1
|
Chatterjee M, Evans MK, Bell R, Nguyen PK, Kamalitdinov TB, Korntner S, Kuo CK, Dyment NA, Andarawis-Puri N. Histological and immunohistochemical guide to tendon tissue. J Orthop Res 2023; 41:2114-2132. [PMID: 37321983 DOI: 10.1002/jor.25645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Tendons are unique dense connective tissues with discrete zones having specific structure and function. They are juxtaposed with other tissues (e.g., bone, muscle, and fat) with different compositional, structural, and mechanical properties. Additionally, tendon properties change drastically with growth and development, disease, aging, and injury. Consequently, there are unique challenges to performing high quality histological assessment of this tissue. To address this need, histological assessment was one of the breakout session topics at the 2022 Orthopaedic Research Society (ORS) Tendon Conference hosted at the University of Pennsylvania. The purpose of the breakout session was to discuss needs from members of the ORS Tendon Section related to histological procedures, data presentation, knowledge dissemination, and guidelines for future work. Therefore, this review provides a brief overview of the outcomes of this discussion and provides a set of guidelines, based on the perspectives from our laboratories, for histological assessment to assist researchers in their quest to utilize these techniques to enhance the outcomes and interpretations of their studies.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Mary K Evans
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Phong K Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Timur B Kamalitdinov
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefanie Korntner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
2
|
Taniguchi Y, Akune T, Nishida N, Omori G, Ha K, Ueno K, Saito T, Oichi T, Koike A, Mabuchi A, Oka H, Muraki S, Oshima Y, Kawaguchi H, Nakamura K, Tokunaga K, Tanaka S, Yoshimura N. A common variant rs2054564 in ADAMST17 is associated with susceptibility to lumbar spondylosis. Sci Rep 2023; 13:4900. [PMID: 36966180 PMCID: PMC10039864 DOI: 10.1038/s41598-023-32155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/23/2023] [Indexed: 03/27/2023] Open
Abstract
The molecular pathophysiology underlying lumbar spondylosis development remains unclear. To identify genetic factors associated with lumbar spondylosis, we conducted a genome-wide association study using 83 severe lumbar spondylosis cases and 182 healthy controls and identified 65 candidate disease-associated single nucleotide polymorphisms (SNPs). Replication analysis in 510 case and 911 control subjects from five independent Japanese cohorts identified rs2054564, located in intron 7 of ADAMTS17, as a disease-associated SNP with a genome-wide significance threshold (P = 1.17 × 10-11, odds ratio = 1.92). This association was significant even after adjustment of age, sex, and body mass index (P = 7.52 × 10-11). A replication study in a Korean cohort, including 123 case and 319 control subjects, also verified the significant association of this SNP with severe lumbar spondylosis. Immunohistochemistry revealed that fibrillin-1 (FBN1) and ADAMTS17 were co-expressed in the annulus fibrosus of intervertebral discs (IVDs). ADAMTS17 overexpression in MG63 cells promoted extracellular microfibrils biogenesis, suggesting the potential role of ADAMTS17 in IVD function through interaction with fibrillin fibers. Finally, we provided evidence of FBN1 involvement in IVD function by showing that lumbar IVDs in patients with Marfan syndrome, caused by heterozygous FBN1 gene mutation, were significantly more degenerated. We identified a common SNP variant, located in ADAMTS17, associated with susceptibility to lumbar spondylosis and demonstrated the potential role of the ADAMTS17-fibrillin network in IVDs in lumbar spondylosis development.
Collapse
Affiliation(s)
- Yuki Taniguchi
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Surgical Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan.
| | - Toru Akune
- Hospital, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, 359-0042, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Go Omori
- Department of Health and Sports, Faculty of Health and Science, Niigata University of Health and Welfare, Niigata, 950-3198, Japan
| | - Kim Ha
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, 18450, Korea
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Taku Saito
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Takeshi Oichi
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Asako Koike
- Healthcare Business Division, Hitachi, Ltd., Tokyo, 105-6412, Japan
| | - Akihiko Mabuchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hiroyuki Oka
- Department of Medical Research and Management for Musculoskeletal Pain, 22nd Century Medical & Research Center, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Shigeyuki Muraki
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Yasushi Oshima
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroshi Kawaguchi
- Orthopaedics and Spine Department, Tokyo Neurological Center, Tokyo, 105-0001, Japan
| | - Kozo Nakamura
- Department of Orthopedics, Towa Hospital, Tokyo, 120-0003, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Sakae Tanaka
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Noriko Yoshimura
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8654, Japan
| |
Collapse
|
3
|
Korntner SH, Jana A, Kinnard E, Leo E, Beane T, Li X, Sengupta R, Becker L, Kuo CK. Craniofacial tendon development-Characterization of extracellular matrix morphology and spatiotemporal protein distribution. Front Cell Dev Biol 2022; 10:944126. [PMID: 36158210 PMCID: PMC9490420 DOI: 10.3389/fcell.2022.944126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Craniofacial (CF) tendons are often affected by traumatic injuries and painful disorders that can severely compromise critical jaw functions, such as mastication and talking. Unfortunately, tendons lack the ability to regenerate, and there are no solutions to restore their native properties or function. An understanding of jaw tendon development could inform tendon regeneration strategies to restore jaw function, however CF tendon development has been relatively unexplored. Using the chick embryo, we identified the jaw-closing Tendon of the musculus Adductor Mandibulae Externus (TmAM) and the jaw-opening Tendon of the musculus Depressor Mandibulae (TmDM) that have similar functions to the masticatory tendons in humans. Using histological and immunohistochemical (IHC) analyses, we characterized the TmAM and TmDM on the basis of cell and extracellular matrix (ECM) morphology and spatiotemporal protein distribution from early to late embryonic development. The TmAM and TmDM were detectable as early as embryonic day (d) 9 based on histological staining and tenascin-C (TNC) protein distribution. Collagen content increased and became more organized, cell density decreased, and cell nuclei elongated over time during development in both the TmAM and TmDM. The TmAM and TmDM exhibited similar spatiotemporal patterns for collagen type III (COL3), but differential spatiotemporal patterns for TNC, lysyl oxidase (LOX), and matrix metalloproteinases (MMPs). Our results demonstrate markers that play a role in limb tendon formation are also present in jaw tendons during embryonic development, implicate COL3, TNC, LOX, MMP2, and MMP9 in jaw tendon development, and suggest TmAM and TmDM possess different developmental programs. Taken together, our study suggests the chick embryo may be used as a model with which to study CF tendon extracellular matrix development, the results of which could ultimately inform therapeutic approaches for CF tendon injuries and disorders.
Collapse
Affiliation(s)
- Stefanie H Korntner
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Aniket Jana
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Elizabeth Kinnard
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Emily Leo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Timothy Beane
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Xianmu Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Rohit Sengupta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Lauren Becker
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Catherine K Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Maryland Medical Center, Baltimore, MD, United States
| |
Collapse
|
4
|
Hill JR, Eekhoff JD, Brophy RH, Lake SP. Elastic fibers in orthopedics: Form and function in tendons and ligaments, clinical implications, and future directions. J Orthop Res 2020; 38:2305-2317. [PMID: 32293749 PMCID: PMC7572591 DOI: 10.1002/jor.24695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Elastic fibers are an essential component of the extracellular matrix of connective tissues. The focus of both clinical management and scientific investigation of elastic fiber disorders has centered on the cardiovascular manifestations due to their significant impact on morbidity and mortality. As such, the current understanding of the orthopedic conditions experienced by these patients is limited. The musculoskeletal implications of more subtle elastic fiber abnormalities, whether due to allelic variants or age-related tissue degeneration, are also not well understood. Recent advances have begun to uncover the effects of elastic fiber deficiency on tendon and ligament biomechanics; future research must further elucidate mechanisms governing the role of elastic fibers in these tissues. The identification of population-based genetic variations in elastic fibers will also be essential. Minoxidil administration, modulation of protein expression with micro-RNA molecules, and direct injection of recombinant elastic fiber precursors have demonstrated promise for therapeutic intervention, but further work is required prior to consideration for orthopedic clinical application. This review provides an overview of the role of elastic fibers in musculoskeletal tissue, summarizes current knowledge of the orthopedic manifestations of elastic fiber abnormalities, and identifies opportunities for future investigation and clinical application.
Collapse
Affiliation(s)
- J. Ryan Hill
- Department of Orthopaedic Surgery, Washington University in St. Louis, 425 S. Euclid Avenue, Suite 5505, St. Louis, MO 63110
| | - Jeremy D. Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Washington University in St. Louis, 425 S. Euclid Avenue, Suite 5505, St. Louis, MO 63110
| | - Spencer P. Lake
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130,Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|
5
|
Brown JP, Galassi TV, Stoppato M, Schiele NR, Kuo CK. Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Res Ther 2015; 6:89. [PMID: 25956970 PMCID: PMC4425922 DOI: 10.1186/s13287-015-0043-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/07/2014] [Accepted: 03/05/2015] [Indexed: 01/14/2023] Open
Abstract
Introduction Advances in tendon engineering with mesenchymal stem cells (MSCs) are hindered by a need for cues to direct tenogenesis, and markers to assess tenogenic state. We examined the effects of factors involved in embryonic tendon development on adult MSCs, and compared MSC responses to that of embryonic tendon progenitor cells (TPCs), a model system of tenogenically differentiating cells. Methods Murine MSCs and TPCs subjected to cyclic tensile loading, transforming growth factor-β2 (TGFβ2), and fibroblast growth factor-4 (FGF4) in vitro were assessed for proliferation and mRNA levels of scleraxis, TGFβ2, tenomodulin, collagen type I and elastin. Results Before treatment, scleraxis and elastin levels in MSCs were lower than in TPCs, while other tendon markers expressed at similar levels in MSCs as TPCs. TGFβ2 alone and combined with loading were tenogenic based on increased scleraxis levels in both MSCs and TPCs. Loading alone had minimal effect. FGF4 downregulated tendon marker levels in MSCs but not in TPCs. Select tendon markers were not consistently upregulated with scleraxis, demonstrating the importance of characterizing a profile of markers. Conclusions Similar responses as TPCs to specific treatments suggest MSCs have tenogenic potential. Potentially shared mechanisms of cell function between MSCs and TPCs should be investigated in longer term studies.
Collapse
Affiliation(s)
- Jeffrey P Brown
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA.
| | - Thomas V Galassi
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA.
| | - Matteo Stoppato
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA.
| | - Nathan R Schiele
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA.
| | - Catherine K Kuo
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA. .,Cell, Molecular & Developmental Biology Program Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Kamita M, Mori T, Sakai Y, Ito S, Gomi M, Miyamoto Y, Harada A, Niida S, Yamada T, Watanabe K, Ono M. Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis. Proteomics 2015; 15:1622-30. [DOI: 10.1002/pmic.201400442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/16/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Masahiro Kamita
- Division of Chemotherapy and Clinical Research; National Cancer Center Research Institute; Tsukiji Chuo-ku Tokyo Japan
| | - Taiki Mori
- BioBank Omics Unit; National Center for Geriatrics and Gerontology (NCGG); Morioka, Obu, Aichi Japan
| | - Yoshihito Sakai
- Department of Orthopedic Surgery; NCGG; Morioka, Obu, Aichi Japan
| | - Sadayuki Ito
- Department of Orthopedic Surgery; NCGG; Morioka, Obu, Aichi Japan
| | - Masahiro Gomi
- BioBusiness Group; Mitsui Knowledge Industry; Tokyo Japan
| | - Yuko Miyamoto
- Division of Chemotherapy and Clinical Research; National Cancer Center Research Institute; Tsukiji Chuo-ku Tokyo Japan
| | - Atsushi Harada
- Department of Orthopedic Surgery; NCGG; Morioka, Obu, Aichi Japan
| | - Shumpei Niida
- BioBank Omics Unit; National Center for Geriatrics and Gerontology (NCGG); Morioka, Obu, Aichi Japan
| | - Tesshi Yamada
- Division of Chemotherapy and Clinical Research; National Cancer Center Research Institute; Tsukiji Chuo-ku Tokyo Japan
| | - Ken Watanabe
- Department of Bone and Joint Disease; NCGG; Morioka, Obu, Aichi Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research; National Cancer Center Research Institute; Tsukiji Chuo-ku Tokyo Japan
| |
Collapse
|
7
|
Brown JP, Finley VG, Kuo CK. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. J Biomech 2013; 47:214-22. [PMID: 24231248 DOI: 10.1016/j.jbiomech.2013.09.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 01/03/2023]
Abstract
Stem cell-based engineering strategies for tendons have yet to yield a normal functional tissue, due in part to a need for tenogenic factors. Additionally, the ability to evaluate differentiation has been challenged by a lack of markers for differentiation. We propose to inform tendon regeneration with developmental cues involved in normal tissue formation and with phenotypic markers that are characteristic of differentiating tendon progenitor cells (TPCs). Mechanical forces, fibroblast growth factor (FGF)-4 and transforming growth factor (TGF)-β2 are implicated in embryonic tendon development, yet the isolated effects of these factors on differentiating TPCs are unknown. Additionally, developmental mechanisms vary between limb and axial tendons, suggesting the respective cell types are programmed to respond uniquely to exogenous factors. To characterize developmental cues and benchmarks for differentiation toward limb vs. axial phenotypes, we dynamically loaded and treated TPCs with growth factors and assessed gene expression profiles as a function of developmental stage and anatomical origin. Based on scleraxis expression, TGFβ2 was tenogenic for TPCs at all stages, while loading was for late-stage cells only, and FGF4 had no effect despite regulation of other genes. When factors were combined, TGFβ2 continued to be tenogenic, while FGF4 appeared anti-tenogenic. Various treatments elicited distinct responses by axial vs. limb TPCs of specific stages. These results identified tenogenic factors, suggest tendon engineering strategies should be customized for tissues by anatomical origin, and provide stage-specific gene expression profiles of limb and axial TPCs as benchmarks with which to monitor tenogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Jeffrey P Brown
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Violet G Finley
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
8
|
Schiele NR, Koppes RA, Chrisey DB, Corr DT. Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly. Tissue Eng Part A 2013; 19:1223-32. [PMID: 23346952 DOI: 10.1089/ten.tea.2012.0321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon, ligament, and other fibrous soft tissues.
Collapse
Affiliation(s)
- Nathan R Schiele
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | | | | | |
Collapse
|