1
|
Wu T, Wu J, Liu L, Song H. PDZK1 gene transfer ameliorates lipopolysaccharide-induced cholestasis in rats by rescuing hepatic ABC transporters. Biosci Biotechnol Biochem 2025; 89:390-397. [PMID: 39658368 DOI: 10.1093/bbb/zbae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Lipopolysaccharide (LPS) causes inflammatory cholestasis in sepsis. We investigated the role of PDZK1 in the repression of ABC transporters in LPS-induced cholestasis. Lentiviral gene transfer of PDZK1 to rats was conducted to explore its influence on cholestasis induced by LPS. And the effect of lentivirus-mediated shRNA targeting PDZK1 on ABC transporters in rat liver BRL-3A cells was evaluated. Lentiviral vector encoding rat PDZK1 was administered to rats by tail intravenous injection. Obviously elevated serum total bile acid level and liver biochemical markers in cholestatic rats were decreased by the Lv-PDZK1 delivery. Also, Lv-PDZK1 delivery stimulated the suppressed hepatic ABC transporters expression. In vitro, after the lentiviral vector LV3/PDZK1 shRNA transfection, no expression of PDZK1 and mild expression of ABC transporters were detected in BRL-3A cells by Western blotting. Our results indicate that the lentiviral-mediated hepatocyte PDZK1 expression ameliorates LPS-induced cholestasis in rats by rescuing hepatic ABC transporters expression.
Collapse
Affiliation(s)
- Tao Wu
- Central Laboratory, Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Ji Wu
- Faculty of Medicine, Wuhan City College, Wuhan, China
| | - Li Liu
- Central Laboratory, Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Hongping Song
- Central Laboratory, Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
2
|
Bui G, Torres-Fuentes C, Pusceddu MM, Gareau MG, Marco ML. Milk and Lacticaseibacillus paracasei BL23 effects on intestinal responses in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G659-G675. [PMID: 38591132 PMCID: PMC11376982 DOI: 10.1152/ajpgi.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.
Collapse
Affiliation(s)
- Glory Bui
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| | - Cristina Torres-Fuentes
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| |
Collapse
|
3
|
Xue J, Dominguez Rieg JA, Thomas L, White JR, Rieg T. Intestine-Specific NHE3 Deletion in Adulthood Causes Microbial Dysbiosis. Front Cell Infect Microbiol 2022; 12:896309. [PMID: 35719363 PMCID: PMC9204535 DOI: 10.3389/fcimb.2022.896309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the intestine, the Na+/H+ exchanger 3 (NHE3) plays a critical role for Na+ and fluid absorption. NHE3 deficiency predisposes patients to inflammatory bowel disease (IBD). In mice, selective deletion of intestinal NHE3 causes various local and systemic pathologies due to dramatic changes in the intestinal environment, which can influence microbiota colonization. By using metagenome shotgun sequencing, we determined the effect of inducible intestinal epithelial cell-specific deletion of NHE3 (NHE3IEC-KO) in adulthood on the gut microbiome in mice. Compared with control mice, NHE3IEC-KO mice show a significantly different gut microbiome signature, with an unexpected greater diversity. At the phylum level, NHE3IEC-KO mice showed a significant expansion in Proteobacteria and a tendency for lower Firmicutes/Bacteroidetes (F/B) ratio, an indicator of dysbiosis. At the family level, NHE3IEC-KO mice showed significant expansions in Bacteroidaceae, Rikenellaceae, Tannerellaceae, Flavobacteriaceae and Erysipelotrichaceae, but had contractions in Lachnospiraceae, Prevotellaceae and Eubacteriaceae. At the species level, after removing those with lowest occurrence and abundance, we identified 23 species that were significantly expanded (several of which are established pro-inflammatory pathobionts); whereas another 23 species were found to be contracted (some of which are potential anti-inflammatory probiotics) in NHE3IEC-KO mice. These results reveal that intestinal NHE3 deletion creates an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, which is commonly featured in conventional NHE3 knockout mice and patients with IBD. In conclusion, our study emphasizes the importance of intestinal NHE3 for gut microbiota homeostasis, and provides a deeper understanding regarding interactions between NHE3, dysbiosis, and IBD.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - James R White
- Resphera Biosciences LLC, Baltimore, MD, United States
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
5
|
Ion Transport Basis of Diarrhea in a Mouse Model of Adoptive T Cell Transfer Colitis. Dig Dis Sci 2020; 65:1700-1709. [PMID: 31741140 PMCID: PMC7230007 DOI: 10.1007/s10620-019-05945-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diarrhea, a major pathological hallmark of inflammatory bowel disease, is characterized by a significant reduction in the expression and function of key intestinal ion transporters. The adoptive naïve CD4+ T cell transfer colitis is an immune-based, chronic colitis mouse model which resembles human Crohn's disease. Although mice with T cell transfer colitis demonstrate diarrhea, the ion transporter basis of this phenotype has not been explored. AIMS/METHODS In the current studies, we aimed to determine the mRNA and protein levels of the key NaCl transporters DRA and NHE3 along with the mRNA expression of other transporters in the inflamed intestine. RESULTS Naïve CD4+ T cells, transferred to Rag2 knockout mice, induced severe colonic inflammation characterized by histological damage and increased mRNA levels of cytokines in the colon with no effect in the ileum. Diarrheal phenotype was a key feature of the excised colons of mice where loose stools were evident. Our results demonstrated that the key chloride transporter DRA, mRNA, and protein levels were significantly reduced in the inflamed colon. However, expression of the key sodium hydrogen exchanger NHE3 was unaffected. The mRNA expression of other important transporters was also determined; in this regard, the sodium channel ENACα and the monocarboxylate transporters MCT1 and SMCT1 mRNA levels were also significantly lower compared to control mice. However, CFTR mRNA was not altered in the colon or ileum. CONCLUSIONS The studies conducted herein for the first time demonstrate the downregulation of important intestinal ion transporters in proximal and distal colon in T cell transfer colitis mouse model, providing valuable evidence for the ion transporter basis of diarrhea in this chronic model of inflammation.
Collapse
|
6
|
Souza KD, Fernandes EPA, Dos Santos AGA, de Lima LL, Gonzaga WFKM, Xander P, Nogueira-Melo GDA, Sant'Ana DDMG. Infection by Leishmania (Leishmania) infantum chagasi causes intestinal changes B-1 cells dependent. Parasite Immunol 2020; 41:e12661. [PMID: 31267529 DOI: 10.1111/pim.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 06/08/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
Evaluating the histopathological and morphometric changes caused by Leishmania (Leishmania) infantum chagasi infection either in the presence or absence of B-1 cells. Wild-type Balb/c and XID mice were used. Half of XID mice received B-1 cells adoptive transfer (XID + B1). Five animals from each group were infected (Balb/c I, XID I and XID + B1 I), totalizing six groups (n = 5). After 45 days of infection, the ileum was collected for histological processing and analysis. After infection, the XID animals showed an increase in the thickness of the intestinal layers, in the depth and width of the crypt and in the villi width. However, the Balb/c I group showed a reduction in almost all these parameters, whereas the villi width was increased. The villi height decreased in the infected XID animals; however, it was increased in the XID + B1 I group. Leishmania (L) infantum chagasiinfection caused a decrease in the number of Paneth cells; however, their area was increased. Finally, goblet cells and enterocytes presented different change profiles among groups. This study showed that the parasite infection causes structural and histopathological alterations in the intestine. These changes might be influenced by the absence of B-1 cells.
Collapse
Affiliation(s)
- Karine Delgado Souza
- Postgraduate Program in Bioscience and Physiopathology, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | - Lainy Leiny de Lima
- Postgraduate Program in Comparative Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Wagner Francisco Kennerly Marcondes Gonzaga
- Laboratory of Cellular Immunology and Biochemistry of Fungi and Protozoa, Departament of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Patricia Xander
- Laboratory of Cellular Immunology and Biochemistry of Fungi and Protozoa, Departament of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | | | | |
Collapse
|
7
|
Enns CB, Keith BA, Challa N, Harding JCS, Loewen ME. Impairment of electroneutral Na + transport and associated downregulation of NHE3 contributes to the development of diarrhea following in vivo challenge with Brachyspira spp. Am J Physiol Gastrointest Liver Physiol 2020; 318:G288-G297. [PMID: 31760765 PMCID: PMC7052572 DOI: 10.1152/ajpgi.00011.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of Brachyspira hyodysenteriae and Brachyspira hampsonii spirochetosis on Na+ transport was assessed in the colon to determine its contribution to diarrheal disease in pigs following experimental infection. Electrogenic and electroneutral Na+ absorption was assessed in Ussing chambers by radiolabeled 22Na flux and pharmacological inhibitory studies. Basal radiolabeled 22Na flux experiments revealed that mucosal-to-serosal flux (Jms) was significantly impaired in B. hyodysenteriae and B. hampsonii-diseased pigs. Inhibition of epithelial sodium channel via amiloride did not significantly reduce electrogenic short-circuit current (Isc) in the proximal, apex, and distal colonic segments of diseased pigs over control pigs, suggesting that a loss of electroneutral Na+ absorption is responsible for diarrheal development. These findings were further supported by significant downregulation of Na+/H+ exchanger (NHE1, NHE2, and NHE3) mRNA expression in the proximal, apex, and distal colonic segments paired with decreased protein expression of the critical NHE3 isoform. The decrease in NHE3 mRNA expression appears not to be attributed to the host's cytokine response as human IL-1α did not modify NHE3 mRNA expression in Caco-2 cells. However, a whole cell B. hampsonii lysate significantly downregulated NHE3 mRNA expression and significantly increased p38 phosphorylation in Caco-2 cells. Together these findings provide a likely mechanism for the spirochete-induced malabsorptive diarrhea, indicated by a decrease in electroneutral Na+ absorption in the porcine colon due to Brachyspira's ability to inhibit NHE3 transcription, resulting in diarrheal disease.NEW & NOTEWORTHY This research demonstrates that diarrheal disease caused by two infectious spirochete spp. is a result of impaired electroneutral Na+ absorption via Na+/H+ exchanger 3 (NHE3) in the porcine colon. Our findings suggest that the decrease in NHE3 mRNA and protein is not likely a result of the host's cytokine response. Rather, it appears that these two Brachyspira spp. directly inhibit the transcription and translation of NHE3, resulting in the development of diarrhea.
Collapse
Affiliation(s)
- Cole B. Enns
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brandon A. Keith
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nitin Challa
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C. S. Harding
- 2Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E. Loewen
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Cao L, Yuan Z, Liu M, Stock C. (Patho-)Physiology of Na +/H + Exchangers (NHEs) in the Digestive System. Front Physiol 2020; 10:1566. [PMID: 32009977 PMCID: PMC6974801 DOI: 10.3389/fphys.2019.01566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are expressed in virtually all human tissues and organs. Two major tasks of those NHE isoforms that are located in plasma membranes are cell volume control by Na+-uptake and cellular pH regulation by H+-extrusion. Several NHEs, particularly NHE 1–4 and 8, are involved in the pathogenesis of diseases of the digestive system such as inflammatory bowel disease (ulcerative colitis, Crohn’s disease) and gastric and colorectal tumorigenesis. In the present review, we describe the physiological purposes, possible malfunctions and pathophysiological effects of the different NHE isoforms along the alimentary canal from esophagus to colon, including pancreas, liver and gallbladder. Particular attention is paid to the functions of NHEs in injury repair and to the role of NHE1 in Barrett’s esophagus. The impact of NHEs on gut microbiota and intestinal mucosal integrity is also dealt with. As the hitherto existing findings are not always consistent, sometimes even controversial, they are compared and critically discussed.
Collapse
Affiliation(s)
- Li Cao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christian Stock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
9
|
Palaniappan B, Arthur S, Sundaram VL, Butts M, Sundaram S, Mani K, Singh S, Nepal N, Sundaram U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension. FASEB J 2019; 33:9323-9333. [PMID: 31107610 PMCID: PMC6662973 DOI: 10.1096/fj.201802673r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/23/2019] [Indexed: 01/07/2023]
Abstract
During obesity, diabetes and hypertension inevitably coexist and cause innumerable health disparities. In the obesity, diabetes, and hypertension triad (ODHT), deregulation of glucose and NaCl homeostasis, respectively, causes diabetes and hypertension. In the mammalian intestine, glucose is primarily absorbed by Na-glucose cotransport 1 (SGLT1) and coupled NaCl by the dual operation of Na-H exchange 3 (NHE3) and Cl-HCO3 [down-regulated in adenoma (DRA) or putative anion transporter 1 (PAT1)] exchange in the brush border membrane (BBM) of villus cells. The basolateral membrane (BLM) Na/K-ATPase provides the favorable transcellular Na gradient for BBM SGLT1 and NHE3. How these multiple, distinct transport processes may be affected in ODHT is unclear. Here, we show the novel and broad regulation by Na/K-ATPase of glucose and NaCl absorption in ODHT in multiple species (mice, rats, and humans). In vivo, during obesity inhibition of villus-cell BLM, Na/K-ATPase led to compensatory stimulation of BBM SGLT1 and DRA or PAT1, whereas NHE3 was unaffected. Supporting this new cellular adaptive mechanism, direct silencing of BLM Na/K-ATPase in intestinal epithelial cells resulted in selective stimulation of BBM SGLT1 and DRA or PAT1 but not NHE3. These changes will lead to an increase in glucose absorption, maintenance of traditional coupled NaCl absorption, and a de novo increase in NaCl absorption from the novel coupling of stimulated SGLT1 with DRA or PAT1. Thus, these novel observations provide the pathophysiologic basis for the deregulation of glucose and NaCl homeostasis of diabetes and hypertension, respectively, during obesity. These observations may lead to more efficacious treatment for obesity-associated diabetes and hypertension.-Palaniappan, B., Arthur, S., Sundaram, V. L., Butts, M., Sundaram, S., Mani, K., Singh, S., Nepal, N., Sundaram, U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension.
Collapse
Affiliation(s)
- Balasubramanian Palaniappan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Vijaya Lakshmi Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Molly Butts
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Shanmuga Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Kathiresh Mani
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Niraj Nepal
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
10
|
Lu X, Chen M, Shen J, Xu Y, Wu H. IL-1β functionally attenuates ABCG2 and PDZK1 expression in HK-2 cells partially through NF-ĸB activation. Cell Biol Int 2019; 43:279-289. [PMID: 30632646 DOI: 10.1002/cbin.11100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
Long-standing untreated hyperuricemia could lead to gout. Several recent studies have demonstrated a significant decrease of serum urate during acute gout attack, which is an aseptic inflammation process focusing on IL-1β. However, how IL-1β, by itself, alters the expression and the functional activity of urate transporters in renal tubular epithelial cells is still unclear. Herein, we revealed that IL-1β could attenuate the mRNA and protein levels of ABCG2, a major urate efflux pump, in HK-2 cells by real-time PCR and Western-blot assays. Moreover, using an ABCG2 specific inhibitor and a new sensitive and specific detection system, it was found that IL-1β also reduced the ABCG2 transporter activities. Incubation with specific inhibitors of the NF-κB pathway partly dampened the inhibitory effect of IL-1β on ABCG2, indicating that IL-1β reduced the ABCG2 expression partially through the NF-ĸB pathway. Furthermore, the decreased expression of PDZK1 induced by IL-1β, which is dependent on the NF-κB pathway, could account for the imbalance between the functions and expressions of ABCG2 on this status. These findings demonstrated a new role for IL-1β, whereby it leads to the inhibition of ABCG2 in renal tubular epithelial cells; this new role probably does not encompass its involvement in the process of renal urate excretion mediated by inflammation. Therefore, other regulation mechanisms of urate reabsorption in renal tubular epithelial cells deserve to be examined in further studies.
Collapse
Affiliation(s)
- Xiaoyong Lu
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Mo Chen
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Jingfang Shen
- Department of Rheumatology, the people's hospital of Xingtai, Hebei, 054000, China
| | - Yujia Xu
- Department of Rheumatology, the Huzhou Central hospital, Zhejiang, 313000, China
| | - Huaxiang Wu
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
11
|
He P, Haque A, Lin S, Cominelli F, Yun CC. Inhibition of autotaxin alleviates inflammation and increases the expression of sodium-dependent glucose cotransporter 1 and Na +/H + exchanger 3 in SAMP1/Fc mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G762-G771. [PMID: 30118349 PMCID: PMC6293258 DOI: 10.1152/ajpgi.00215.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crohn's disease (CD) is a chronic, relapsing, inflammatory disease that is often associated with malnutrition because of inflammation in the small intestine. Autotaxin (ATX) is a secreted enzyme that produces extracellular lysophosphatidic acid. Increasing evidence suggests that ATX is upregulated during inflammation, and inhibition of ATX has been effective in attenuating chronic inflammatory conditions, such as arthritis and pulmonary fibrosis. This study aims to determine whether inhibition of ATX alleviates CD-associated inflammation and malnutrition by using SAMP1/Fc mice, a model of CD-like ileitis. SAMP1/Fc mice were treated the ATX inhibitor PF-8380 for 4 wk. Inhibition of ATX led to increased weight gain in SAMP1/Fc mice, decreased T helper 2 cytokine expression, including IL-4, IL-5, and IL-13, and attenuated immune cell migration. SAMP1/Fc mice have low expression of Na+-dependent glucose transporter 1 (SGLT1), suggesting impaired nutrient absorption associated with ileitis. PF-8380 treatment significantly enhanced SGLT1 expression in SAMP1/Fc mice, which could reflect the increased weight changes. However, IL-4 or IL-13 did not alter SGLT1 expression in Caco-2 cells, ruling out their direct effects on SGLT1 expression. Immunofluorescence analysis showed that the expression of sucrase-isomaltase, a marker for intestinal epithelial cell (IEC) differentiation, was decreased in inflamed regions of SAMP1/Fc mice, which was partially restored by PF-8380. Moreover, expression of Na+/H+ exchanger 3 was also improved by PF-8380, suggesting that suppression of inflammation by PF-8380 enhanced IEC differentiation. Our study therefore suggests that ATX is a potential target for treating intestinal inflammation and restoration of the absorptive function of the intestine. NEW & NOTEWORTHY This study is the first, to our knowledge, to determine whether autotoxin (ATX) inhibition improves inflammation and body weights in SAMP1/Fc mice, a mouse model of ileitis. ATX inhibition increased body weights of SAMP1/Fc mice and increased Na+-dependent glucose transporter 1 (SGLT1) expression. Increased SGLT1 expression in the inflamed regions was not a direct effect of cytokines but an indirect effect of increased epithelial cell differentiation upon ATX inhibition.
Collapse
Affiliation(s)
- Peijian He
- 1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Abedul Haque
- 1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Songbai Lin
- 1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Fabio Cominelli
- 3Department of Medicine, Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
| | - C. Chris Yun
- 1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia,4Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Harrison CA, Laubitz D, Ohland CL, Midura-Kiela MT, Patil K, Besselsen DG, Jamwal DR, Jobin C, Ghishan FK, Kiela PR. Microbial dysbiosis associated with impaired intestinal Na +/H + exchange accelerates and exacerbates colitis in ex-germ free mice. Mucosal Immunol 2018; 11:1329-1341. [PMID: 29875400 PMCID: PMC6162102 DOI: 10.1038/s41385-018-0035-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/29/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
Abstract
Intestinal epithelial Na+/H+ exchange facilitated by the apical NHE3 (Slc9a3) is a highly regulated process inhibited by intestinal pathogens and in inflammatory bowel diseases. NHE3-/- mice develop spontaneous, bacterially mediated colitis, and IBD-like dysbiosis. Disruption of epithelial Na+/H+ exchange in IBD may thus represent a host response contributing to the altered gut microbial ecology, and may play a pivotal role in modulating the severity of inflammation in a microbiome-dependent manner. To test whether microbiome fostered in an NHE3-deficient environment is able to drive mucosal immune responses affecting the onset or severity of colitis, we performed a series of cohousing experiments and fecal microbiome transplants into germ-free Rag-deficient or IL-10-/- mice. We determined that in the settings where the microbiome of NHE3-deficient mice was stably engrafted in the recipient host, it was able accelerate the onset and amplify severity of experimental colitis. NHE3-deficiency was characterized by the reduction in pH-sensitive butyrate-producing Firmicutes families Lachnospiraceae and Ruminococcaceae (Clostridia clusters IV and XIVa), with an expansion of inflammation-associated Bacteroidaceae. We conclude that the microbiome fostered by impaired epithelial Na+/H+ exchange enhances the onset and severity of colitis through disruption of the gut microbial ecology.
Collapse
Affiliation(s)
- Christy A Harrison
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | | | | | - Karuna Patil
- University Animal Care, University of Arizona, Tucson, AZ, USA
| | | | - Deepa R Jamwal
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | - Christian Jobin
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
13
|
Lenzen H, Qian J, Manns MP, Seidler U, Jörns A. Restoration of mucosal integrity and epithelial transport function by concomitant anti-TNFα treatment in chronic DSS-induced colitis. J Mol Med (Berl) 2018; 96:831-843. [DOI: 10.1007/s00109-018-1658-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 12/25/2022]
|
14
|
Lu YY, Liang J, Chen SX, Wang BX, Yuan H, Li CT, Wu YY, Wu YF, Shi XG, Gao J, Hou SZ. Phloridzin alleviate colitis in mice by protecting the intestinal brush border and improving the expression of sodium glycogen transporter 1. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Abstract
Inflammatory bowel diseases broadly categorized into Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory disorders of the gastrointestinal tract with increasing prevalence worldwide. The etiology of the disease is complex and involves a combination of genetic, environmental, immunological and gut microbial factors. Recurring and bloody diarrhea is the most prevalent and debilitating symptom in IBD. The pathogenesis of IBD-associated diarrhea is multifactorial and is essentially an outcome of mucosal damage caused by persistent inflammation resulting in dysregulated intestinal ion transport, impaired epithelial barrier function and increased accessibility of the pathogens to the intestinal mucosa. Altered expression and/or function of epithelial ion transporters and channels is the principle cause of electrolyte retention and water accumulation in the intestinal lumen leading to diarrhea in IBD. Aberrant barrier function further contributes to diarrhea via leak-flux mechanism. Mucosal penetration of enteric pathogens promotes dysbiosis and exacerbates the underlying immune system further perpetuating IBD associated-tissue damage and diarrhea. Here, we review the mechanisms of impaired ion transport and loss of epithelial barrier function contributing to diarrhea associated with IBD.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- a Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| | - Shubha Priyamvada
- a Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| | - Waddah A Alrefai
- a Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago , IL , USA.,b Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Pradeep K Dudeja
- a Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago , IL , USA.,b Jesse Brown VA Medical Center , Chicago , IL , USA
| |
Collapse
|
16
|
Centonze M, Saponaro C, Mangia A. NHERF1 Between Promises and Hopes: Overview on Cancer and Prospective Openings. Transl Oncol 2018; 11:374-390. [PMID: 29455084 PMCID: PMC5852411 DOI: 10.1016/j.tranon.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein, with two tandem PDZ domains and a carboxyl-terminal ezrin-binding (EB) region. This particular sticky structure is responsible for its interaction with different molecules to form multi-complexes that have a pivotal role in a lot of diseases. In particular, its involvement during carcinogenesis and cancer progression has been deeply analyzed in different tumors. The role of NHERF1 is not unique in cancer; its activity is connected to its subcellular localization. The literature data suggest that NHERF1 could be a new prognostic/predictive biomarker from breast cancer to hematological cancers. Furthermore, the high potential of this molecule as therapeutical target in different carcinomas is a new challenge for precision medicine. These evidences are part of a future view to improving patient clinical management, which should allow different tumor phenotypes to be treated with tailored therapies. This article reviews the biology of NHERF1, its engagement in different signal pathways and its involvement in different cancers, with a specific focus on breast cancer. It also considers NHERF1 potential role during inflammation related to most human cancers, designating new perspectives in the study of this "Janus-like" protein.
Collapse
Affiliation(s)
- Matteo Centonze
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
17
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Chen M, Lu X, Lu C, Shen N, Jiang Y, Chen M, Wu H. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res Ther 2018; 20:20. [PMID: 29415757 PMCID: PMC5803867 DOI: 10.1186/s13075-018-1512-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In addition to the kidney, the intestine is one of the most important organs involved in uric acid excretion. However, the mechanism of urate excretion in the intestine remains unclear. Therefore, the relationship between soluble uric acid and the gut excretion in human intestinal cells was explored. The relevant signaling molecules were then also examined. METHODS HT-29 and Caco-2 cell lines were stimulated with soluble uric acid. Western blotting and qRT-PCR were used to measure protein and mRNA levels. Subcellular fractionation methods and immunofluorescence were used to quantify the proteins in different subcellular compartments. Flow cytometry experiments examined the function of ATP-binding cassette transporter, subfamily G, member 2 (ABCG2). Small interfering RNA transfection was used to assess the interaction between ABCG2 and PDZ domain-containing 1 (PDZK1). RESULTS Soluble uric acid increased the expression of PDZK1 and ABCG2. The stimulation of soluble uric acid also facilitated the translocation of ABCG2 from the intracellular compartment to the plasma membrane and increased its transport activity. Moreover, the upregulation of PDZK1 and ABCG2 by soluble uric acid was partially decreased by either TLR4-NLRP3 inflammasome inhibitors or PI3K/Akt signaling inhibitors. Furthermore, PDZK1 knockdown significantly inhibited the expression and transport activity of ABCG2 regardless of the activation by soluble uric acid, demonstrating a pivotal role for PDZK1 in the regulation of ABCG2. CONCLUSIONS These findings suggest that urate upregulates the expression of PDZK1 and ABCG2 for excretion in intestinal cells via activating the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, 310007, Hangzhou, China
| | - Xiaoyong Lu
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Ci Lu
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Ning Shen
- Department of Rheumatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Yujie Jiang
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Menglu Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.
| |
Collapse
|
19
|
Sheikh IA, Ammoury R, Ghishan FK. Pathophysiology of Diarrhea and Its Clinical Implications. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1669-1687. [DOI: 10.1016/b978-0-12-809954-4.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
5-gene differential expression predicts stability of human intestinal allografts. Exp Mol Pathol 2017; 103:163-171. [PMID: 28843648 DOI: 10.1016/j.yexmp.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 08/19/2017] [Indexed: 12/19/2022]
Abstract
In intestinal allografts, endoscopy and histology detect the injury once changes in the bowel wall architecture have occurred. We aimed to identify a molecular signature that could predict early deterioration, within histologically indistinguishable biopsies with "minimal changes" (MC) pathology. Sixty biopsies from 12 adult recipients were longitudinally taken during 8years post-transplant. They were classified as either stable (STA) or non-stable (NSTA) according to the prospectively recorded number, frequency and severity of rejection events of the allograft. In a discovery set of MC samples analyzed by RNA-Seq, 816 genes were differentially expressed in STA vs NSTA biopsies. A group of 5 genes (ADH1C, SLC39A4, CYP4F2, OPTN and PDZK1) correctly classified all NSTA biopsies in the discovery set and all STA biopsies from an independent set. These results were validated by qPCR in a new group of MC biopsies. Based on a logistic regression model, a cutoff of 0.28 predicted the probability of being a NSTA biopsy with 85% sensitivity and 69% specificity. In conclusion, by analyzing MC samples early after transplantation, the expression of a 5-gene set may predict the evolution of the bowel allograft. This prognostic biomarker may be of help to personalize care of the intestinal transplant recipient.
Collapse
|
21
|
Luo M, Yeruva S, Liu Y, Chodisetti G, Riederer B, Menon MB, Tachibana K, Doi T, Seidler UE. IL-1β-Induced Downregulation of the Multifunctional PDZ Adaptor PDZK1 Is Attenuated by ERK Inhibition, RXRα, or PPARα Stimulation in Enterocytes. Front Physiol 2017; 8:61. [PMID: 28223944 PMCID: PMC5293818 DOI: 10.3389/fphys.2017.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background: The PDZ adaptor protein PDZK1 modulates the membrane expression and function of a variety of intestinal receptors and ion/nutrient transporters. Its expression is strongly decreased in inflamed intestinal mucosa of mice and IBD patients. Aim and Methods: We investigated whether the inflammation-associated PDZK1 downregulation is a direct consequence of proinflammatory cytokine release by treating intestinal Caco-2BBE cells with TNF-α, IFN-γ, and IL-1β, and analysing PDZK1 promotor activity, mRNA and protein expression. Results: IL-1β was found to significantly decrease PDZK1 promoter activity, mRNA and protein expression in Caco-2BBE cells. A distal region of the hPDZK1 promoter was identified to be important for basal expression and IL-1β-responsiveness. This region harbors the retinoid acid response element RARE as well as binding sites for transcription factors involved in IL-β downstream signaling. ERK1/2 inhibition by the specific MEK1/2 inhibitors PD98059/U0126 significantly attenuated the IL-1β mediated downregulation of PDZK1, while NF-κB, p38 MAPK, and JNK inhibition did not. Expression of the nuclear receptors RXRα and PPARα was decreased in inflamed colonic-mucosa of ulcerative colitis patients and in IL-1β-treated Caco2-BBE cells. Moreover, the RAR/RXR ligand 9-cis retinoic acid and the PPARα-agonist GW7647 stimulated PDZK1 mRNA and protein expression and attenuated IL-1β-mediated inhibition. Conclusions: The strong decrease in PDZK1 expression during intestinal inflammation may be in part a consequence of IL-1β-mediated RXRα and PPARα repression and can be attenuated by agonists for either nuclear receptor, or by ERK1/2 inhibition. The negative consequences of inflammation-induced PDZK1 downregulation on epithelial transport-function may thus be amenable to pharmacological therapy.
Collapse
Affiliation(s)
- Min Luo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical SchoolHannover, Germany; Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Sunil Yeruva
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Yongjian Liu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical SchoolHannover, Germany; Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Giriprakash Chodisetti
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Manoj B Menon
- Department of Biochemistry, Hannover Medical School Hannover, Germany
| | - Keisuke Tachibana
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | - Takefumi Doi
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| |
Collapse
|
22
|
Abstract
Several members of the SLC9A family of Na+/H+ exchangers are expressed in the gut, with varying expression patterns and cellular localization. Not only do they participate in the regulation of basic epithelial cell functions, including control of transepithelial Na+ absorption, intracellular pH (pH i ), cell volume, and nutrient absorption, but also in cellular proliferation, migration, and apoptosis. Additionally, they modulate the extracellular milieu in order to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+/H+ exchangers are frequent targets of inhibition in gastrointestinal pathologies, either by intrinsic factors (e.g. bile acids, inflammatory mediators) or infectious agents and associated microbial toxins. Based on emerging evidence, disruption of NHE activity via impaired expression or function of respective isoforms may contribute not only to local and systemic electrolyte imbalance, but also to the disease severity via multiple mechanisms. Here, we review the current state of knowledge about the roles Na+/H+ exchangers play in the pathogenesis of disorders of diverse origin and affecting a range of GI tissues.
Collapse
Affiliation(s)
- Michael A. Gurney
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Pawel R. Kiela
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona,Department of Immunobiology, University of Arizona, Tucson, Arizona,Correspondence Address correspondence to: Pawel R. Kiela, DVM, PhD, Department of Pediatrics, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724. fax: (520) 626-4141.Department of Pediatrics, University of Arizona1501 North Campbell AvenueTucsonArizona 85724
| |
Collapse
|
23
|
Gurgul-Convey E, Mehmeti I, Plötz T, Jörns A, Lenzen S. Sensitivity profile of the human EndoC-βH1 beta cell line to proinflammatory cytokines. Diabetologia 2016; 59:2125-33. [PMID: 27460666 DOI: 10.1007/s00125-016-4060-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 01/27/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to perform a detailed analysis of cytokine toxicity in the new human EndoC-βH1 beta cell line. METHODS The expression profile of the antioxidative enzymes in the new human EndoC-βH1 beta cells was characterised and compared with that of primary beta cells in the human pancreas. The effects of proinflammatory cytokines on reactive oxygen species formation, insulin secretory responsiveness and apoptosis of EndoC-βH1 beta cells were determined. RESULTS EndoC-βH1 beta cells were sensitive to the toxic action of proinflammatory cytokines. Glucose-dependent stimulation of insulin secretion and an increase in the ATP/ADP ratio was abolished by proinflammatory cytokines without induction of IL-1β expression. Cytokine-mediated caspase-3 activation was accompanied by reactive oxygen species formation and developed more slowly than in rodent beta cells. Cytokines transiently increased the expression of unfolded protein response genes, without inducing endoplasmic reticulum stress-marker genes. Cytokine-mediated NFκB activation was too weak to induce inducible nitric oxide synthase expression. The resultant lack of nitric oxide generation in EndoC-βH1 cells, in contrast to rodent beta cells, makes these cells dependent on exogenously generated nitric oxide, which is released from infiltrating immune cells in human type 1 diabetes, for full expression of proinflammatory cytokine toxicity. CONCLUSIONS/INTERPRETATION EndoC-βH1 beta cells are characterised by an imbalance between H2O2-generating and -inactivating enzymes, and react to cytokine exposure in a similar manner to primary human beta cells. They are a suitable beta cell surrogate for cytokine-toxicity studies.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
24
|
Laubitz D, Harrison CA, Midura-Kiela MT, Ramalingam R, Larmonier CB, Chase JH, Caporaso JG, Besselsen DG, Ghishan FK, Kiela PR. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis. PLoS One 2016; 11:e0152044. [PMID: 27050757 PMCID: PMC4822813 DOI: 10.1371/journal.pone.0152044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community.
Collapse
Affiliation(s)
- Daniel Laubitz
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Christy A. Harrison
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Monica T. Midura-Kiela
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Rajalakshmy Ramalingam
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Claire B. Larmonier
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - John H. Chase
- Department of Biological Sciences, Center for Microbial Genetics and Genomics at Northern Arizona University, Flagstaff, Arizona, United States of America
| | - J. Gregory Caporaso
- Department of Biological Sciences, Center for Microbial Genetics and Genomics at Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David G. Besselsen
- University Animal Care, University of Arizona, Tucson, Arizona, United States of America
| | - Fayez K. Ghishan
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Pawel R. Kiela
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
25
|
Magalhães D, Cabral JM, Soares-da-Silva P, Magro F. Role of epithelial ion transports in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G460-76. [PMID: 26744474 DOI: 10.1152/ajpgi.00369.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with a complex pathogenesis. Diarrhea is a highly prevalent and often debilitating symptom of IBD patients that results, at least in part, from an intestinal hydroelectrolytic imbalance. Evidence suggests that reduced electrolyte absorption is more relevant than increased secretion to this disequilibrium. This systematic review analyses and integrates the current evidence on the roles of epithelial Na(+)-K(+)-ATPase (NKA), Na(+)/H(+) exchangers (NHEs), epithelial Na(+) channels (ENaC), and K(+) channels (KC) in IBD-associated diarrhea. NKA is the key driving force of the transepithelial ionic transport and its activity is decreased in IBD. In addition, the downregulation of apical NHE and ENaC and the upregulation of apical large-conductance KC all contribute to the IBD-associated diarrhea by lowering sodium absorption and/or increasing potassium secretion.
Collapse
Affiliation(s)
- Diogo Magalhães
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - José Miguel Cabral
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Patrício Soares-da-Silva
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Fernando Magro
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Priyamvada S, Gomes R, Gill RK, Saksena S, Alrefai WA, Dudeja PK. Mechanisms Underlying Dysregulation of Electrolyte Absorption in Inflammatory Bowel Disease-Associated Diarrhea. Inflamm Bowel Dis 2015; 21:2926-35. [PMID: 26595422 PMCID: PMC4662046 DOI: 10.1097/mib.0000000000000504] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are chronic relapsing inflammatory disorders of the gastrointestinal tract. Chronic inflammation of the intestine affects the normal fluid and electrolyte absorption leading to diarrhea, the hallmark symptom of IBD. The management of IBD-associated diarrhea still remains to be a challenge, and extensive studies over the last 2 decades have focused on investigating the molecular mechanisms underlying IBD-associated diarrhea. These studies have shown that the predominant mechanism of diarrhea in IBD involves impairment of electroneutral NaCl absorption, with very little role if any played by anion secretion. The electroneutral NaCl absorption involves coupled operation of Na/H exchanger 3 (NHE3 or SLC9A3) and Cl/HCO3 exchanger DRA (Down Regulated in Adenoma, or SLC26A3). Increasing evidence now supports the critical role of a marked decrease in NHE3 and DRA function and/or expression in IBD-associated diarrhea. This review provides a detailed analysis of the current knowledge related to alterations in NHE3 and DRA function and expression in IBD including the mechanisms underlying these observations and highlights the potential of these transporters as important and novel therapeutic targets.
Collapse
Affiliation(s)
- Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Rochelle Gomes
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ravinder K. Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Seema Saksena
- Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Waddah A. Alrefai
- Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Pradeep K. Dudeja
- Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
27
|
He P, Zhao L, Zhu L, Weinman EJ, De Giorgio R, Koval M, Srinivasan S, Yun CC. Restoration of Na+/H+ exchanger NHE3-containing macrocomplexes ameliorates diabetes-associated fluid loss. J Clin Invest 2015; 125:3519-31. [PMID: 26258413 DOI: 10.1172/jci79552] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/25/2015] [Indexed: 01/19/2023] Open
Abstract
Diarrhea is one of the troublesome complications of diabetes, and the underlying causes of this problem are complex. Here, we investigated whether altered electrolyte transport contributes to diabetic diarrhea. We found that the expression of Na+/H+ exchanger NHE3 and several scaffold proteins, including NHE3 regulatory factors (NHERFs), inositol trisphosphate (IP₃) receptor-binding protein released with IP₃ (IRBIT), and ezrin, was decreased in the intestinal brush border membrane (BBM) of mice with streptozotocin-induced diabetes. Treatment of diabetic mice with insulin restored intestinal NHE3 activity and fluid absorption. Molecular analysis revealed that NHE3, NHERF1, IRBIT, and ezrin form macrocomplexes, which are perturbed under diabetic conditions, and insulin administration reconstituted these macrocomplexes and restored NHE3 expression in the BBM. Silencing of NHERF1 or IRBIT prevented NHE3 trafficking to the BBM and insulin-dependent NHE3 activation. IRBIT facilitated the interaction of NHE3 with NHERF1 via protein kinase D2-dependent phosphorylation. Insulin stimulated ezrin phosphorylation, which enhanced the interaction of ezrin with NHERF1, IRBIT, and NHE3. Additionally, oral administration of lysophosphatidic acid (LPA) increased NHE3 activity and fluid absorption in diabetic mice via an insulin-independent pathway. Together, these findings indicate the importance of NHE3 in diabetic diarrhea and suggest LPA administration as a potential therapeutic strategy for management of diabetic diarrhea.
Collapse
|
28
|
Arora K, Sinha C, Zhang W, Moon CS, Ren A, Yarlagadda S, Dostmann WR, Adebiyi A, Haberman Y, Denson LA, Wang X, Naren AP. Altered cGMP dynamics at the plasma membrane contribute to diarrhea in ulcerative colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2790-804. [PMID: 26261085 DOI: 10.1016/j.ajpath.2015.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/31/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) belongs to inflammatory bowel disorders, a group of gastrointestinal disorders that can produce serious recurring diarrhea in affected patients. The mechanism for UC- and inflammatory bowel disorder-associated diarrhea is not well understood. The cystic fibrosis transmembrane-conductance regulator (CFTR) chloride channel plays an important role in fluid and water transport across the intestinal mucosa. CFTR channel function is regulated in a compartmentalized manner through the formation of CFTR-containing macromolecular complexes at the plasma membrane. In this study, we demonstrate the involvement of a novel macromolecular signaling pathway that causes diarrhea in UC. We found that a nitric oxide-producing enzyme, inducible nitric oxide synthase (iNOS), is overexpressed under the plasma membrane and generates compartmentalized cGMP in gut epithelia in UC. The scaffolding protein Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) bridges iNOS with CFTR, forming CFTR-NHERF2-iNOS macromolecular complexes that potentiate CFTR channel function via the nitric oxide-cGMP pathway under inflammatory conditions both in vitro and in vivo. Potential disruption of these complexes in Nherf2(-/-) mice may render them more resistant to CFTR-mediated secretory diarrhea than Nherf2(+/+) mice in murine colitis models. Our study provides insight into the mechanism of pathophysiologic occurrence of diarrhea in UC and suggests that targeting CFTR and CFTR-containing macromolecular complexes will ameliorate diarrheal symptoms and improve conditions associated with inflammatory bowel disorders.
Collapse
Affiliation(s)
- Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Chandrima Sinha
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Weiqiang Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Chang Suk Moon
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Aixia Ren
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sunitha Yarlagadda
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yael Haberman
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xusheng Wang
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
29
|
An K, Fang L, Luo R, Wang D, Xie L, Yang J, Chen H, Xiao S. Quantitative proteomic analysis reveals that transmissible gastroenteritis virus activates the JAK-STAT1 signaling pathway. J Proteome Res 2014; 13:5376-90. [PMID: 25357264 DOI: 10.1021/pr500173p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transmissible gastroenteritis virus (TGEV), a porcine enteropathogenic coronavirus, causes lethal watery diarrhea and severe dehydration in piglets. In this study, liquid chromatography-tandem mass spectrometry coupled to isobaric tags for relative and absolute quantification labeling was used to quantitatively identify differentially expressed cellular proteins after TGEV infection in PK-15 cells. In total, 162 differentially expressed cellular proteins were identified, including 60 upregulated proteins and 102 downregulated proteins. These differentially expressed proteins were involved in the cell cycle, cellular growth and proliferation, the innate immune response, etc. Interestingly, many upregulated proteins were associated with interferon signaling, especially signal transducer and activator of transcription 1 (STAT1) and interferon-stimulated genes (ISGs). Immunoblotting and real-time quantitative reverse transcription polymerase chain reaction demonstrated that TGEV infection induces STAT1 phosphorylation and nuclear translocation, as well as ISG expression. This study for the first time reveals that TGEV induces interferon signaling from the point of proteomic analysis.
Collapse
Affiliation(s)
- Kang An
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, Hubei China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yeruva S, Chodisetti G, Luo M, Chen M, Cinar A, Ludolph L, Lünnemann M, Goldstein J, Singh AK, Riederer B, Bachmann O, Bleich A, Gereke M, Bruder D, Hagen S, He P, Yun C, Seidler U. Evidence for a causal link between adaptor protein PDZK1 downregulation and Na⁺/H⁺ exchanger NHE3 dysfunction in human and murine colitis. Pflugers Arch 2014; 467:1795-807. [PMID: 25271043 PMCID: PMC4383727 DOI: 10.1007/s00424-014-1608-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
A dysfunction of the Na(+)/H(+) exchanger isoform 3 (NHE3) significantly contributes to the reduced salt absorptive capacity of the inflamed intestine. We previously reported a strong decrease in the NHERF family member PDZK1 (NHERF3), which binds to NHE3 and regulates its function in a mouse model of colitis. The present study investigates whether a causal relationship exists between the decreased PDZK1 expression and the NHE3 dysfunction in human and murine intestinal inflammation. Biopsies from the colon of patients with ulcerative colitis, murine inflamed ileal and colonic mucosa, NHE3-transfected Caco-2BBe colonic cells with short hairpin RNA (shRNA) knockdown of PDZK1, and Pdzk1-gene-deleted mice were studied. PDZK1 mRNA and protein expression was strongly decreased in inflamed human and murine intestinal tissue as compared to inactive disease or control tissue, whereas that of NHE3 or NHERF1 was not. Inflamed human and murine intestinal tissues displayed correct brush border localization of NHE3 but reduced acid-activated NHE3 transport activity. A similar NHE3 transport defect was observed when PDZK1 protein content was decreased by shRNA knockdown in Caco-2BBe cells or when enterocyte PDZK1 protein content was decreased to similar levels as found in inflamed mucosa by heterozygote breeding of Pdzk1-gene-deleted and WT mice. We conclude that a decrease in PDZK1 expression, whether induced by inflammation, shRNA-mediated knockdown, or heterozygous breeding, is associated with a decreased NHE3 transport rate in human and murine enterocytes. We therefore hypothesize that inflammation-induced loss of PDZK1 expression may contribute to the NHE3 dysfunction observed in the inflamed intestine.
Collapse
Affiliation(s)
- Sunil Yeruva
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The epithelium of the gastrointestinal tract is one of the most versatile tissues in the organism, responsible for providing a tight barrier between dietary and bacterial antigens and the mucosal and systemic immune system while maintaining efficient digestive and absorptive processes to ensure adequate nutrient and energy supply. Inflammatory bowel diseases (Crohn's disease and ulcerative colitis) are associated with a breakdown of both functions, which in some cases are clearly interrelated. In this updated literature review, we focus on the effects of intestinal inflammation and the associated immune mediators on selected aspects of the transepithelial transport of macronutrients and micronutrients. The mechanisms responsible for nutritional deficiencies are not always clear and could be related to decreased intake, malabsorption, and excess losses. We summarize the known causes of nutrient deficiencies and the mechanism of inflammatory bowel disease-associated diarrhea. We also overview the consequences of impaired epithelial transport, which infrequently transcend its primary purpose to affect the gut microbial ecology and epithelial integrity. Although some of those regulatory mechanisms are relatively well established, more work needs to be done to determine how inflammatory cytokines can alter the transport process of nutrients across the gastrointestinal and renal epithelia.
Collapse
|
32
|
Larmonier CB, Laubitz D, Hill FM, Shehab KW, Lipinski L, Midura-Kiela MT, McFadden RMT, Ramalingam R, Hassan KA, Golebiewski M, Besselsen DG, Ghishan FK, Kiela PR. Reduced colonic microbial diversity is associated with colitis in NHE3-deficient mice. Am J Physiol Gastrointest Liver Physiol 2013; 305:G667-77. [PMID: 24029465 PMCID: PMC3840234 DOI: 10.1152/ajpgi.00189.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic inflammation and enteric infections are frequently associated with epithelial Na(+)/H(+) exchange (NHE) inhibition. Alterations in electrolyte transport and in mucosal pH associated with inflammation may represent a key mechanism leading to changes in the intestinal microbial composition. NHE3 expression is essential for the maintenance of the epithelial barrier function. NHE3(-/-) mice develop spontaneous distal chronic colitis and are highly susceptible to dextran sulfate (DSS)-induced mucosal injury. Spontaneous colitis is reduced with broad-spectrum antibiotics treatment, thus highlighting the importance of the microbiota composition in NHE3 deficiency-mediated colitis. We herein characterized the colonic microbiome of wild-type (WT) and NHE3(-/-) mice housed in a conventional environment using 454 pyrosequencing. We demonstrated a significant decrease in the phylogenetic diversity of the luminal and mucosal microbiota of conventional NHE3(-/-) mice compared with WT. Rederivation of NHE3(-/-) mice from conventional to a barrier facility eliminated the signs of colitis and decreased DSS susceptibility. Reintroduction of the conventional microflora into WT and NHE3(-/-) mice from the barrier facility resulted in the restoration of the symptoms initially described in the conventional environment. Interestingly, qPCR analysis of the microbiota composition in mice kept in the barrier facility compared with reconventionalized mice showed a significant reduction of Clostridia classes IV and XIVa. Therefore, the gut microbiome plays a prominent role in the pathogenesis of colitis in NHE3(-/-) mice, and, reciprocally, NHE3 also plays a critical role in shaping the gut microbiota. NHE3 deficiency may be a critical contributor to dysbiosis observed in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Daniel Laubitz
- 1Departments of Pediatrics, Steele Children's Research Center, ,6Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Faihza M. Hill
- 1Departments of Pediatrics, Steele Children's Research Center,
| | | | - Leszek Lipinski
- 6Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | - Rita-Marie T. McFadden
- 1Departments of Pediatrics, Steele Children's Research Center, ,4School of Dentistry, Oral Biology Program, University of North Carolina, Chapel Hill, North Carolina;
| | | | | | - Marcin Golebiewski
- 5Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University, Torun, ,6Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - David G. Besselsen
- 3University Animal Care, University of Arizona Health Sciences Center, Tucson, Arizona;
| | | | - Pawel R. Kiela
- 1Departments of Pediatrics, Steele Children's Research Center, ,2Department of Immunobiology, and
| |
Collapse
|
33
|
Gareau MG, Barrett KE. Fluid and electrolyte secretion in the inflamed gut: novel targets for treatment of inflammation-induced diarrhea. Curr Opin Pharmacol 2013; 13:895-9. [PMID: 24054811 DOI: 10.1016/j.coph.2013.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/22/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022]
Abstract
Diarrheal disease can occur in the context of both inflammatory and infectious challenges. Inflammation can result in changes in ion transporter expression or simply mislocalization of the protein. In addition to development of diarrhea, an altered secretory state can lead to changes in mucus secretion and luminal pH. Bacterial infection can lead to subversion of host cell signaling, leading to transporter mislocalization and hyposecretion, promoting bacterial colonization. Novel therapeutic strategies are currently being developed to ameliorate transporter defects in the setting of inflammation or bacterial infection including, for example, administration of probiotics and fecal microbiota transplantation. This review will highlight recent findings in the literature detailing these aspects of ion transport in the inflamed gut.
Collapse
Affiliation(s)
- Mélanie G Gareau
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|