1
|
O'Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin. Biochem J 2023; 480:1929-1949. [PMID: 38038973 DOI: 10.1042/bcj20230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
2
|
Rougé S, Genetet S, Leal Denis MF, Dussiot M, Schwarzbaum PJ, Ostuni MA, Mouro-Chanteloup I. Mechanosensitive Pannexin 1 Activity Is Modulated by Stomatin in Human Red Blood Cells. Int J Mol Sci 2022; 23:ijms23169401. [PMID: 36012667 PMCID: PMC9409209 DOI: 10.3390/ijms23169401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pannexin 1 (PANX1) was proposed to drive ATP release from red blood cells (RBCs) in response to stress conditions. Stomatin, a membrane protein regulating mechanosensitive channels, has been proposed to modulate PANX1 activity in non-erythroid cells. To determine whether stomatin modulates PANX1 activity in an erythroid context, we have (i) assessed the in situ stomatin-PANX1 interaction in RBCs, (ii) measured PANX1-stimulated activity in RBCs expressing stomatin or from OverHydrated Hereditary Stomatocytosis (OHSt) patients lacking stomatin, and in erythroid K562 cells invalidated for stomatin. Proximity Ligation Assay coupled with flow imaging shows 27.09% and 6.13% positive events in control and OHSt RBCs, respectively. The uptake of dyes 5(6)-Carboxyfluorescein (CF) and TO-PRO-3 was used to evaluate PANX1 activity. RBC permeability for CF is 34% and 11.8% in control and OHSt RBCs, respectively. PANX1 permeability for TO-PRO-3 is 35.72% and 18.42% in K562 stom+ and stom− clones, respectively. These results suggest an interaction between PANX1 and stomatin in human RBCs and show a significant defect in PANX1 activity in the absence of stomatin. Based on these results, we propose that stomatin plays a major role in opening the PANX1 pore by being involved in a caspase-independent lifting of autoinhibition.
Collapse
Affiliation(s)
- Sarah Rougé
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Sandrine Genetet
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Maria Florencia Leal Denis
- Instituto de Química y Fisico-Química Biológicas “Prof. Alejandro C. Paladini”, UBA, CONICET, Facultad de Farmacia y Bioquímica, 1113 Buenos Aires, Argentina
| | - Michael Dussiot
- Université Paris Cité, INSERM U1163, IMAGINE, F-75015 Paris, France
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas “Prof. Alejandro C. Paladini”, UBA, CONICET, Facultad de Farmacia y Bioquímica, 1113 Buenos Aires, Argentina
| | - Mariano Anibal Ostuni
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Isabelle Mouro-Chanteloup
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
- Correspondence:
| |
Collapse
|
3
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
4
|
Nielsen BS, Toft-Bertelsen TL, Lolansen SD, Anderson CL, Nielsen MS, Thompson RJ, MacAulay N. Pannexin 1 activation and inhibition is permeant-selective. J Physiol 2020; 598:361-379. [PMID: 31698505 DOI: 10.1113/jp278759] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The large-pore channel pannexin 1 (Panx1) is expressed in many cell types and can open upon different, yet not fully established, stimuli. Panx1 permeability is often inferred from channel permeability to fluorescent dyes, but it is currently unknown whether dye permeability translates to permeability to other molecules. Cell shrinkage and C-terminal cleavage led to a Panx1 open-state with increased permeability to atomic ions (current), but did not alter ethidium uptake. Panx1 inhibitors affected Panx1-mediated ion conduction differently from ethidium permeability, and inhibitor efficiency towards a given molecule therefore cannot be extrapolated to its effects on the permeability of another. We conclude that ethidium permeability does not reflect equal permeation of other molecules and thus is no measure of general Panx1 activity. ABSTRACT Pannexin 1 (Panx1) is a large-pore membrane channel connecting the extracellular milieu with the cell interior. While several activation regimes activate Panx1 in a variety of cell types, the selective permeability of an open Panx1 channel remains unresolved: does a given activation paradigm increase Panx1's permeability towards all permeants equally and does fluorescent dye flux serve as a proxy for biological permeation through an open channel? To explore permeant-selectivity of Panx1 activation and inhibition, we employed Panx1-expressing Xenopus laevis oocytes and HEK293T cells. We report that different mechanisms of activation of Panx1 differentially affected ethidium and atomic ion permeation. Most notably, C-terminal truncation or cell shrinkage elevated Panx1-mediated ion conductance, but had no effect on ethidium permeability. In contrast, extracellular pH changes predominantly affected ethidium permeability but not ionic conductance. High [K+ ]o did not increase the flux of either of the two permeants. Once open, Panx1 demonstrated preference for anionic permeants, such as Cl- , lactate and glutamate, while not supporting osmotic water flow. Panx1 inhibitors displayed enhanced potency towards Panx1-mediated currents compared to that of ethidium uptake. We conclude that activation or inhibition of Panx1 display permeant-selectivity and that permeation of ethidium does not necessarily reflect an equal permeation of smaller biological molecules and atomic ions.
Collapse
Affiliation(s)
- Brian Skriver Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Lisberg Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Diana Lolansen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Morten Schak Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Structure of Vibrio FliL, a New Stomatin-like Protein That Assists the Bacterial Flagellar Motor Function. mBio 2019; 10:mBio.00292-19. [PMID: 30890608 PMCID: PMC6426602 DOI: 10.1128/mbio.00292-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Some flagellated bacteria regulate motor torque in response to the external load change. This behavior is critical for survival, but the mechanism has remained unknown. Here, we focused on a key protein, FliL of Vibrio alginolyticus, and solved the crystal structure of its periplasmic region (FliLPeri). FliLPeri reveals striking structural similarity to a conserved domain of stomatin, which is involved in ion channel regulation in some organisms, including mammals. FliLPeri forms a ring with an inner diameter that is comparable in size to the stator unit. The mutational analyses suggested that the presence of the ring-like assembly of FliL around the stator unit enhances the surface swarming of Vibrio cells. Our study data also imply that the structural element for the ion channel regulation is conserved from bacteria to mammals. Many motile bacteria swim or swarm using a filamentous rotating organelle, the flagellum. FliL, a component protein of the flagellar motor, is known to enhance the motor performance under high-load conditions in some bacteria. Here we determined the structure of the periplasmic region of FliL (FliLPeri) of the polar flagellum of Vibrio alginolyticus. FliLPeri shows a remarkable structural similarity to the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain of stomatin family proteins, some of which are involved in modulation of ion channel activities in various organisms. FliLPeri forms a ring assembly in the crystal with an inner diameter of around 8 nm, which is comparable to the size of the stator unit. Mutational analyses suggest that the FliL ring forms a complex with the stator unit and that the length of the periplasmic linkers of FliL and the stator B-subunit is essential for the complex formation. We propose a model of the FliL-stator complex to discuss how Vibrio FliL modulates stator function in the bacterial flagellar motor under conditions of high viscosity.
Collapse
|
6
|
Cure K, Thomas L, Hobbs JPA, Fairclough DV, Kennington WJ. Genomic signatures of local adaptation reveal source-sink dynamics in a high gene flow fish species. Sci Rep 2017; 7:8618. [PMID: 28819230 PMCID: PMC5561064 DOI: 10.1038/s41598-017-09224-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 07/25/2017] [Indexed: 11/21/2022] Open
Abstract
Understanding source-sink dynamics is important for conservation management, particularly when climatic events alter species’ distributions. Following a 2011 ‘marine heatwave’ in Western Australia, we observed high recruitment of the endemic fisheries target species Choerodon rubescens, towards the cooler (southern) end of its distribution. Here, we use a genome wide set of 14 559 single-nucleotide polymorphisms (SNPs) to identify the likely source population for this recruitment event. Most loci (76%) showed low genetic divergence across the species’ range, indicating high levels of gene flow and confirming previous findings using neutral microsatellite markers. However, a small proportion of loci showed strong patterns of differentiation and exhibited patterns of population structure consistent with local adaptation. Clustering analyses based on these outlier loci indicated that recruits at the southern end of C. rubescens’ range originated 400 km to the north, at the centre of the species’ range, where average temperatures are up to 3 °C warmer. Survival of these recruits may be low because they carry alleles adapted to an environment different to the one they now reside in, but their survival is key to establishing locally adapted populations at and beyond the range edge as water temperatures increase with climate change.
Collapse
Affiliation(s)
- Katherine Cure
- UWA Oceans Institute & School of Plant Biology, The University of Western Australia, Crawley, 6009, WA, Australia. .,Australian Institute of Marine Science, Crawley, 6009, WA, Australia.
| | - Luke Thomas
- UWA Oceans Institute & School of Plant Biology, The University of Western Australia, Crawley, 6009, WA, Australia.,Hopkins Marine Station, Stanford University, California, 93950, USA
| | - Jean-Paul A Hobbs
- Department of Environment and Agriculture, Curtin University, Bentley, 6102, WA, Australia
| | - David V Fairclough
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, P.O. Box 20, North Beach, 6920, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, 6009, WA, Australia
| |
Collapse
|
7
|
Structure-function analysis of human stomatin: A mutation study. PLoS One 2017; 12:e0178646. [PMID: 28575093 PMCID: PMC5456319 DOI: 10.1371/journal.pone.0178646] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Stomatin is an ancient, widely expressed, oligomeric, monotopic membrane protein that is associated with cholesterol-rich membranes/lipid rafts. It is part of the SPFH superfamily including stomatin-like proteins, prohibitins, flotillin/reggie proteins, bacterial HflK/C proteins and erlins. Biochemical features such as palmitoylation, oligomerization, and hydrophobic “hairpin” structure show similarity to caveolins and other integral scaffolding proteins. Recent structure analyses of the conserved PHB/SPFH domain revealed amino acid residues and subdomains that appear essential for the structure and function of stomatin. To test the significance of these residues and domains, we exchanged or deleted them, expressed respective GFP-tagged mutants, and studied their subcellular localization, molecular dynamics and biochemical properties. We show that stomatin is a cholesterol binding protein and that at least two domains are important for the association with cholesterol-rich membranes. The conserved, prominent coiled-coil domain is necessary for oligomerization, while association with cholesterol-rich membranes is also involved in oligomer formation. FRAP analyses indicate that the C-terminus is the dominant entity for lateral mobility and binding site for the cortical actin cytoskeleton.
Collapse
|
8
|
Genetet S, Desrames A, Chouali Y, Ripoche P, Lopez C, Mouro-Chanteloup I. Stomatin modulates the activity of the Anion Exchanger 1 (AE1, SLC4A1). Sci Rep 2017; 7:46170. [PMID: 28387307 PMCID: PMC5383999 DOI: 10.1038/srep46170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
Anion Exchanger 1 (AE1) and stomatin are integral proteins of the red blood cell (RBC) membrane. Erythroid and kidney AE1 play a major role in HCO3- and Cl- exchange. Stomatins down-regulate the activity of many channels and transporters. Biochemical studies suggested an interaction of erythroid AE1 with stomatin. Moreover, we previously reported normal AE1 expression level in stomatin-deficient RBCs. Here, the ability of stomatin to modulate AE1-dependent Cl-/HCO3- exchange was evaluated using stopped-flow methods. In HEK293 cells expressing recombinant AE1 and stomatin, the permeabilities associated with AE1 activity were 30% higher in cells overexpressing stomatin, compared to cells with only endogenous stomatin expression. Ghosts from stomatin-deficient RBCs and controls were resealed in the presence of pH- or chloride-sensitive fluorescent probes and submitted to inward HCO3- and outward Cl- gradients. From alkalinization rate constants, we deduced a 47% decreased permeability to HCO3- for stomatin-deficient patients. Similarly, kinetics of Cl- efflux, followed by the probe dequenching, revealed a significant 42% decrease in patients. In situ Proximity Ligation Assays confirmed an interaction of AE1 with stomatin, in both HEK recombinant cells and RBCs. Here we show that stomatin modulates the transport activity of AE1 through a direct protein-protein interaction.
Collapse
Affiliation(s)
- Sandrine Genetet
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Alexandra Desrames
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Youcef Chouali
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Pierre Ripoche
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Claude Lopez
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Isabelle Mouro-Chanteloup
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| |
Collapse
|
9
|
Li L, He L, Wu D, Chen L, Jiang Z. Pannexin-1 channels and their emerging functions in cardiovascular diseases. Acta Biochim Biophys Sin (Shanghai) 2015; 47:391-6. [PMID: 25921414 DOI: 10.1093/abbs/gmv028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/04/2015] [Indexed: 11/15/2022] Open
Abstract
Pannexin-1, Pannexin-2, and Pannexin-3 are three members of the Pannexin family of channel-forming glycoprotein. Their primary function is defined by their ability to form single-membrane channels. Pannexin-1 ubiquitously exists in many cells and organs throughout the body and is specially distributed in the circulatory system, while the expressions of Pannexin-2 and Pannexin-3 are mostly restricted to organs and tissues. Pannexin-1 oligomers have been shown to be functional single membrane channels that connect intracellular and extracellular compartments and are not intercellular channels in appositional membranes. The physiological functions of Pannexin-1 are to link to the adenosine triphosphate efflux that acts as a paracrine signal, and regulate cellular inflammasomes in a variety of cell types under physiological and pathophysiological conditions. However, there are still many functions to be explored. This review summarizes recent reports and discusses the role of Pannexin-1 in cardiovascular diseases, including ischemia, arrhythmia, cardiac fibrosis, and hypertension. Pannexin-1 has been suggested as an exciting, clinically relevant target in cardiovascular diseases.
Collapse
Affiliation(s)
- Lanfang Li
- Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Di Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Zhisheng Jiang
- Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
10
|
Casas M, Buvinic S, Jaimovich E. ATP signaling in skeletal muscle: from fiber plasticity to regulation of metabolism. Exerc Sport Sci Rev 2014; 42:110-6. [PMID: 24949845 DOI: 10.1249/jes.0000000000000017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetanic electrical stimulation releases adenosine triphosphate (ATP) from muscle fibers through pannexin-1 channels in a frequency-dependent manner; extracellular ATP activates signals that ultimately regulate gene expression and is able to increase glucose transport through activation of P2Y receptors, phosphatidylinositol 3-kinase, Akt, and AS160. We hypothesize that this mechanism is an important link between exercise and the regulation of muscle fiber plasticity and metabolism.
Collapse
Affiliation(s)
- Mariana Casas
- 1Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile; and 2Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
11
|
Abstract
The pannexins (Panxs) are a family of chordate proteins homologous to the invertebrate gap junction forming proteins named innexins. Three distinct Panx paralogs (Panx1, Panx2, and Panx3) are shared among the major vertebrate phyla, but they appear to have suppressed (or even lost) their ability to directly couple adjacent cells. Connecting the intracellular and extracellular compartments is now widely accepted as Panx's primary function, facilitating the passive movement of ions and small molecules along electrochemical gradients. The tissue distribution of the Panxs ranges from pervasive to very restricted, depending on the paralog, and are often cell type-specific and/or developmentally regulated within any given tissue. In recent years, Panxs have been implicated in an assortment of physiological and pathophysiological processes, particularly with respect to ATP signaling and inflammation, and they are now considered to be a major player in extracellular purinergic communication. The following is a comprehensive review of the Panx literature, exploring the historical events leading up to their discovery, outlining our current understanding of their biochemistry, and describing the importance of these proteins in health and disease.
Collapse
Affiliation(s)
- Stephen R Bond
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA ; Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
12
|
Wicki-Stordeur LE, Swayne LA. The emerging Pannexin 1 signalome: a new nexus revealed? Front Cell Neurosci 2014; 7:287. [PMID: 24409119 PMCID: PMC3884145 DOI: 10.3389/fncel.2013.00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022] Open
Abstract
Pannexins (Panxs) are a family of single-membrane, large-pore ion, and metabolite permeable channels. Of the three Panx proteins, Panx1 has been most extensively studied, and has recently emerged as an exciting, clinically relevant target in many physiological and pathophysiological settings. This channel is widely expressed across various cell and tissue types; however its links to precise signaling pathways are largely unknown. Here we review the current literature surrounding presently identified Panx1–protein interactions, a critical first step to unraveling the Panx1 signalome. First we elucidate the reported associations of Panx1 with other ion channels, receptors, and channel signaling complexes. Further, we highlight recently identified Panx1–cytoskeleton interactions. Finally, we discuss the implications of these protein–protein interactions for Panx1 function in various cell and tissue types, and identify key outstanding questions arising from this work.
Collapse
Affiliation(s)
| | - Leigh A Swayne
- Division of Medical Sciences, University of Victoria Victoria, BC, Canada ; Department of Biology, University of Victoria Victoria, BC, Canada ; Department of Biochemistry and Microbiology, University of Victoria Victoria, BC, Canada ; Department of Cellular and Physiological Sciences and Island Medical Program, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
13
|
Kozlenkov A, Lapatsina L, Lewin GR, Smith ESJ. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1. J Physiol 2013; 592:557-69. [PMID: 24247984 PMCID: PMC3934701 DOI: 10.1113/jphysiol.2013.258657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- Department of Neuroscience, Growth Factor & Regeneration Group, Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, D-13092 Berlin, Germany. or
| | | | | | | |
Collapse
|
14
|
Liu P, Chen B, Altun ZF, Gross MJ, Shan A, Schuman B, Hall DH, Wang ZW. Six innexins contribute to electrical coupling of C. elegans body-wall muscle. PLoS One 2013; 8:e76877. [PMID: 24130800 PMCID: PMC3793928 DOI: 10.1371/journal.pone.0076877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/29/2013] [Indexed: 11/23/2022] Open
Abstract
C. elegans body-wall muscle cells are electrically coupled through gap junctions. Previous studies suggest that UNC-9 is an important, but not the only, innexin mediating the electrical coupling. Here we analyzed junctional current (Ij) for mutants of additional innexins to identify the remaining innexin(s) important to the coupling. The results suggest that a total of six innexins contribute to the coupling, including UNC-9, INX-1, INX-10, INX-11, INX-16, and INX-18. The Ij deficiency in each mutant was rescued completely by expressing the corresponding wild-type innexin specifically in muscle, suggesting that the innexins function cell-autonomously. Comparisons of Ij between various single, double, and triple mutants suggest that the six innexins probably form two distinct populations of gap junctions with one population consisting of UNC-9 and INX-18 and the other consisting of the remaining four innexins. Consistent with their roles in muscle electrical coupling, five of the six innexins showed punctate localization at muscle intercellular junctions when expressed as GFP- or epitope-tagged proteins, and muscle expression was detected for four of them when assessed by expressing GFP under the control of innexin promoters. The results may serve as a solid foundation for further explorations of structural and functional properties of gap junctions in C. elegans body-wall muscle.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Zeynep F. Altun
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maegan J. Gross
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alan Shan
- Undergraduate Summer Research Internship Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Benjamin Schuman
- Undergraduate Summer Research Internship Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice. PLoS One 2013; 8:e71361. [PMID: 23977027 PMCID: PMC3744576 DOI: 10.1371/journal.pone.0071361] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/27/2013] [Indexed: 01/12/2023] Open
Abstract
Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1−/−) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1−/− hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1−/− astrocytes also showed more intracellular Ca2+ signal oscillations mediated by functional connexin 43 hemichannels and P2Y1 receptors. Therefore, Npc1−/− astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.
Collapse
|
16
|
Kim EY, Anderson M, Wilson C, Hagmann H, Benzing T, Dryer SE. NOX2 interacts with podocyte TRPC6 channels and contributes to their activation by diacylglycerol: essential role of podocin in formation of this complex. Am J Physiol Cell Physiol 2013; 305:C960-71. [PMID: 23948707 DOI: 10.1152/ajpcell.00191.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Canonical transient receptor potential-6 (TRPC6) channels have been implicated in the pathophysiology of glomerular diseases. TRPC6 channels are typically activated by diacylglycerol (DAG) during PLC-dependent transduction cascades. TRPC6 channels can also be activated by reactive oxygen species (ROS). We previously showed that podocin is required for DAG analogs to produce robust activation of TRPC6 channels in podocytes. Here we show that endogenous TRPC6 channels in immortalized podocytes reciprocally coimmunoprecipitate with the catalytic subunit of the NADPH oxidase NOX2 (gp91(phox)). The NOX2-TRPC6 interaction was not detected in cells stably expressing a short hairpin RNA targeting podocin, although NOX2 and TRPC6 were present at normal levels. Application of a membrane-permeable DAG analog [1-oleoyl-2-acetyl-sn-glycerol (OAG)] increased generation of ROS in podocytes, but this effect was not detected in podocin knockdown cells. OAG also increased steady-state surface expression of the NOX2 regulatory subunit p47(phox). In whole cell recordings, TRPC6 activation by OAG was reduced in podocytes pretreated with the NOX2 inhibitor apocynin, by the pan-NOX inhibitor diphenylene iodonium, and by tempol, a ROS quencher. Cholesterol depletion and disruption of lipid rafts by methyl-β-cyclodextrin reduced activation of podocyte TRPC6 channels by OAG and also eliminated the NOX2-TRPC6 interaction as assessed by coimmunoprecipitation. These data suggest that active NOX2 assembles with TRPC6 at podocin-organized sterol-rich raft domains and becomes catalytically active in response to DAG. The localized production of ROS contributes to TRPC6 activation by chemical stimuli such as DAG. Podocin appears to be necessary for assembly of the NOX2-TRPC6 complex in lipid rafts.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | | | | | | | | | | |
Collapse
|
17
|
Giaume C, Leybaert L, Naus CC, Sáez JC. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 2013; 4:88. [PMID: 23882216 PMCID: PMC3713369 DOI: 10.3389/fphar.2013.00088] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022] Open
Abstract
Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050 Paris, France ; University Pierre et Marie Curie Paris, France ; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University Paris, France
| | | | | | | |
Collapse
|
18
|
Stomatin interacts with GLUT1/SLC2A1, band 3/SLC4A1, and aquaporin-1 in human erythrocyte membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:956-66. [PMID: 23219802 PMCID: PMC3790964 DOI: 10.1016/j.bbamem.2012.11.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/20/2012] [Accepted: 11/26/2012] [Indexed: 12/12/2022]
Abstract
The widely expressed, homo-oligomeric, lipid raft-associated, monotopic integral membrane protein stomatin and its homologues are known to interact with and modulate various ion channels and transporters. Stomatin is a major protein of the human erythrocyte membrane, where it associates with and modifies the glucose transporter GLUT1; however, previous attempts to purify hetero-oligomeric stomatin complexes for biochemical analysis have failed. Because lateral interactions of membrane proteins may be short-lived and unstable, we have used in situ chemical cross-linking of erythrocyte membranes to fix the stomatin complexes for subsequent purification by immunoaffinity chromatography. To further enrich stomatin, we prepared detergent-resistant membranes either before or after cross-linking. Mass spectrometry of the isolated, high molecular, cross-linked stomatin complexes revealed the major interaction partners as glucose transporter-1 (GLUT1), anion exchanger (band 3), and water channel (aquaporin-1). Moreover, ferroportin-1 (SLC40A1), urea transporter-1 (SLC14A1), nucleoside transporter (SLC29A1), the calcium-pump (Ca-ATPase-4), CD47, and flotillins were identified as stomatin-interacting proteins. These findings are in line with the hypothesis that stomatin plays a role as membrane-bound scaffolding protein modulating transport proteins.
Collapse
|