1
|
Shatalina E, Whitehurst T, Chika Onwordi E, Whittington A, Mansur A, Arumuham A, Reis Marques T, Gunn RN, Natesan S, Nour MM, Rabiner EA, Wall MB, Howes OD. Mitochondria Make You Think: An [18F]BCPP-EF Positron Emission Tomography Study of Mitochondrial Complex I Levels and Brain Activation during Task Switching. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00064-3. [PMID: 40010687 DOI: 10.1016/j.bpsc.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Mitochondrial complex I is the largest enzyme complex in the respiratory chain and can be non-invasively measured using [18F]BCPP-EF positron emission tomography (PET). Neurological conditions associated with mitochondria complex I pathology are also associated with altered blood oxygen level-dependent (BOLD) response and impairments in cognition. This study aims to investigate the relationship between mitochondrial complex I levels, cognitive function, and associated neural activity during task switching in healthy humans. METHODS Cognitively healthy adults (n=23) underwent [18F]BCPP-EF PET scans and functional magnetic resonance imaging (fMRI) while performing a task-switching exercise. Task performance metrics included switch cost and switching accuracy. Data were analysed using linear mixed-effects models and partial least squares regression (PLS-R). RESULTS We found significant positive associations between [18F]BCPP-EF VT and the task-switching fMRI response (β=3.351, SE=1.01, z=3.249, p=0.001). Positive Pearson's correlations between [18F]BCPP-EF VT and the fMRI response were observed in the dorsolateral prefrontal cortex (r=0.61, p=0.0019), insula (r=0.46, p=0.0264) parietal-precuneus (r=0.51, p=0.0139) and anterior cingulate cortex (r=0.45, p=0.0293). [18F]BCPP-EF VT across task-relevant regions was associated with task switching accuracy (PLS-R, R2=0.48, RMSE=0.154, p=0.011) and with switch cost (PLS-R, R2=0.38, RMSE=0.07, p=0.048). CONCLUSIONS Higher mitochondrial complex I levels may underlie an individual's ability to exhibit a stronger BOLD response during task switching and are associated with better task-switching performance. This provides the first evidence linking the BOLD response with mitochondrial complex I and suggests a possible biological mechanism for aberrant BOLD response in conditions associated with mitochondrial complex I dysfunction that should be tested in future studies.
Collapse
Affiliation(s)
- Ekaterina Shatalina
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK.
| | - Thomas Whitehurst
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK; Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK; East London NHS Foundation Trust, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK; Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK; East London NHS Foundation Trust, London, UK
| | | | | | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Sridhar Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK
| | - Matthew M Nour
- Department of Psychiatry, Oxford University, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | | | - Matthew B Wall
- Invicro, London, UK; Faculty of Medicine, Imperial College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK
| |
Collapse
|
2
|
Maggi G, Giacobbe C, Vitale C, Amboni M, Obeso I, Santangelo G. Theory of mind in mild cognitive impairment and Parkinson's disease: The role of memory impairment. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:156-170. [PMID: 38049608 PMCID: PMC10827829 DOI: 10.3758/s13415-023-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Social cognition is impaired in Parkinson's disease (PD). Whether social cognitive impairment (iSC) is a by-product of the underlying cognitive deficits in PD or a process independent of cognitive status is unknown. To this end, the present study was designed to investigate the weight of specific cognitive deficits in social cognition, considering different mild cognitive impairment subtypes of PD (PD-MCI). METHODS Fifty-eight PD patients underwent a neuropsychological battery assessing executive functions, memory, language, and visuospatial domains, together with social cognitive tests focused on theory of mind (ToM). Patients were divided into subgroups according to their clinical cognitive status: amnestic PD-MCI (PD-aMCI, n = 18), non-amnestic PD-MCI (PD-naMCI, n = 16), and cognitively unimpaired (PD-CU, n = 24). Composite scores for cognitive and social domains were computed to perform mediation analyses. RESULTS Memory and language impairments mediated the effect of executive functioning in social cognitive deficits in PD patients. Dividing by MCI subgroups, iSC occurred more frequently in PD-aMCI (77.8%) than in PD-naMCI (18.8%) and PD-CU (8.3%). Moreover, PD-aMCI performed worse than PD-CU in all social cognitive measures, whereas PD-naMCI performed worse than PD-CU in only one subtype of the affective and cognitive ToM tests. CONCLUSIONS Our findings suggest that ToM impairment in PD can be explained by memory dysfunction that mediates executive control. ToM downsides in the amnesic forms of PD-MCI may suggest that subtle changes in social cognition could partly explain future transitions into dementia. Hence, the evaluation of social cognition in PD is critical to characterize a possible behavioral marker of cognitive decline.
Collapse
Affiliation(s)
- Gianpaolo Maggi
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy.
| | - Chiara Giacobbe
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy
| | - Carmine Vitale
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
- Department of Motor Sciences and Wellness, University "Parthenope, Naples, Italy
| | - Marianna Amboni
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Ignacio Obeso
- HM Hospitales - Centro Integral de Neurociencias AC HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Avda. Carlos V, 70. 28938, Móstoles, Madrid, Spain.
- Department of Psychobiology and Methods on Behavioural Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy.
| |
Collapse
|
3
|
Stress-inducible phosphoprotein 1 (HOP/STI1/STIP1) regulates the accumulation and toxicity of α-synuclein in vivo. Acta Neuropathol 2022; 144:881-910. [PMID: 36121476 PMCID: PMC9547791 DOI: 10.1007/s00401-022-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
The predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding. STI1 and Hsp90 also co-localized extensively with filamentous S129 phosphorylated α-synuclein in ubiquitin-positive inclusions. In PD human brains, STI1 transcripts were increased, and in neurologically healthy brains, STI1 and α-synuclein transcripts correlated. Nuclear Magnetic Resonance (NMR) analyses revealed direct interaction of α-synuclein with STI1 and indicated that the STI1 TPR2A, but not TPR1 or TPR2B domains, interacted with the C-terminal domain of α-synuclein. In vitro, the STI1 TPR2A domain facilitated S129 phosphorylation by Polo-like kinase 3. Moreover, mice over-expressing STI1 and Hsp90ß presented elevated α-synuclein S129 phosphorylation accompanied by inclusions when injected with α-synuclein pre-formed fibrils. In contrast, reduced STI1 function decreased protein inclusion formation, S129 α-synuclein phosphorylation, while mitigating motor and cognitive deficits as well as mesoscopic brain atrophy in α-synuclein-over-expressing mice. Our findings reveal a vicious cycle in which STI1 facilitates the generation and accumulation of toxic α-synuclein conformers, while α-synuclein-induced proteostatic stress increased insoluble STI1 and Hsp90.
Collapse
|
4
|
Pilgrim MJD, Ou ZYA, Sharp M. Exploring reward-related attention selectivity deficits in Parkinson's disease. Sci Rep 2021; 11:18751. [PMID: 34548517 PMCID: PMC8455525 DOI: 10.1038/s41598-021-97526-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
An important aspect of managing a limited cognitive resource like attention is to use the reward value of stimuli to prioritize the allocation of attention to higher-value over lower-value stimuli. Recent evidence suggests this depends on dopaminergic signaling of reward. In Parkinson's disease, both reward sensitivity and attention are impaired, but whether these deficits are directly related to one another is unknown. We tested whether Parkinson's patients use reward information when automatically allocating their attention and whether this is modulated by dopamine replacement. We compared patients, tested both ON and OFF dopamine replacement medication, to older controls using a standard attention capture task. First, participants learned the different reward values of stimuli. Then, these reward-associated stimuli were used as distractors in a visual search task. We found that patients were generally distracted by the presence of the distractors but that the degree of distraction caused by the high-value and low-value distractors was similar. Furthermore, we found no evidence to support the possibility that dopamine replacement modulates the effect of reward on automatic attention allocation. Our results suggest a possible inability in Parkinson's patients to use the reward value of stimuli when automatically allocating their attention, and raise the possibility that reward-driven allocation of resources may affect the adaptive modulation of other cognitive processes.
Collapse
Affiliation(s)
- Matthew J D Pilgrim
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Zhen-Yi Andy Ou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Madeleine Sharp
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
5
|
Masilamoni GJ, Weinkle A, Papa SM, Smith Y. Cortical Serotonergic and Catecholaminergic Denervation in MPTP-Treated Parkinsonian Monkeys. Cereb Cortex 2021; 32:1804-1822. [PMID: 34519330 DOI: 10.1093/cercor/bhab313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/14/2022] Open
Abstract
Decreased cortical serotonergic and catecholaminergic innervation of the frontal cortex has been reported at early stages of Parkinson's disease (PD). However, the limited availability of animal models that exhibit these pathological features has hampered our understanding of the functional significance of these changes during the course of the disease. In the present study, we assessed longitudinal changes in cortical serotonin and catecholamine innervation in motor-symptomatic and asymptomatic monkeys chronically treated with low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Densitometry and unbiased stereological techniques were used to quantify changes in serotonin and tyrosine hydroxylase (TH) immunoreactivity in frontal cortices of 3 control monkeys and 3 groups of MPTP-treated monkeys (motor-asymptomatic [N = 2], mild parkinsonian [N = 3], and moderate parkinsonian [N = 3]). Our findings revealed a significant decrease (P < 0.001) in serotonin innervation of motor (Areas 4 and 6), dorsolateral prefrontal (Areas 9 and 46), and limbic (Areas 24 and 25) cortical areas in motor-asymptomatic MPTP-treated monkeys. Both groups of symptomatic MPTP-treated animals displayed further serotonin denervation in these cortical regions (P < 0.0001). A significant loss of serotonin-positive dorsal raphe neurons was found in the moderate parkinsonian group. On the other hand, the intensity of cortical TH immunostaining was not significantly affected in motor asymptomatic MPTP-treated monkeys, but underwent a significant reduction in the moderate symptomatic group (P < 0.05). Our results indicate that chronic intoxication with MPTP induces early pathology in the corticopetal serotonergic system, which may contribute to early non-motor symptoms in PD.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison Weinkle
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Britten RA, Wellman LL, Sanford LD. Progressive increase in the complexity and translatability of rodent testing to assess space-radiation induced cognitive impairment. Neurosci Biobehav Rev 2021; 126:159-174. [PMID: 33766676 DOI: 10.1016/j.neubiorev.2021.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
Ground-based rodent models have established that space radiation doses (approximately those that astronauts will be exposed to on a mission to Mars) significantly impair performance in a wide range of cognitive tasks. Over the last 40 years there has been a progressive increase in both the complexity and the translatability (to humans) of the cognitive tasks investigated. This review outlines technical and conceptual advances in space radiation rodent testing approaches, along with the advances in analytical approaches, that will make data from ground based studies more amenable to probabilistic risk analysis. While great progress has been made in determining the impact of space radiation on many advanced cognitive processes, challenges remain that need to be addressed prior to commencing deep space missions. A summary of on-going attempts to address existing knowledge gaps and the critical role that rodent studies will have in establishing the impact of space radiation on even more complex (human) cognitive tasks are presented and discussed.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Laurie L Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Larry D Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| |
Collapse
|
7
|
Radlicka A, Kamińska K, Borczyk M, Piechota M, Korostyński M, Pera J, Lorenc-Koci E, Rodriguez Parkitna J. Effects of L-DOPA on Gene Expression in the Frontal Cortex of Rats with Unilateral Lesions of Midbrain Dopaminergic Neurons. eNeuro 2021; 8:ENEURO.0234-20.2020. [PMID: 33257528 PMCID: PMC7877460 DOI: 10.1523/eneuro.0234-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022] Open
Abstract
The development of Parkinson's disease (PD) causes dysfunction of the frontal cortex, which contributes to the hallmark motor symptoms and is regarded as one of the primary causes of the affective and cognitive impairments observed in PD. Treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) alleviates motor symptoms but has mixed efficacy in restoring normal cognitive functions, which is further complicated by the psychoactive effects of the drug. We investigated how L-DOPA affects gene expression in the frontal cortex in an animal model of unilateral PD. We performed RNA sequencing (RNA-Seq) analysis of gene expression in the frontal cortex of rats with 6-hydroxydopamine (6-OHDA)-induced unilateral dopaminergic lesions treated with L-DOPA, for two weeks. The analysis of variance identified 48 genes with a significantly altered transcript abundance after L-DOPA treatment. We also performed a weighted gene coexpression network analysis (WGCNA), which resulted in the detection of five modules consisting of genes with similar expression patterns. The analyses led to three primary observations. First, the changes in gene expression induced by L-DOPA were bilateral, although only one hemisphere was lesioned. Second, the changes were not restricted to neurons but also appeared to affect immune or endothelial cells. Finally, comparisons with databases of drug-induced gene expression signatures revealed multiple nonspecific effects, indicating that a part of the observed response is a common pattern activated by multiple types of drugs in different target tissues. Taken together, our results identify cellular mechanisms in the frontal cortex that are involved in the response to L-DOPA treatment.
Collapse
Affiliation(s)
- Anna Radlicka
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Malgorzata Borczyk
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-503, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| |
Collapse
|
8
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
9
|
Sorby-Adams AJ, Schneider WT, Goncalves RP, Knolle F, Morton AJ. Measuring executive function in sheep (Ovis aries) using visual stimuli in a semi-automated operant system. J Neurosci Methods 2020; 351:109009. [PMID: 33340554 DOI: 10.1016/j.jneumeth.2020.109009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cognitive impairment is a distinguishing feature of many neurodegenerative diseases. The intra-dimensional (ID) extra-dimensional (ED) attentional set shift task is part of a clinical battery of tests used to evaluate executive function in Huntington's and Alzheimer's disease patients. The IDED task, however, has not translated well to pre-clinical rodent models of neurological disease. NEW METHOD The ability to perform executive tasks coupled with a long lifespan makes sheep (Ovis aries) an ideal species for modelling cognitive decline in progressive neurodegenerative conditions. We describe the methodology for testing the performance of sheep in the IDED task using a semi-automated system in which visual stimuli are presented as coloured letters on computer screens. RESULTS During each stage of IDED testing, all sheep (n = 12) learned successfully to discriminate between different colours and letters. Sheep were quick to learn the rules of acquisition at each stage. They required significantly more trials to reach criterion (p < 0.05) and made more errors (p < 0.05) following stimulus reversal, with the exception of the ED shift (p > 0.05). COMPARISON WITH EXISTING METHOD(S) Previous research shows that sheep can perform IDED set shifting in a walk-through maze using solid objects with two changeable dimensions (colour and shape) as the stimuli. Presenting the stimuli on computer screens provides better validity, greater task flexibility and higher throughput than the walk-through maze. CONCLUSION All sheep completed each stage of the task, with a range of abilities expected in an outbred population. The IDED task described is ideally suited as a quantifiable and clinically translatable measure of executive function in sheep.
Collapse
Affiliation(s)
- A J Sorby-Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - W T Schneider
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - R P Goncalves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - F Knolle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Neurology, Klinikum recht der Isar, Technical University Munich, Munich, Germany
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| |
Collapse
|
10
|
McCord A, Cocks B, Barreiros AR, Bizo LA. Short video game play improves executive function in the oldest old living in residential care. COMPUTERS IN HUMAN BEHAVIOR 2020. [DOI: 10.1016/j.chb.2020.106337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Trošt M, Perovnik M, Pirtošek Z. Correlations of Neuropsychological and Metabolic Brain Changes in Parkinson's Disease and Other α-Synucleinopathies. Front Neurol 2019; 10:1204. [PMID: 31798525 PMCID: PMC6868095 DOI: 10.3389/fneur.2019.01204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cognitive impairment is a common feature in Parkinson's disease (PD) and other α-synucleinopathies as 80% of PD patients develop dementia within 20 years. Early cognitive changes in PD patients present as a dysexecutive syndrome, broadly characterized as a disruption of the fronto-striatal dopamine network. Cognitive deficits in other domains (recognition memory, attention processes and visuospatial abilities) become apparent with the progression of PD and development of dementia. In dementia with Lewy bodies (DLB) the cognitive impairment develops early or even precedes parkinsonism and it is more pronounced in visuospatial skills and memory. Cognitive impairment in the rarer α-synucleinopathies (multiple system atrophy and pure autonomic failure) is less well studied. Metabolic brain imaging with positron emission tomography and [18F]-fluorodeoxyglucose (FDG-PET) is a well-established diagnostic method in neurodegenerative diseases, including dementias. Changes in glucose metabolism precede those seen on structural magnetic resonance imaging (MRI). Reduction in glucose metabolism and atrophy have been suggested to represent consecutive changes of neurodegeneration and are linked to specific cognitive disorders (e.g., dysexecutive syndrome, memory impairment, visuospatial deficits etc.). Advances in the statistical analysis of FDG-PET images enabling a network analysis broadened our understanding of neurodegenerative brain processes. A specific cognitive pattern related to PD was identified by applying voxel-based network modeling approach. The magnitude of this pattern correlated significantly with patients' cognitive skills. Specific metabolic brain changes were observed also in patients with DLB as well as in a prodromal phase of α-synucleinopathy: REM sleep behavior disorder. Metabolic brain imaging with FDG-PET is a reliable biomarker of neurodegenerative brain diseases throughout their course, precisely reflecting their topographic distribution, stage and functional impact.
Collapse
Affiliation(s)
- Maja Trošt
- Department for Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department for Nuclear Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Matej Perovnik
- Department for Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department for Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Miguel PM, Deniz BF, Deckmann I, Confortim HD, Diaz R, Laureano DP, Silveira PP, Pereira LO. Prefrontal cortex dysfunction in hypoxic-ischaemic encephalopathy contributes to executive function impairments in rats: Potential contribution for attention-deficit/hyperactivity disorder. World J Biol Psychiatry 2018; 19:547-560. [PMID: 28105895 DOI: 10.1080/15622975.2016.1273551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The attention-deficit/hyperactivity disorder (ADHD) compromises the quality of life of individuals including adaptation to the social environment. ADHD aetiology includes perinatal conditions such as hypoxic-ischaemic events; preclinical studies have demonstrated attentional deficits and impulsive-hyperactive outcomes after neonatal hypoxic and/or ischaemic intervention, but data are missing to understand this relationship. Thus, the aim of this study was to evaluate executive function (EF) and impulsivity, and tissue integrity and dopaminergic function in the prefrontal cortex (PFC) of rats submitted to hypoxia-ischaemia (HI). METHODS At postnatal day (PND) 7, male Wistar rats were divided into control (n = 10) and HI groups (n = 11) and the HI procedure was conducted. At PND60, the animals were tested in the attentional set-shifting (ASS) task to EF and in the tolerance to delay of reward for assessment of impulsivity. After, morphological analysis and the dopaminergic system were evaluated in the PFC. RESULTS Animals subjected to HI had impairments in EF evidenced by a behavioural inflexibility that was correlated to PFC atrophy. Moreover, HI animals presented reduced D2 receptors in the ipsilateral side of ischaemia in the PFC. CONCLUSIONS Animals submitted to HI presented impaired EF associated with tissue atrophy and dopaminergic disturbance in the PFC.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Bruna Ferrary Deniz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Iohanna Deckmann
- b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Heloísa Deola Confortim
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Ramiro Diaz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Daniela Pereira Laureano
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Patrícia Pelufo Silveira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,c Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,d Ludmer Centre for Neuroinformatics and Mental Health , Douglas Mental Health University Institute, McGill University , Montreal , QC , Canada
| | - Lenir Orlandi Pereira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
13
|
Marshall CA, King KM, Kortagere S. Limitations of the rat medial forebrain lesion model to study prefrontal cortex mediated cognitive tasks in Parkinson's disease. Brain Res 2018; 1702:105-113. [PMID: 29608880 DOI: 10.1016/j.brainres.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
Abstract
Parkinson's Disease (PD) is a progressive movement disorder characterized by the loss of dopaminergic neurons in the midbrain. Besides motor impairment, PD patients exhibit non-motor symptoms that negatively impact their quality of life and often manifest prior to motor deficits. One such symptom is mild cognitive impairment (PD-MCI), which is comprised of deficits in executive function such as working memory, attention, cognitive flexibility, and spatial memory. The 6-hydroxydopamine (6-OHDA) induced unilateral medial forebrain bundle (MFB) lesion animal model successfully recapitulates PD motor impairment but is also used to assess non-motor deficits. The present study utilizes a unilateral 6-OHDA induced MFB lesion rodent model to investigate prefrontal cortex (PFC)-mediated cognitive processes that are impaired in PD patients. In a test of attentional set shifting, PD rodents demonstrated deficits in simple discrimination, but not in rule reversal or extradimensional shifts. PD rodents also exhibited deficits in a temporal order memory task but had no deficits in novel/spatial object recognition or object-in-place tasks. These results reveal limitations of the 6-OHDA induced unilateral MFB lesion model to completely recapitulate PD-MCI symptoms suggesting a need for better lesion models to study PD-MCI.
Collapse
Affiliation(s)
- Courtney A Marshall
- Department of Neurobiology and Anatomy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Kirsten M King
- Department of Neurobiology and Anatomy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
14
|
|
15
|
Centi J, Freeman R, Gibbons CH, Neargarder S, Canova AO, Cronin-Golomb A. Effects of orthostatic hypotension on cognition in Parkinson disease. Neurology 2016; 88:17-24. [PMID: 27903817 DOI: 10.1212/wnl.0000000000003452] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/24/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the relation between orthostatic hypotension (OH) and posture-mediated cognitive impairment in Parkinson disease (PD) using a cross-sectional and within-group design. METHODS Individuals without dementia with idiopathic PD included 18 with OH (PDOH) and 19 without OH; 18 control participants were also included. Neuropsychological tests were conducted in supine and upright-tilted positions. Blood pressure was assessed in each posture. RESULTS The PD groups performed similarly while supine, demonstrating executive dysfunction in sustained attention and response inhibition, and reduced semantic fluency and verbal memory (encoding and retention). Upright posture exacerbated and broadened these deficits in the PDOH group to include phonemic fluency, psychomotor speed, and auditory working memory. When group-specific supine scores were used as baseline anchors, both PD groups showed cognitive changes following tilt, with the PDOH group exhibiting a wider range of deficits in executive function and memory as well as significant changes in visuospatial function. CONCLUSIONS Cognitive deficits in PD have been widely reported with assessments performed in the supine position, as seen in both our PD groups. Here we demonstrated that those with PDOH had transient, posture-mediated changes in excess of those found in PD without OH. These observed changes suggest an acute, reversible effect. Understanding the effects of OH due to autonomic failure on cognition is desirable, particularly as neuroimaging and clinical assessments collect data only in the supine or seated positions. Identification of a distinct neuropsychological profile in PD with OH has quality of life implications, and OH presents itself as a possible target for intervention in cognitive disturbance.
Collapse
Affiliation(s)
- Justin Centi
- From the Department of Psychological and Brain Sciences (J.C., S.N., A.O.C., A.C.-G.), Boston University, Boston; Department of Neurology (J.C., R.F., C.H.G.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; and Department of Psychology (S.N.), Bridgewater State University, Bridgewater, MA
| | - Roy Freeman
- From the Department of Psychological and Brain Sciences (J.C., S.N., A.O.C., A.C.-G.), Boston University, Boston; Department of Neurology (J.C., R.F., C.H.G.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; and Department of Psychology (S.N.), Bridgewater State University, Bridgewater, MA
| | - Christopher H Gibbons
- From the Department of Psychological and Brain Sciences (J.C., S.N., A.O.C., A.C.-G.), Boston University, Boston; Department of Neurology (J.C., R.F., C.H.G.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; and Department of Psychology (S.N.), Bridgewater State University, Bridgewater, MA
| | - Sandy Neargarder
- From the Department of Psychological and Brain Sciences (J.C., S.N., A.O.C., A.C.-G.), Boston University, Boston; Department of Neurology (J.C., R.F., C.H.G.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; and Department of Psychology (S.N.), Bridgewater State University, Bridgewater, MA
| | - Alexander O Canova
- From the Department of Psychological and Brain Sciences (J.C., S.N., A.O.C., A.C.-G.), Boston University, Boston; Department of Neurology (J.C., R.F., C.H.G.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; and Department of Psychology (S.N.), Bridgewater State University, Bridgewater, MA
| | - Alice Cronin-Golomb
- From the Department of Psychological and Brain Sciences (J.C., S.N., A.O.C., A.C.-G.), Boston University, Boston; Department of Neurology (J.C., R.F., C.H.G.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; and Department of Psychology (S.N.), Bridgewater State University, Bridgewater, MA.
| |
Collapse
|
16
|
Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiol Behav 2016; 165:291-9. [DOI: 10.1016/j.physbeh.2016.08.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
|
17
|
Sleezer BJ, Hayden BY. Differential Contributions of Ventral and Dorsal Striatum to Early and Late Phases of Cognitive Set Reconfiguration. J Cogn Neurosci 2016; 28:1849-1864. [PMID: 27417204 DOI: 10.1162/jocn_a_01011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Flexible decision-making, a defining feature of human cognition, is typically thought of as a canonical pFC function. Recent work suggests that the striatum may participate as well; however, its role in this process is not well understood. We recorded activity of neurons in both the ventral (VS) and dorsal (DS) striatum while rhesus macaques performed a version of the Wisconsin Card Sorting Test, a classic test of flexibility. Our version of the task involved a trial-and-error phase before monkeys could identify the correct rule on each block. We observed changes in firing rate in both regions when monkeys switched rules. Specifically, VS neurons demonstrated switch-related activity early in the trial-and-error period when the rule needed to be updated, and a portion of these neurons signaled information about the switch context (i.e., whether the switch was intradimensional or extradimensional). Neurons in both VS and DS demonstrated switch-related activity at the end of the trial-and-error period, immediately before the rule was fully established and maintained, but these signals did not carry any information about switch context. We also observed associative learning signals (i.e., specific responses to options associated with rewards in the presentation period before choice) that followed the same pattern as switch signals (early in VS, later in DS). Taken together, these results endorse the idea that the striatum participates directly in cognitive set reconfiguration and suggest that single neurons in the striatum may contribute to a functional handoff from the VS to the DS during reconfiguration processes.
Collapse
|
18
|
Reynolds GO, Otto MW, Ellis TD, Cronin-Golomb A. The Therapeutic Potential of Exercise to Improve Mood, Cognition, and Sleep in Parkinson's Disease. Mov Disord 2016; 31:23-38. [PMID: 26715466 PMCID: PMC4724300 DOI: 10.1002/mds.26484] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023] Open
Abstract
In addition to the classic motor symptoms, Parkinson's disease (PD) is associated with a variety of nonmotor symptoms that significantly reduce quality of life, even in the early stages of the disease. There is an urgent need to develop evidence-based treatments for these symptoms, which include mood disturbances, cognitive dysfunction, and sleep disruption. We focus here on exercise interventions, which have been used to improve mood, cognition, and sleep in healthy older adults and clinical populations, but to date have primarily targeted motor symptoms in PD. We synthesize the existing literature on the benefits of aerobic exercise and strength training on mood, sleep, and cognition as demonstrated in healthy older adults and adults with PD, and suggest that these types of exercise offer a feasible and promising adjunct treatment for mood, cognition, and sleep difficulties in PD. Across stages of the disease, exercise interventions represent a treatment strategy with the unique ability to improve a range of nonmotor symptoms while also alleviating the classic motor symptoms of the disease. Future research in PD should include nonmotor outcomes in exercise trials with the goal of developing evidence-based exercise interventions as a safe, broad-spectrum treatment approach to improve mood, cognition, and sleep for individuals with PD.
Collapse
Affiliation(s)
| | - Michael W. Otto
- Boston University, Department of Psychological and Brain Sciences
| | - Terry D. Ellis
- Boston University College of Health and Rehabilitation Sciences: Sargent College, Department of Physical Therapy & Athletic Training and Center for Neurorehabilitation
| | | |
Collapse
|
19
|
Braida D, Ponzoni L, Matteoli M, Sala M M. Different attentional abilities among inbred mice strains using virtual object recognition task (VORT): SNAP25⁺/⁻ mice as a model of attentional deficit. Behav Brain Res 2015; 296:393-400. [PMID: 26300453 DOI: 10.1016/j.bbr.2015.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, Alzheimer's and Parkinson's disease are characterized by attentional deficits. In the present study we first applied the virtual object recognition test (VORT), where 3D objects were replaced with highly discriminated geometrical shapes and presented on two 3.5-inch widescreen displays, in different inbred mice strains (C57BL/6N, DBA/2J, BALB/cJ), in comparison with the standard object recognition test (NOR). In both NOR and VORT, there was a progressive decay of performance in terms of reduced discrimination index from 5 min to 72 h of inter-trial delay in all strains. However, BALB/cJ inbred mice showed a better long lasting performance than C57BL/6N and DBA/2J, when tested in NOR. In VORT, BALB/cJ showed the best performance. Total exploration time was always higher in BALB/cJ than C57BL/6N and DBA/2J mice. C57BL/6N were less explorative strain than DBA/2J and BALB/cJ mice. When VORT was applied to SNAP-25(+/-) mice, an impairment in both NOR and VORT was shown. However, when moving shapes were applied, these heterozygous mice improved their performance, suggesting that the introduction of motion is a strong cue that makes the task more valuable to study attention deficits. Taken together, these data indicate that VORT provides a useful and rapid tool to identify the attentional deficit in different inbred strains and genetically modified mice, enhancing the value of psychiatric mouse models.
Collapse
Affiliation(s)
- Daniela Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20129 Milan, Italy; Fondazione Don Gnocchi IRCCS, Milan, Italy
| | - Luisa Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20129 Milan, Italy
| | - Michela Matteoli
- CNR-Neuroscience Institute, 20129 Milan, Italy; Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mariaelvina Sala M
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20129 Milan, Italy; CNR-Neuroscience Institute, 20129 Milan, Italy.
| |
Collapse
|
20
|
The neural correlates of spatial and object working memory in elderly and Parkinson's disease subjects. Behav Neurol 2015; 2015:123636. [PMID: 25861157 PMCID: PMC4378329 DOI: 10.1155/2015/123636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/08/2015] [Indexed: 11/18/2022] Open
Abstract
This fMRI study deals with the neural correlates of spatial and objects working memory (SWM and OWM) in elderly subjects (ESs) and idiopathic Parkinson's disease (IPD). Normal aging and IPD can be associated with a WM decline. In IPD population, some studies reported similar SWM and OWM deficits; others reported a greater SWM than OWM impairment. In the present fMRI research, we investigated whether compensated IPD patients and elderly subjects with comparable performance during the execution of SWM and OWM tasks would present differences in WM-related brain activations. We found that the two groups recruited a prevalent left frontoparietal network when performing the SWM task and a bilateral network during OWM task execution. More specifically, the ESs showed bilateral frontal and subcortical activations in SWM, at difference with the IPD patients who showed a strict left lateralized network, consistent with frontostriatal degeneration in IPD. The overall brain activation in the IPD group was more extended as number of voxels with respect to ESs, suggesting underlying compensatory mechanisms. In conclusion, notwithstanding comparable WM performance, the two groups showed consistencies and differences in the WM activated networks. The latter underline the compensatory processes of normal typical and pathological aging.
Collapse
|
21
|
Georgiev D, Jahanshahi M, Dreo J, Čuš A, Pirtošek Z, Repovš G. Dopaminergic medication alters auditory distractor processing in Parkinson's disease. Acta Psychol (Amst) 2015; 156:45-56. [PMID: 25697781 DOI: 10.1016/j.actpsy.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) patients show signs of cognitive impairment, such as executive dysfunction, working memory problems and attentional disturbances, even in the early stages of the disease. Though motor symptoms of the disease are often successfully addressed by dopaminergic medication, it still remains unclear, how dopaminergic therapy affects cognitive function. The main objective of this study was to assess the effect of dopaminergic medication on visual and auditory attentional processing. 14 PD patients and 13 matched healthy controls performed a three-stimulus auditory and visual oddball task while their EEG was recorded. The patients performed the task twice, once on- and once off-medication. While the results showed no significant differences between PD patients and controls, they did reveal a significant increase in P3 amplitude on- vs. off-medication specific to processing of auditory distractors and no other stimuli. These results indicate significant effect of dopaminergic therapy on processing of distracting auditory stimuli. With a lack of between group differences the effect could reflect either 1) improved recruitment of attentional resources to auditory distractors; 2) reduced ability for cognitive inhibition of auditory distractors; 3) increased response to distractor stimuli resulting in impaired cognitive performance; or 4) hindered ability to discriminate between auditory distractors and targets. Further studies are needed to differentiate between these possibilities.
Collapse
|
22
|
Díaz-Santos M, Cao B, Yazdanbakhsh A, Norton DJ, Neargarder S, Cronin-Golomb A. Perceptual, cognitive, and personality rigidity in Parkinson's disease. Neuropsychologia 2015; 69:183-93. [PMID: 25640973 PMCID: PMC4344854 DOI: 10.1016/j.neuropsychologia.2015.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is associated with motor and non-motor rigidity symptoms (e.g., cognitive and personality). The question is raised as to whether rigidity in PD also extends to perception, and if so, whether perceptual, cognitive, and personality rigidities are correlated. Bistable stimuli were presented to 28 non-demented individuals with PD and 26 normal control adults (NC). Necker cube perception and binocular rivalry were examined during passive viewing, and the Necker cube was additionally used for two volitional-control conditions: Hold one percept in front, and Switch between the two percepts. Relative to passive viewing, PD were significantly less able than NC to reduce dominance durations in the Switch condition, indicating perceptual rigidity. Tests of cognitive flexibility and a personality questionnaire were administered to explore the association with perceptual rigidity. Cognitive flexibility was not correlated with perceptual rigidity for either group. Personality (novelty seeking) correlated with dominance durations on Necker passive viewing for PD but not NC. The results indicate the presence in mild-moderate PD of perceptual rigidity and suggest shared neural substrates with novelty seeking, but functional divergence from those supporting cognitive flexibility. The possibility is raised that perceptual rigidity may be a harbinger of cognitive inflexibility later in the disease course.
Collapse
Affiliation(s)
- Mirella Díaz-Santos
- Department of Psychological and Brain Sciences, Boston University, 648 Beacon Street, 2nd floor, Boston, MA 02215, USA.
| | - Bo Cao
- Center for Computational Neuroscience and Neural Technology, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | - Arash Yazdanbakhsh
- Center for Computational Neuroscience and Neural Technology, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | - Daniel J Norton
- Department of Psychological and Brain Sciences, Boston University, 648 Beacon Street, 2nd floor, Boston, MA 02215, USA.
| | - Sandy Neargarder
- Department of Psychological and Brain Sciences, Boston University, 648 Beacon Street, 2nd floor, Boston, MA 02215, USA; Department of Psychology, Hart Hall, Bridgewater State University, Bridgewater, MA 02325, USA.
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, 648 Beacon Street, 2nd floor, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Smulders K, Esselink RA, Bloem BR, Cools R. Freezing of gait in Parkinson's disease is related to impaired motor switching during stepping. Mov Disord 2015; 30:1090-7. [DOI: 10.1002/mds.26133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 11/07/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022] Open
Affiliation(s)
- Katrijn Smulders
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Department of Neurology; 6500 HB Nijmegen The Netherlands
- HAN University of Applied Sciences; Institute for Studies in Sports and Exercise; 6503 GL Nijmegen The Netherlands
| | - Rianne A. Esselink
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Department of Neurology; 6500 HB Nijmegen The Netherlands
| | - Bastiaan R. Bloem
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Department of Neurology; 6500 HB Nijmegen The Netherlands
| | - Roshan Cools
- Radboud University Medical Center; Donders Institute for Brain, Cognition and Behaviour; Department of Psychiatry; 6500 HB Nijmegen The Netherlands
- Radboud University; Donders Institute for Brain, Cognition and Behaviour; Centre for Cognitive Neuroimaging; 6500 HB Nijmegen The Netherlands
| |
Collapse
|
24
|
Gul A, Ahmad H. Displaced aggression predicts switching deficits in people with temporal lobe epilepsy. Epilepsy Behav 2014; 41:109-13. [PMID: 25461199 DOI: 10.1016/j.yebeh.2014.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
This study examined the relationship between task-switching abilities and displaced aggression in people with temporal lobe epilepsy (PWE). Participants (35 PWE and 35 healthy controls) performed emotion and gender classification switching tasks. People with temporal lobe epilepsy showed larger switch costs than controls. This result reflected task-switching deficits in PWE. People with temporal lobe epilepsy reported higher anger rumination, revenge planning, and behavioral displaced aggression compared with controls. Displaced aggression was a significant predictor of the task switch costs. It is suggested that displaced aggression is a significant marker of task-switching deficits.
Collapse
Affiliation(s)
- Amara Gul
- Department of Applied Psychology, The Islamia University of Bahawalpur, Pakistan.
| | - Hira Ahmad
- Department of Applied Psychology, The Islamia University of Bahawalpur, Pakistan.
| |
Collapse
|
25
|
Gul A, Khan K. Emotion regulation strategies can predict task-switching abilities in euthymic bipolar patients. Front Hum Neurosci 2014; 8:847. [PMID: 25386129 PMCID: PMC4209808 DOI: 10.3389/fnhum.2014.00847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/02/2014] [Indexed: 11/13/2022] Open
Abstract
This study examined task-switching abilities and emotion regulation strategies in euthymic bipolar patients (EBP). Forty EBP and 40 healthy individuals performed face categorization tasks where they switched between emotion and non-emotion (i.e., gender) features among faces and completed emotion regulation questionnaire (Gross and John, 2003). Subject groups showed substantial differences in task-switching abilities and emotion regulation strategies: (1) there was a dissociation between emotion and gender classification in EBP. The switch cost was larger [i.e., higher reaction times (RTs) on switch as compared to no-switch trials] for gender categorization as compared to the emotion categorization task. In contrast, such asymmetries were absent among healthy participants. The differential pattern of task switching reflected functional disturbances in frontotemporal neural system and an attentional bias to emotion features of the faces in EBP. This suggests that when a euthymic bipolar patient is preoccupied with emotion recognition, an instruction to perform gender categorization results in greater cost on RTs. (2) In contrast to healthy individuals, EBP reported more frequent use of emotion suppression and lesser use of cognitive reappraisal as emotion regulation strategy. (3) Emotion regulation was found to be a significant predictor of task-switching abilities. It is argued that task switching deficits rely on maladaptive emotion regulation strategies in EBP specifically when tasks of emotional significance are involved.
Collapse
Affiliation(s)
- Amara Gul
- Department of Applied Psychology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kamran Khan
- Department of Applied Psychology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
26
|
Oh A, Vidal J, Taylor MJ, Pang EW. Neuromagnetic correlates of intra- and extra-dimensional set-shifting. Brain Cogn 2014; 86:90-7. [DOI: 10.1016/j.bandc.2014.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 01/22/2014] [Accepted: 02/12/2014] [Indexed: 11/28/2022]
|
27
|
Dickson PE, Calton MA, Mittleman G. Performance of C57BL/6J and DBA/2J mice on a touchscreen-based attentional set-shifting task. Behav Brain Res 2013; 261:158-70. [PMID: 24361287 DOI: 10.1016/j.bbr.2013.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 11/24/2022]
Abstract
Attentional set-shifting deficits are a feature of multiple psychiatric disorders. However, the neurogenetic mechanisms underlying these deficits are largely unknown. In the present study we assessed performance of C57BL/6J and DBA/2J mice on a touchscreen-based attentional set-shifting task similar to those used with humans and non-human primates. In experiment 1, mice discriminated simple white lines followed by compound stimuli composed of white lines superimposed on grey shapes. Although performance of the two strains was largely equivalent during early stages of the task, DBA/2J mice committed significantly more errors compared to C57BL/6J mice on the extra-dimensional shift. Additionally, performance of mice as a group declined across the three compound discrimination reversals. In experiment 2 we assessed salience of the shapes and lines dimensions and determined if dimensional salience, a variable previously shown to affect set-shifting abilities in humans and non-human primates, could be systematically manipulated. Findings from experiment 2 suggested that strain differences during the extra-dimensional shift in experiment 1 were most parsimoniously explained by a consistently impaired ability in DBA/2J mice to discriminate a subset of the compound stimuli. Additionally, unlike maze-based tasks, the relative salience of the two dimensions could be manipulated by systematically altering the width of lines exemplars while retaining other potentially-relevant attributes of the compound stimuli. These findings reveal unique and in some cases strain-dependent phenomena related to discriminations of simple and multidimensional visual stimuli which may facilitate future efforts to identify and fully characterize visual discrimination, reversal learning, and attentional set-shifting deficits in mice.
Collapse
Affiliation(s)
- Price E Dickson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States
| | - Michele A Calton
- Department of Psychology, University of Memphis, Memphis, TN 38152, United States
| | - Guy Mittleman
- Department of Psychology, University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
28
|
Leite J, Gonçalves OF, Carvalho S. Facilitative effects of bi-hemispheric tDCS in cognitive deficits of Parkinson disease patients. Med Hypotheses 2013; 82:138-40. [PMID: 24332532 DOI: 10.1016/j.mehy.2013.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily characterized by motor symptoms such as tremor, rigidity, bradykinesia, stiffness, slowness and impaired equilibrium. Although the motor symptoms have been the focus in PD, slight cognitive deficits are commonly found in non-demented and non-depressed PD patients, even in early stages of the disease, which have been linked to the subsequent development of pathological dementia. Thus, strongly reducing the quality of life (QoL). Both levodopa therapy and deep brain stimulation (DBS) have yield controversial results concerning the cognitive symptoms amelioration in PD patients. That does not seems to be the case with transcranial direct current stimulation (tDCS), although better stimulation parameters are needed. Therefore we hypothesize that simultaneously delivering cathodal tDCS (or ctDCS), over the right prefrontal cortex delivered with anodal tDCS (or atDCS) to left prefrontal cortex could be potentially beneficial for PD patients, either by mechanisms of homeostatic plasticity and by increases in the extracellular dopamine levels over the striatum.
Collapse
Affiliation(s)
- Jorge Leite
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal.
| | - Oscar F Gonçalves
- Department of Counseling and Applied Educational Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Sandra Carvalho
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| |
Collapse
|
29
|
Kadowaki Horita T, Kobayashi M, Mori A, Jenner P, Kanda T. Effects of the adenosine A2A antagonist istradefylline on cognitive performance in rats with a 6-OHDA lesion in prefrontal cortex. Psychopharmacology (Berl) 2013; 230:345-52. [PMID: 23748382 DOI: 10.1007/s00213-013-3158-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
RATIONALE Altered cognitive function is a common feature of both the early and later stages of Parkinson's disease (PD) that involves alterations in cortical dopamine content. Adenosine A2A antagonists, such as istradefylline, improve motor function in PD, but their effect on cognitive impairment has not been determined. OBJECTIVE The present study investigated whether impairment of working memory due to the loss of dopaminergic input into the prefrontal cortex (PFC) is reversed by administration of istradefylline. We also evaluated whether A2A antagonist administration modulates dopamine levels in the PFC. METHODS Bilateral lesions of the dopaminergic input to the PFC were produced in rats using 6-hydroxydopamine (6-OHDA). Cognitive performance was evaluated using an object recognition task and delayed alternation task. The effects of istradefylline, donepezil and methamphetamine on cognitive performance were examined. In addition, the effect of istradefylline on extracellular dopamine levels in the PFC was studied. RESULTS PFC dopamine levels and cognitive performance were significantly reduced by 6-OHDA lesioning. Istradefylline, donepezil and methamphetamine improved cognitive performance of PFC-lesioned rats. Istradefylline increased dopamine levels in the PFC in both normal and PFC-lesioned rats. CONCLUSIONS PFC dopaminergic input plays an important role in working memory performance. Blockade of A2A receptors using istradefylline reverses the changes in cognitive function, and this may be due to an increase in PFC dopamine content. Adenosine A2A receptor antagonists not only improve motor performance in PD but may also lead to improved cognition.
Collapse
Affiliation(s)
- Takako Kadowaki Horita
- Pharmacological Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd, 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | | | | | | | | |
Collapse
|
30
|
Parker KL, Lamichhane D, Caetano MS, Narayanan NS. Executive dysfunction in Parkinson's disease and timing deficits. Front Integr Neurosci 2013; 7:75. [PMID: 24198770 PMCID: PMC3813949 DOI: 10.3389/fnint.2013.00075] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/14/2013] [Indexed: 11/13/2022] Open
Abstract
Patients with Parkinson’s disease (PD) have deficits in perceptual timing, or the perception and estimation of time. PD patients can also have cognitive symptoms, including deficits in executive functions such as working memory, planning, and visuospatial attention. Here, we discuss how PD-related cognitive symptoms contribute to timing deficits. Timing is influenced by signaling of the neurotransmitter dopamine in the striatum. Timing also involves the frontal cortex, which is dysfunctional in PD. Frontal cortex impairments in PD may influence memory subsystems as well as decision processes during timing tasks. These data suggest that timing may be a type of executive function. As such, timing can be used to study the neural circuitry of cognitive symptoms of PD as they can be studied in animal models. Performance of timing tasks also maybe a useful clinical biomarker of frontal as well as striatal dysfunction in PD.
Collapse
Affiliation(s)
- Krystal L Parker
- Department of Neurology, University of Iowa Hospitals and Clinics Iowa City, IA, USA
| | | | | | | |
Collapse
|
31
|
Ellfolk U, Joutsa J, Rinne JO, Parkkola R, Jokinen P, Karrasch M. Striatal volume is related to phonemic verbal fluency but not to semantic or alternating verbal fluency in early Parkinson's disease. J Neural Transm (Vienna) 2013; 121:33-40. [PMID: 23913130 PMCID: PMC3889690 DOI: 10.1007/s00702-013-1073-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
Verbal fluency impairments are frequent in Parkinson’s disease (PD) and they may be present already at early stages. Semantic fluency impairment is associated with Parkinson’s disease dementia and temporal, frontal and cerebellar cortical changes. Few studies have addressed cerebral structural correlates of different verbal fluency tasks in early stage PD. We therefore studied gray matter volumes of T1-weighted MRI images using voxel-based morphometry in relation to semantic, phonemic, and alternating verbal fluency in younger (mean age <65 years), early stage (mean disease duration <3 years), non-demented PD patients (n = 28) and healthy controls (n = 27). We found a significant association between worse phonemic fluency and smaller striatal, namely right caudate gray matter volume in the PD group only (family-wise error corrected p = 0.007). Reduced semantic fluency was associated with smaller gray matter volumes in left parietal cortex (p = 0.037) and at trend level with smaller bilateral cerebellum gray matter volume across groups (p = 0.062), but not in the separate PD or control groups. There were no significant relationships between alternating fluency and gray matter volumes in the whole sample or in the groups separately. The fact that phonemic fluency, but not semantic or alternating fluency, was associated with caudate gray matter volume at early stage PD suggests that different fluency tasks rely on different neural substrates, and that language networks supporting semantic search and verbal-semantic switching are unrelated to brain gray matter volume at early disease stages in PD.
Collapse
Affiliation(s)
- Ulla Ellfolk
- Department of Psychology and Logopedics, Abo Akademi University, 20500, Turku, Finland,
| | | | | | | | | | | |
Collapse
|
32
|
Narayanan NS, Rodnitzky RL, Uc EY. Prefrontal dopamine signaling and cognitive symptoms of Parkinson's disease. Rev Neurosci 2013; 24:267-78. [PMID: 23729617 PMCID: PMC3836593 DOI: 10.1515/revneuro-2013-0004] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/09/2013] [Indexed: 11/15/2022]
Abstract
Cognitive dysfunction is a common symptom of Parkinson's disease (PD) that causes significant morbidity and mortality. The severity of these symptoms ranges from minor executive symptoms to frank dementia involving multiple domains. In the present review, we will concentrate on the aspects of cognitive impairment associated with prefrontal dopaminergic dysfunction, seen in non-demented patients with PD. These symptoms include executive dysfunction and disorders of thought, such as hallucinations and psychosis. Such symptoms may go on to predict dementia related to PD, which involves amnestic dysfunction and is typically seen later in the disease. Cognitive symptoms are associated with dysfunction in cholinergic circuits, in addition to the abnormalities in the prefrontal dopaminergic system. These circuits can be carefully studied and evaluated in PD, and could be leveraged to treat difficult clinical problems related to cognitive symptoms of PD.
Collapse
Affiliation(s)
- Nandakumar S Narayanan
- Department of Neurology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA.
| | | | | |
Collapse
|