1
|
Ogawa Y, Nagasaka K, Ishii D, Nagao A, Ikarashi H, Otsuru N, Onishi H. Enhanced flavoprotein autofluorescence imaging in rats using a combination of thin skull window and skull-clearing reagents. Neurosci Lett 2025; 856-858:138239. [PMID: 40250727 DOI: 10.1016/j.neulet.2025.138239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Flavoprotein autofluorescence (FA) imaging is a powerful technique for investigating neural activity in vivo. However, its application in rats is limited by the thickness of the intact skull, which reduces light transmission and signal-to-noise ratio (SNR). In this study, we introduce a novel approach that integrates a thin skull window (TSW) with a skull-clearing reagent (CTSW) to enhance FA imaging in rats. The FA signals evoked by somatosensory stimulation were recorded under both TSW and CTSW conditions. The results demonstrate that CTSW significantly improved the SNR of FA signals compared to TSW alone, enabling more precise detection of neural activity. Notably, the enhanced signal clarity facilitated robust imaging in the secondary motor cortex (M2), a region where activity is barely detectable using conventional TSW. By better preserving intracranial physiological conditions than craniotomy, CTSW minimizes postoperative complications and supports longitudinal imaging. Furthermore, this technique may be applicable to other optical imaging modalities, including calcium and vascular imaging. The ability to enhance cortical signal detection while maintaining a minimally invasive preparation positions CTSW as a promising tool for functional mapping and long-term studies in behaving rats.
Collapse
Affiliation(s)
- Yuto Ogawa
- Graduate School, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan.
| | - Daisuke Ishii
- Department of Occupational Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Ayane Nagao
- Graduate School, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| | - Hitomi Ikarashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| |
Collapse
|
2
|
Anesthetic modulations dissociate neuroelectric characteristics between sensory-evoked and spontaneous activities across bilateral rat somatosensory cortical laminae. Sci Rep 2022; 12:11661. [PMID: 35804171 PMCID: PMC9270342 DOI: 10.1038/s41598-022-13759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Spontaneous neural activity has been widely adopted to construct functional connectivity (FC) amongst distant brain regions. Although informative, the functional role and signaling mechanism of the resting state FC are not intuitive as those in stimulus/task-evoked activity. In order to bridge the gap, we investigated anesthetic modulation of both resting-state and sensory-evoked activities. We used two well-studied GABAergic anesthetics of varying dose (isoflurane: 0.5–2.0% and α-chloralose: 30 and 60 mg/kg∙h) and recorded changes in electrophysiology using a pair of laminar electrode arrays that encompass the entire depth of the bilateral somatosensory cortices (S1fl) in rats. Specifically, the study focused to describe how varying anesthesia conditions affect the resting state activities and resultant FC between bilateral hemispheres in comparison to those obtained by evoked responses. As results, isoflurane decreased the amplitude of evoked responses in a dose-dependent manner mostly due to the habituation of repetitive responses. However, α-chloralose rather intensified the amplitude without exhibiting habituation. No such diverging trend was observed for the spontaneous activity, in which both anesthetics increased the signal power. For α-chloralose, overall FC was similar to that obtained with the lowest dose of isoflurane at 0.5% while higher doses of isoflurane displayed increased FC. Interestingly, only α-chloralose elicited relatively much greater increases in the ipsi-stimulus evoked response (i.e., in S1fl ipsilateral to the stimulated forelimb) than those associated with the contra-stimulus response, suggesting enhanced neuronal excitability. Taken together, the findings demonstrate modulation of the FC profiles by anesthesia is highly non-linear, possibly with a distinct underlying mechanism that affects either resting state or evoked activities differently. Further, the current study warrants thorough investigation of the basal neuronal states prior to the interpretation of resting state FC and evoked activities for accurate understanding of neural signal processing and circuitry.
Collapse
|
3
|
Moncion C, Balachandar L, Venkatakrishnan SB, Volakis JL, Riera Diaz J. Multichannel Wireless Neurosensing System for battery-free monitoring of neuronal activity. Biosens Bioelectron 2022; 213:114455. [PMID: 35738215 DOI: 10.1016/j.bios.2022.114455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Electrical activity recordings are critical for evaluating and understanding brain function. We present a novel wireless, implantable, and battery-free device, namely the Wireless Neurosensing System (WiNS), and for the first time, we evaluate multichannel recording capabilities in vivo. For a preliminary evaluation, we performed a benchtop experiment with emulated sinusoidal signals of varying amplitude and frequency, representative of neuronal activity. We later performed and analyzed electrocortical recordings in rats of evoked somatosensory activity in response to three paradigms: hind/fore limb and whisker stimulation. Wired recordings were used for comparison and validation of WiNS. We found that through the channel multiplexing element of WiNS, it is possible to perform multichannel recordings with a maximum sampling rate of ∼10 kHz for a total of eight channels. This sampling rate is appropriate for monitoring the full range of neuronal signals of interest, from low-frequency population recordings of electrocorticography and local field potentials to high-frequency individual neuronal spike recordings. These in vivo experiments demonstrated that the evoked neuronal activity recorded with WiNS is comparable to that recorded with a wired system under identical circumstances. Analysis of critical parameters for interpreting the somatosensory evoked activity showed no statistically significant difference between the parameters obtained by a wired system versus those obtained using WiNS. Therefore, WiNS can match the performance of more invasive recording systems. WiNS is a groundbreaking technology with potential applications throughout neuroscience as it offers a simple alternative to address the pitfalls of battery-powered neuronal implants.
Collapse
Affiliation(s)
- Carolina Moncion
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States
| | - Lakshmini Balachandar
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States
| | | | - John L Volakis
- Department of Electrical & Computer Engineering, Florida International University, Miami, FL, 33174, United States
| | - Jorge Riera Diaz
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States.
| |
Collapse
|
4
|
Zaforas M, Rosa JM, Alonso-Calviño E, Fernández-López E, Miguel-Quesada C, Oliviero A, Aguilar J. Cortical layer-specific modulation of neuronal activity after sensory deprivation due to spinal cord injury. J Physiol 2021; 599:4643-4669. [PMID: 34418097 PMCID: PMC9292026 DOI: 10.1113/jp281901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
Abstract Cortical areas have the capacity of large‐scale reorganization following sensory deafferentation. However, it remains unclear whether this phenomenon is a unique process that homogeneously affects the entire deprived cortical region or whether it is susceptible to changes depending on neuronal networks across distinct cortical layers. Here, we studied how the local circuitry within each layer of the deafferented cortex forms the basis for neuroplastic changes after immediate thoracic spinal cord injury (SCI) in anaesthetized rats. In vivo electrophysiological recordings from deafferented hindlimb somatosensory cortex showed that SCI induces layer‐specific changes mediating evoked and spontaneous activity. In supragranular layer 2/3, SCI increased gamma oscillations and the ability of these neurons to initiate up‐states during spontaneous activity, suggesting an altered corticocortical network and/or intrinsic properties that may serve to maintain the excitability of the cortical column after deafferentation. On the other hand, SCI enhanced the infragranular layers’ ability to integrate evoked sensory inputs leading to increased and faster neuronal responses. Delayed evoked response onsets were also observed in layer 5/6, suggesting alterations in thalamocortical connectivity. Altogether, our data indicate that SCI immediately modifies the local circuitry within the deafferented cortex allowing supragranular layers to better integrate spontaneous corticocortical information, thus modifying column excitability, and infragranular layers to better integrate evoked sensory inputs to preserve subcortical outputs. These layer‐specific neuronal changes may guide the long‐term alterations in neuronal excitability and plasticity associated with the rearrangements of somatosensory networks and the appearance of central sensory pathologies usually associated with spinal cord injury. Key points Sensory stimulation of forelimb produces cortical evoked responses in the somatosensory hindlimb cortex in a layer‐dependent manner. Spinal cord injury favours the input statistics of corticocortical connections between intact and deafferented cortices. After spinal cord injury supragranular layers exhibit better integration of spontaneous corticocortical information while infragranular layers exhibit better integration of evoked sensory stimulation. Cortical reorganization is a layer‐specific phenomenon.
Collapse
Affiliation(s)
- Marta Zaforas
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain.,FENNSI Group, Hospital Nacional de Parapléjicos - SESCAM, Research Unit, Toledo, 45071, Spain
| | - Juliana M Rosa
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Elena Alonso-Calviño
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Elena Fernández-López
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Claudia Miguel-Quesada
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos - SESCAM, Research Unit, Toledo, 45071, Spain
| | - Juan Aguilar
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| |
Collapse
|
5
|
Nandakumar B, Blumenthal GH, Pauzin FP, Moxon KA. Hindlimb Somatosensory Information Influences Trunk Sensory and Motor Cortices to Support Trunk Stabilization. Cereb Cortex 2021; 31:5165-5187. [PMID: 34165153 DOI: 10.1093/cercor/bhab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury.
Collapse
Affiliation(s)
- Bharadwaj Nandakumar
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | - Gary H Blumenthal
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | | | - Karen A Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA.,Center for Neuroscience, Davis, 95618 CA, USA
| |
Collapse
|
6
|
Bandet MV, Dong B, Winship IR. Distinct patterns of activity in individual cortical neurons and local networks in primary somatosensory cortex of mice evoked by square-wave mechanical limb stimulation. PLoS One 2021; 16:e0236684. [PMID: 33914738 PMCID: PMC8084136 DOI: 10.1371/journal.pone.0236684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
Artificial forms of mechanical limb stimulation are used within multiple fields of study to determine the level of cortical excitability and to map the trajectory of neuronal recovery from cortical damage or disease. Square-wave mechanical or electrical stimuli are often used in these studies, but a characterization of sensory-evoked response properties to square-waves with distinct fundamental frequencies but overlapping harmonics has not been performed. To distinguish between somatic stimuli, the primary somatosensory cortex must be able to represent distinct stimuli with unique patterns of activity, even if they have overlapping features. Thus, mechanical square-wave stimulation was used in conjunction with regional and cellular imaging to examine regional and cellular response properties evoked by different frequencies of stimulation. Flavoprotein autofluorescence imaging was used to map the somatosensory cortex of anaesthetized C57BL/6 mice, and in vivo two-photon Ca2+ imaging was used to define patterns of neuronal activation during mechanical square-wave stimulation of the contralateral forelimb or hindlimb at various frequencies (3, 10, 100, 200, and 300 Hz). The data revealed that neurons within the limb associated somatosensory cortex responding to various frequencies of square-wave stimuli exhibit stimulus-specific patterns of activity. Subsets of neurons were found to have sensory-evoked activity that is either primarily responsive to single stimulus frequencies or broadly responsive to multiple frequencies of limb stimulation. High frequency stimuli were shown to elicit more population activity, with a greater percentage of the population responding and greater percentage of cells with high amplitude responses. Stimulus-evoked cell-cell correlations within these neuronal networks varied as a function of frequency of stimulation, such that each stimulus elicited a distinct pattern that was more consistent across multiple trials of the same stimulus compared to trials at different frequencies of stimulation. The variation in cortical response to different square-wave stimuli can thus be represented by the population pattern of supra-threshold Ca2+ transients, the magnitude and temporal properties of the evoked activity, and the structure of the stimulus-evoked correlation between neurons.
Collapse
Affiliation(s)
- Mischa V. Bandet
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Bin Dong
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Hama N, Kawai M, Ito SI, Hirota A. Optical Analysis of Acute Changes after Peripheral Nerve Injury in Spatio-Temporal Pattern of Neural Response to Forelimb Stimulation in Rat Somatosensory Cortex. Neuroscience 2020; 448:85-93. [PMID: 32941935 DOI: 10.1016/j.neuroscience.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 09/05/2020] [Indexed: 11/15/2022]
Abstract
Peripheral nerve injury induces functional reorganization of the central nervous system. The mechanisms underlying this reorganization have been widely studied. Our previous study involving multiple-site optical recording reported that a neural excitatory wave induced by somatic stimulation begins in a small area and propagates in the cortex. In the present study, to examine the possible role of this propagation wave in cortical reorganization, we analyzed the early changes in the spatio-temporal pattern of the sensory-evoked wave immediately, and 30 min, after nerve injury. The response to hypothenar stimulation, innervated by the ulnar nerve and adjoining the median nerve area, persisted after injury to either the ulnar or median nerve. Initially, we assessed changes in the response pattern at the focus. The latency increased after ulnar nerve injury, whereas no change was observed after median nerve injury. Similarly, no change was noted in the duration of the response signal with either nerve injury. Second, changes in the propagation wave pattern were analyzed. Ulnar nerve injury decreased the propagation velocity in the medial direction but the median nerve injury induced no changes. These results indicated that the propagation wave pattern is readily altered, even immediately after nerve injury, and suggest that this immediate change in the spatio-temporal pattern is one of the factors contributing to the cortical reorganization.
Collapse
Affiliation(s)
- Noriyuki Hama
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Minako Kawai
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Shin-Ichi Ito
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Akihiko Hirota
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
8
|
Mc Larney B, Hutter MA, Degtyaruk O, Deán-Ben XL, Razansky D. Monitoring of Stimulus Evoked Murine Somatosensory Cortex Hemodynamic Activity With Volumetric Multi-Spectral Optoacoustic Tomography. Front Neurosci 2020; 14:536. [PMID: 32581686 PMCID: PMC7283916 DOI: 10.3389/fnins.2020.00536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023] Open
Abstract
Sensory stimulation is an attractive paradigm for studying brain activity using various optical-, ultrasound- and MRI-based functional neuroimaging methods. Optoacoustics has been recently suggested as a powerful new tool for scalable mapping of multiple hemodynamic parameters with rich contrast and previously unachievable spatio-temporal resolution. Yet, its utility for studying the processing of peripheral inputs at the whole brain level has so far not been quantified. We employed volumetric multi-spectral optoacoustic tomography (vMSOT) to non-invasively monitor the HbO, HbR, and HbT dynamics across the mouse somatosensory cortex evoked by electrical paw stimuli. We show that elevated contralateral activation is preserved in the HbO map (invisible to MRI) under isoflurane anesthesia. Brain activation is shown to be predominantly confined to the somatosensory cortex, with strongest activation in the hindpaw region of the contralateral sensorimotor cortex. Furthermore, vMSOT detected the presence of an initial dip in the contralateral hindpaw region in the delta HbO channel. Sensorimotor cortical activity was identified over all other regions in HbT and HbO but not in HbR. Pearson’s correlation mapping enabled localizing the response to the sensorimotor cortex further highlighting the ability of vMSOT to bridge over imaging performance deficiencies of other functional neuroimaging modalities.
Collapse
Affiliation(s)
- Benedict Mc Larney
- Faculty of Medicine, Technical University of Munich, Munich, Germany.,Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany
| | | | - Oleksiy Degtyaruk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Daniel Razansky
- Faculty of Medicine, Technical University of Munich, Munich, Germany.,Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
9
|
Suppression of Superficial Microglial Activation by Spinal Cord Stimulation Attenuates Neuropathic Pain Following Sciatic Nerve Injury in Rats. Int J Mol Sci 2020; 21:ijms21072390. [PMID: 32235682 PMCID: PMC7177766 DOI: 10.3390/ijms21072390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022] Open
Abstract
We evaluated the mechanisms underlying the spinal cord stimulation (SCS)-induced analgesic effect on neuropathic pain following spared nerve injury (SNI). On day 3 after SNI, SCS was performed for 6 h by using electrodes paraspinally placed on the L4-S1 spinal cord. The effects of SCS and intraperitoneal minocycline administration on plantar mechanical sensitivity, microglial activation, and neuronal excitability in the L4 dorsal horn were assessed on day 3 after SNI. The somatosensory cortical responses to electrical stimulation of the hind paw on day 3 following SNI were examined by using in vivo optical imaging with a voltage-sensitive dye. On day 3 after SNI, plantar mechanical hypersensitivity and enhanced microglial activation were suppressed by minocycline or SCS, and L4 dorsal horn nociceptive neuronal hyperexcitability was suppressed by SCS. In vivo optical imaging also revealed that electrical stimulation of the hind paw-activated areas in the somatosensory cortex was decreased by SCS. The present findings suggest that SCS could suppress plantar SNI-induced neuropathic pain via inhibition of microglial activation in the L4 dorsal horn, which is involved in spinal neuronal hyperexcitability. SCS is likely to be a potential alternative and complementary medicine therapy to alleviate neuropathic pain following nerve injury.
Collapse
|
10
|
Slow-wave activity homeostasis in the somatosensory cortex after spinal cord injury. Exp Neurol 2019; 322:113035. [DOI: 10.1016/j.expneurol.2019.113035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
|
11
|
Valdés-Hernández PA, Bae J, Song Y, Sumiyoshi A, Aubert-Vázquez E, Riera JJ. Validating Non-invasive EEG Source Imaging Using Optimal Electrode Configurations on a Representative Rat Head Model. Brain Topogr 2019; 32:599-624. [PMID: 27026168 DOI: 10.1007/s10548-016-0484-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/05/2016] [Indexed: 12/20/2022]
Abstract
The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.
Collapse
Affiliation(s)
- Pedro A Valdés-Hernández
- Neuroimaging Department, Cuban Neuroscience Center, Havana, Cuba
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jihye Bae
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Yinchen Song
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Jorge J Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA.
| |
Collapse
|
12
|
Hama N, Kawai M, Ito SI, Hirota A. Optical study of interactions among propagation waves of neural excitation in the rat somatosensory cortex evoked by forelimb and hindlimb stimuli. J Neurophysiol 2018; 119:1934-1946. [DOI: 10.1152/jn.00904.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates in the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different interstimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves, 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus, and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two singly induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs. NEW & NOTEWORTHY Sensory stimulation-induced cortical excitation propagates as a wave and spreads over a wide area of the sensory cortex. To elucidate the characteristics of this relatively unknown phenomenon, we examined the interaction between two individually induced waves in the somatosensory cortex. Either the waves collided or the preceding wave affected the emergence of the following one. Our results indicate that the state of the interaction was strongly influenced by the relative timing of sensory inputs.
Collapse
Affiliation(s)
- Noriyuki Hama
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Minako Kawai
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Shin-Ichi Ito
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Akihiko Hirota
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
13
|
Humanes-Valera D, Foffani G, Alonso-Calviño E, Fernández-López E, Aguilar J. Dual Cortical Plasticity After Spinal Cord Injury. Cereb Cortex 2018; 27:2926-2940. [PMID: 27226441 DOI: 10.1093/cercor/bhw142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During cortical development, plasticity reflects the dynamic equilibrium between increasing and decreasing functional connectivity subserved by synaptic sprouting and pruning. After adult cortical deafferentation, plasticity seems to be dominated by increased functional connectivity, leading to the classical expansive reorganization from the intact to the deafferented cortex. In contrast, here we show a striking "decrease" in the fast cortical responses to high-intensity forepaw stimulation 1-3 months after complete thoracic spinal cord transection, as evident in both local field potentials and intracellular in vivo recordings. Importantly, this decrease in fast cortical responses co-exists with an "increase" in cortical activation over slower post-stimulus timescales, as measured by an increased forepaw-to-hindpaw propagation of stimulus-triggered cortical up-states, as well as by the enhanced slow sustained depolarization evoked by high-frequency forepaw stimuli in the deafferented hindpaw cortex. This coincidence of diminished fast cortical responses and enhanced slow cortical activation offers a dual perspective of adult cortical plasticity after spinal cord injury.
Collapse
Affiliation(s)
- Desire Humanes-Valera
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain.,Department of Systems Neuroscience, Institute of Physiology, Faculty of Medicine, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain.,CINAC, HM Puerta del Sur, Hospitales de Madrid, Móstoles, and CEU-San Pablo University, Madrid, Spain
| | - Elena Alonso-Calviño
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Elena Fernández-López
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| |
Collapse
|
14
|
Abstract
Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination.
Collapse
|
15
|
Increased cortical responses to forepaw stimuli immediately after peripheral deafferentation of hindpaw inputs. Sci Rep 2014; 4:7278. [PMID: 25451619 PMCID: PMC5384276 DOI: 10.1038/srep07278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Both central and peripheral injuries of the nervous system induce dramatic reorganization of the primary somatosensory cortex. We recently showed that spinal cord injuries at thoracic level in anesthetized rats can immediately increase the responses evoked in the forepaw cortex by forepaw stimuli (above the level of the lesion), suggesting that the immediate cortical reorganization after deafferentation can extend across cortical representations of different paws. Here we show that a complete deafferentation of inputs from the hindpaw induced by injury or pharmacological block of the peripheral nerves in anesthetized rats also increases the responses evoked in the forepaw cortex by forepaw stimuli. This increase of cortical responses after peripheral deafferentation is not associated with gross alterations in the state of cortical spontaneous activity. The results of the present study, together with our previous works on spinal cord injury, suggest that the forepaw somatosensory cortex is critically involved in the reorganization that starts immediately after central or peripheral deafferentation of hindpaw inputs.
Collapse
|
16
|
Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: Adaptive versus maladaptive reorganization. Neuroscience 2014; 283:178-201. [DOI: 10.1016/j.neuroscience.2014.06.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022]
|
17
|
Hama N, Ito SI, Hirota A. Optical imaging of the propagation patterns of neural responses in the rat sensory cortex: comparison under two different anesthetic conditions. Neuroscience 2014; 284:125-133. [PMID: 25301752 DOI: 10.1016/j.neuroscience.2014.08.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 11/26/2022]
Abstract
Although many studies have reported the influence of anesthetics on the shape of somatic evoked potential, none has evaluated the influence on the spatio-temporal pattern of neural activity in detail. It is practically impossible to analyze neural activities spatially, using conventional electrophysiological methods. Applying our multiple-site optical recording technique for measuring membrane potential from multiple-sites with a high time resolution, we compared the spatio-temporal pattern of the evoked activity under two different anesthetic conditions induced by urethane or α-chloralose. The somatic cortical response was evoked by electrical stimulation of the hindlimb, and the optical signals were recorded from the rat sensorimotor cortex stained with a voltage-sensitive dye (RH414). The evoked activity emerged in a restricted area and propagated in a concentric manner. The spatio-temporal pattern of the evoked activity was analyzed using isochrone maps. There were significant differences in the latency and propagation velocity of the evoked activity, as well as the full width at half maximum of optical signal between the two anesthetic conditions. Differences in the amplitude and the slope of the rising phase were not significant.
Collapse
Affiliation(s)
- N Hama
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - S-I Ito
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan.
| | - A Hirota
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
18
|
Moxon KA, Oliviero A, Aguilar J, Foffani G. Cortical reorganization after spinal cord injury: always for good? Neuroscience 2014; 283:78-94. [PMID: 24997269 DOI: 10.1016/j.neuroscience.2014.06.056] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/09/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022]
Abstract
Plasticity constitutes the basis of behavioral changes as a result of experience. It refers to neural network shaping and re-shaping at the global level and to synaptic contacts remodeling at the local level, either during learning or memory encoding, or as a result of acute or chronic pathological conditions. 'Plastic' brain reorganization after central nervous system lesions has a pivotal role in the recovery and rehabilitation of sensory and motor dysfunction, but can also be "maladaptive". Moreover, it is clear that brain reorganization is not a "static" phenomenon but rather a very dynamic process. Spinal cord injury immediately initiates a change in brain state and starts cortical reorganization. In the long term, the impact of injury - with or without accompanying therapy - on the brain is a complex balance between supraspinal reorganization and spinal recovery. The degree of cortical reorganization after spinal cord injury is highly variable, and can range from no reorganization (i.e. "silencing") to massive cortical remapping. This variability critically depends on the species, the age of the animal when the injury occurs, the time after the injury has occurred, and the behavioral activity and possible therapy regimes after the injury. We will briefly discuss these dependencies, trying to highlight their translational value. Overall, it is not only necessary to better understand how the brain can reorganize after injury with or without therapy, it is also necessary to clarify when and why brain reorganization can be either "good" or "bad" in terms of its clinical consequences. This information is critical in order to develop and optimize cost-effective therapies to maximize functional recovery while minimizing maladaptive states after spinal cord injury.
Collapse
Affiliation(s)
- K A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - A Oliviero
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - J Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - G Foffani
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
19
|
Yagüe J, Humanes-Valera D, Aguilar J, Foffani G. Functional reorganization of the forepaw cortical representation immediately after thoracic spinal cord hemisection in rats. Exp Neurol 2014; 257:19-24. [DOI: 10.1016/j.expneurol.2014.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
|
20
|
Li B, Liu R, Huang Q, Lu J, Luo Q, Li P. Coherent slow cortical potentials reveal a superior localization of resting-state functional connectivity using voltage-sensitive dye imaging. Neuroimage 2014; 91:162-8. [PMID: 24434676 DOI: 10.1016/j.neuroimage.2014.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023] Open
Abstract
The resting-state functional connectivity (RSFC) of spontaneous hemodynamic fluctuations is widely used to investigate large-scale functional brain networks based on neurovascular mechanisms. However, high-resolution RSFC networks based on neural activity have not been disclosed to explore the neural basis of these spontaneous hemodynamic signals. The present study examines the neural RSFC networks in mice at high spatial resolution using optical imaging with voltage-sensitive dyes (VSDs). Our results show that neural RSFC networks for the slow cortical potentials (0.1-4Hz) showed similar correlation patterns to the RSFC networks for the spontaneous hemodynamic signals, indicating a tight coupling between the slow cortical potential and the spontaneous hemodynamic signals during rest, but the bilateral symmetry of the RSFC networks for the slow cortical potentials was significantly lower than that for the spontaneous hemodynamic signals. Moreover, similar asymmetric neural activation patterns could also be found between the bilateral cortexes after stimulating the paws of mice. By increasing anesthetic levels to induce the reduction of consciousness, the RSFC networks for the slow cortical potentials persisted, but those for the spontaneous hemodynamic signals became discrete. These results suggest that the coherent slow cortical potentials underlie the spontaneous hemodynamic fluctuations and reveal a superior localization of RSFC networks. VSD imaging may potentially be used to examine the RSFC of neural activity, particularly under conditions of impaired neurovascular coupling.
Collapse
Affiliation(s)
- Bing Li
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Rui Liu
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Qin Huang
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Jinling Lu
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Qingming Luo
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Pengcheng Li
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China.
| |
Collapse
|
21
|
Mercado III E, Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA. Relating Cortical Wave Dynamics to Learning and Remembering. AIMS Neurosci 2014. [DOI: 10.3934/neuroscience.2014.3.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Humanes-Valera D, Aguilar J, Foffani G. Reorganization of the intact somatosensory cortex immediately after spinal cord injury. PLoS One 2013; 8:e69655. [PMID: 23922771 PMCID: PMC3726757 DOI: 10.1371/journal.pone.0069655] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 02/06/2023] Open
Abstract
Sensory deafferentation produces extensive reorganization of the corresponding deafferented cortex. Little is known, however, about the role of the adjacent intact cortex in this reorganization. Here we show that a complete thoracic transection of the spinal cord immediately increases the responses of the intact forepaw cortex to forepaw stimuli (above the level of the lesion) in anesthetized rats. These increased forepaw responses were independent of the global changes in cortical state induced by the spinal cord transection described in our previous work (Aguilar et al., J Neurosci 2010), as the responses increased both when the cortex was in a silent state (down-state) or in an active state (up-state). The increased responses in the intact forepaw cortex correlated with increased responses in the deafferented hindpaw cortex, suggesting that they could represent different points of view of the same immediate state-independent functional reorganization of the primary somatosensory cortex after spinal cord injury. Collectively, the results of the present study and of our previous study suggest that both state-dependent and state-independent mechanisms can jointly contribute to cortical reorganization immediately after spinal cord injury.
Collapse
Affiliation(s)
- Desire Humanes-Valera
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
- * E-mail: (JA); (GF)
| | - Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
- * E-mail: (JA); (GF)
| |
Collapse
|
23
|
Ganzer PD, Moxon KA, Knudsen EB, Shumsky JS. Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury. Exp Neurol 2012; 241:84-94. [PMID: 23262119 DOI: 10.1016/j.expneurol.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023]
Abstract
Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|