1
|
Torrecuso R, Mueller K, Holiga Š, Sieger T, Vymazal J, Ružička F, Roth J, Ružička E, Schroeter ML, Jech R, Möller HE. Improving fMRI in Parkinson's disease by accounting for brain region-specific activity patterns. Neuroimage Clin 2023; 38:103396. [PMID: 37037118 PMCID: PMC10120395 DOI: 10.1016/j.nicl.2023.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023]
Abstract
In functional magnetic imaging (fMRI) in Parkinson's disease (PD), a paradigm consisting of blocks of finger tapping and rest along with a corresponding general linear model (GLM) is often used to assess motor activity. However, this method has three limitations: (i) Due to the strong magnetic field and the confined environment of the cylindrical bore, it is troublesome to accurately monitor motor output and, therefore, variability in the performed movement is typically ignored. (ii) Given the loss of dopaminergic neurons and ongoing compensatory brain mechanisms, motor control is abnormal in PD. Therefore, modeling of patients' tapping with a constant amplitude (using a boxcar function) and the expected Parkinsonian motor output are prone to mismatch. (iii) The motor loop involves structures with distinct hemodynamic responses, for which only one type of modeling (e.g., modeling the whole block of finger tapping) may not suffice to capture these structure's temporal activation. The first two limitations call for considering results from online recordings of the real motor output that may lead to significant sensitivity improvements. This was shown in previous work using a non-magnetic glove to capture details of the patients' finger movements in a so-called kinematic approach. For the third limitation, modeling motion initiation instead of the whole tapping block has been suggested to account for different temporal activation signatures of the motor loop's structures. In the present study we propose improvements to the GLM as a tool to study motor disorders. For this, we test the robustness of the kinematic approach in an expanded cohort (n = 31), apply more conservative statistics than in previous work, and evaluate the benefits of an event-related model function. Our findings suggest that the integration of the kinematic approach offers a general improvement in detecting activations in subcortical structures, such as the basal ganglia. Additionally, modeling motion initiation using an event-related design yielded superior performance in capturing medication-related effects in the putamen. Our results may guide adaptations in analysis strategies for functional motor studies related to PD and also in more general applications.
Collapse
Affiliation(s)
- Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Štefan Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Tomáš Sieger
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | | | - Filip Ružička
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Evzen Ružička
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, Leipzig University Hospital, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
2
|
Herz DM, Meder D, Camilleri JA, Eickhoff SB, Siebner HR. Brain Motor Network Changes in Parkinson's Disease: Evidence from Meta-Analytic Modeling. Mov Disord 2021; 36:1180-1190. [PMID: 33427336 PMCID: PMC8127399 DOI: 10.1002/mds.28468] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Motor‐related brain activity in Parkinson's disease has been investigated in a multitude of functional neuroimaging studies, which often yielded apparently conflicting results. Our previous meta‐analysis did not resolve inconsistencies regarding cortical activation differences in Parkinson's disease, which might be related to the limited number of studies that could be included. Therefore, we conducted a revised meta‐analysis including a larger number of studies. The objectives of this study were to elucidate brain areas that consistently show abnormal motor‐related activation in Parkinson's disease and to reveal their functional connectivity profiles using meta‐analytic approaches. Methods We applied a quantitative meta‐analysis of functional neuroimaging studies testing limb movements in Parkinson's disease comprising data from 39 studies, of which 15 studies (285 of 571 individual patients) were published after the previous meta‐analysis. We also conducted meta‐analytic connectivity modeling to elucidate the connectivity profiles of areas showing abnormal activation. Results We found consistent motor‐related underactivation of bilateral posterior putamen and cerebellum in Parkinson's disease. Primary motor cortex and the supplementary motor area also showed deficient activation, whereas cortical regions localized directly anterior to these areas expressed overactivation. Connectivity modeling revealed that areas showing decreased activation shared a common pathway through the posterior putamen, whereas areas showing increased activation were connected to the anterior putamen. Conclusions Despite conflicting results in individual neuroimaging studies, this revised meta‐analytic approach identified consistent patterns of abnormal motor‐related activation in Parkinson's disease. The distinct patterns of decreased and increased activity might be determined by their connectivity with different subregions of the putamen. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Julia A Camilleri
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Simon B Eickhoff
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Mueller K, Urgošík D, Ballarini T, Holiga Š, Möller HE, Růžička F, Roth J, Vymazal J, Schroeter ML, Růžička E, Jech R. Differential effects of deep brain stimulation and levodopa on brain activity in Parkinson's disease. Brain Commun 2020; 2:fcaa005. [PMID: 32954278 PMCID: PMC7425344 DOI: 10.1093/braincomms/fcaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Levodopa is the first-line treatment for Parkinson’s disease, although the precise mechanisms mediating its efficacy remain elusive. We aimed to elucidate treatment effects of levodopa on brain activity during the execution of fine movements and to compare them with deep brain stimulation of the subthalamic nuclei. We studied 32 patients with Parkinson’s disease using functional MRI during the execution of finger-tapping task, alternating epochs of movement and rest. The task was performed after withdrawal and administration of a single levodopa dose. A subgroup of patients (n = 18) repeated the experiment after electrode implantation with stimulator on and off. Investigating levodopa treatment, we found a significant interaction between both factors of treatment state (off, on) and experimental task (finger tapping, rest) in bilateral putamen, but not in other motor regions. Specifically, during the off state of levodopa medication, activity in the putamen at rest was higher than during tapping. This represents an aberrant activity pattern probably indicating the derangement of basal ganglia network activity due to the lack of dopaminergic input. Levodopa medication reverted this pattern, so that putaminal activity during finger tapping was higher than during rest, as previously described in healthy controls. Within-group comparison with deep brain stimulation underlines the specificity of our findings with levodopa treatment. Indeed, a significant interaction was observed between treatment approach (levodopa, deep brain stimulation) and treatment state (off, on) in bilateral putamen. Our functional MRI study compared for the first time the differential effects of levodopa treatment and deep brain stimulation on brain motor activity. We showed modulatory effects of levodopa on brain activity of the putamen during finger movement execution, which were not observed with deep brain stimulation.
Collapse
Affiliation(s)
- Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dušan Urgošík
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Štefan Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Josef Vymazal
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
4
|
Hervey N, Khan B, Shagman L, Tian F, Delgado MR, Tulchin-Francis K, Shierk A, Roberts H, Smith L, Reid D, Clegg NJ, Liu H, MacFarlane D, Alexandrakis G. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy. NEUROPHOTONICS 2014; 1:025009. [PMID: 26157980 PMCID: PMC4478941 DOI: 10.1117/1.nph.1.2.025009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 05/22/2023]
Abstract
Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electromyography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion capture or EMG data and independent component analysis was combined with a general linear model to create an fNIRS image representing activation due to the tapping hand and one image representing activation due to the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation images.
Collapse
Affiliation(s)
- Nathan Hervey
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010, United States
- Address all correspondence to: Nathan Hervey, E-mail:
| | - Bilal Khan
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010, United States
| | - Laura Shagman
- University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Fenghua Tian
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010, United States
| | - Mauricio R. Delgado
- Scottish Rite Hospital for Children, Department of Neurology, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Kirsten Tulchin-Francis
- Scottish Rite Hospital for Children, Department of Neurology, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Angela Shierk
- Scottish Rite Hospital for Children, Department of Neurology, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Heather Roberts
- Scottish Rite Hospital for Children, Department of Neurology, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Linsley Smith
- Scottish Rite Hospital for Children, Department of Neurology, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Dahlia Reid
- Scottish Rite Hospital for Children, Department of Neurology, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Nancy J. Clegg
- Scottish Rite Hospital for Children, Department of Neurology, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Hanli Liu
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010, United States
| | - Duncan MacFarlane
- University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - George Alexandrakis
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010, United States
| |
Collapse
|
5
|
Herz DM, Siebner HR, Hulme OJ, Florin E, Christensen MS, Timmermann L. Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease. Neuroimage 2013; 90:15-23. [PMID: 24269570 DOI: 10.1016/j.neuroimage.2013.11.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/31/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022] Open
Abstract
Dopamine deficiency affects functional integration of activity in distributed neural regions. It has been suggested that lack of dopamine induces disruption of neural interactions between prefrontal and premotor areas, which might underlie impairment of motor control observed in patients with Parkinson's disease (PD). In this study we recorded cortical activity with high-density electroencephalography in 11 patients with PD as a pathological model of dopamine deficiency, and 13 healthy control subjects. Participants performed repetitive extension-flexion movements of their right index finger, which were externally paced at a rate of 0.5 Hz. This required participants to align their movement velocity to the slow external pace. Patients were studied after at least 12-hour withdrawal of dopaminergic medication (OFF state) and after intake of the dopamine precursor levodopa (ON state) in order to examine oscillatory coupling between prefrontal and premotor areas during respectively low and high levels of dopamine. In 10 patients and 12 control participants multiple source beamformer analysis yielded task-related activation of a contralateral cortical network comprising prefrontal cortex (PFC), lateral premotor cortex (lPM), supplementary motor area (SMA) and primary motor cortex (M1). Dynamic causal modelling was used to characterize task-related oscillatory coupling between prefrontal and premotor cortical areas. Healthy participants showed task-induced coupling from PFC to SMA, which was modulated within the γ-band. In the OFF state, PD patients did not express any frequency-specific coupling between prefrontal and premotor areas. Application of levodopa reinstated task-related coupling from PFC to SMA, which was expressed as high-β-γ coupling. Additionally, strong within-frequency γ-coupling as well as cross-frequency θ-γ coupling was observed from PFC to lPM. Enhancement of this cross-frequency θ-γ coupling after application of levodopa was positively correlated with individual improvement in motor function. The results demonstrate that dopamine deficiency impairs the ability to establish oscillatory coupling between prefrontal and premotor areas during an externally paced motor task. Application of extrinsic dopamine in PD patients reinstates physiological prefrontal-premotor coupling and additionally induces within- and cross-frequency coupling from prefrontal to premotor areas, which is not expressed in healthy participants.
Collapse
Affiliation(s)
- Damian M Herz
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Oliver J Hulme
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Esther Florin
- Department of Neurology, University Hospital Cologne, Cologne, Germany; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mark S Christensen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
6
|
Herz DM, Eickhoff SB, Løkkegaard A, Siebner HR. Functional neuroimaging of motor control in Parkinson's disease: a meta-analysis. Hum Brain Mapp 2013; 35:3227-37. [PMID: 24123553 DOI: 10.1002/hbm.22397] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 12/13/2022] Open
Abstract
Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal movement-related activation in PD that were consistent across studies. We applied activation likelihood estimation (ALE) of functional neuroimaging studies probing motor function in patients with PD. The meta-analysis encompassed data from 283 patients with PD reported in 24 functional neuroimaging studies and yielded consistent alterations in neural activity in patients with PD. Differences in cortical activation between PD patients and healthy controls converged in a left-lateralized fronto-parietal network comprising the presupplementary motor area, primary motor cortex, inferior parietal cortex, and superior parietal lobule. Both, increases as well as decreases in motor cortical activity, which were related to differences in movement timing and selection in the applied motor tasks, were reported in these cortical areas. In the basal ganglia, PD patients expressed a decrease of motor activation in the posterior motor putamen, which improved with dopaminergic medication. The likelihood of detecting a decrease in putaminal activity increased with motor impairment. This reduced motor activation of the posterior putamen across previous neuroimaging studies indicates that nigrostriatal dopaminergic denervation affects neural processing in the denervated striatal motor territory. In contrast, fronto-parietal motor areas display both increases as well as decreases in movement related activation. This points to a more complex relationship between altered cortical physiology and nigrostriatal dopaminergic denervation in PD.
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Center for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | | | | |
Collapse
|
7
|
Holiga Š, Mueller K, Möller HE, Sieger T, Schroeter ML, Vymazal J, Růžička E, Jech R. Motor matters: tackling heterogeneity of Parkinson's disease in functional MRI studies. PLoS One 2013; 8:e56133. [PMID: 23418522 PMCID: PMC3572025 DOI: 10.1371/journal.pone.0056133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/05/2013] [Indexed: 12/22/2022] Open
Abstract
To tackle the heterogeneity of Parkinson’s disease symptoms, most functional imaging studies tend to select a uniform group of subjects. We hypothesize that more profound considerations are needed to account for intra/inter-subject clinical variability and possibly for differing pathophysiological processes. Twelve patients were investigated using functional magnetic resonance imaging during visually-guided finger tapping. To account for disease heterogeneity, the motor score and individual symptom scores from the Unified Parkinson’s Disease Rating Scale (UPDRS-III) were utilized in the group-level model using two approaches either as the explanatory variable or as the effect of interest. Employment of the UPDRS-III score and symptom scores was systematically tested on the resulting group response to the levodopa challenge, which further accentuated the diversity of the diseased state of participants. Statistics revealed a bilateral group response to levodopa in the basal ganglia. Interestingly, systematic incorporation of individual motor aspects of the disease in the modelling amended the resulting activity patterns conspicuously, evidencing a manifold amount of explained variability by the particular score. In conclusion, the severity of clinical symptoms expressed in the UPDRS-III scores should be considered in the analysis to attain unbiased statistics, draw reliable conclusions and allow for comparisons between research groups studying Parkinson’s disease using functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Štefan Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E. Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tomáš Sieger
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, Prague, Czech Republic
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Matthias L. Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology & Leipzig Research Center for Civilization Diseases, University of Leipzig and FTLD Consortium, Leipzig, Germany
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Jech R, Mueller K, Urgošík D, Sieger T, Holiga Š, Růžička F, Dušek P, Havránková P, Vymazal J, Růžička E. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLoS One 2012; 7:e49056. [PMID: 23145068 PMCID: PMC3492182 DOI: 10.1371/journal.pone.0049056] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.
Collapse
Affiliation(s)
- Robert Jech
- Dept. of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|