a number of Mendelian disorders, may be explained primarily by a selective mechanism.
Collapse
Affiliation(s)
- Deepali N Shinde
- The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors
| | | | | | | | | | | |
Collapse
|