1
|
Zheng L, Li K, Tang X, Li C, Nie H, Han L, Li Y. A microfluidic co-culture platform for lung cancer cells electrotaxis study under the existence of stromal cells. Bioelectrochemistry 2025; 164:108917. [PMID: 39904303 DOI: 10.1016/j.bioelechem.2025.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Tumor metastasis is an important reason for the poor prognosis and high mortality in cancer patients. As major component of stromal cells in tumor microenvironment, cancer-associated fibroblasts (CAFs) secreted various factors to promote tumor metastasis. Studies have indicated that endogenous direct current electric field (dcEF) around tumor tissue induced directional migration of cancer cells. However, the regulatory effect of CAFs on cancer migration under dcEF stimulation is still unknown. In this study, a two-layers polydimethylsiloxane (PDMS)-based microfluidic chip was fabricated. The introduction of concave structures achieved the non-contacted co-culture of different cell types, and parallel channels in the chip provided stable and homogeneous dcEF. Cells electrotactic response was evaluated under co-culture circumstance. The results showed that CAFs exhibited directional migration towards anode under dcEF stimulation, while A549 cells had a trend of directional migration towards cathode. The co-existence of CAFs and dcEF significantly enhanced the motility and cathodal migration of A549 cells, suggesting synergistic influences of chemotaxis from CAFs and electrotaxis from dcEF stimulation. Moreover, we demonstrated that lung normal fibroblasts acquired CAFs properties after stimulated by dcEF, characterizing by increasing gene expression of α-SMA and IL-6. Overall, Our device and study provide new insight for tumor electrotaxis in complex microenvironment.
Collapse
Affiliation(s)
- Lina Zheng
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Keying Li
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xianmei Tang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Cuiping Li
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Hailiang Nie
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Lirong Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Yaping Li
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
2
|
Liu Y, Xia F, Zhu C, Song J, Tang B, Zhang B, Huang Z. Protein serine/threonine phosphatases in tumor microenvironment: a vital player and a promising therapeutic target. Theranostics 2025; 15:1164-1184. [PMID: 39776803 PMCID: PMC11700861 DOI: 10.7150/thno.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear. Decoding the pathological features of the TME is urgently needed to understand the tumor ecosystem and develop novel antitumor treatments. Protein serine/threonine phosphatases (PSPs) are responsible for inverse protein phosphorylation processes. Aberrant expression and dysfunction of PSPs disturb cellular homeostasis, reprogram metabolic processes and reshape the immune landscape, thereby contributing to cancer progression. Some therapeutic implications, such as the use of PSPs as targets, have drawn the attention of researchers and clinicians. To date, the effects of PSP inhibitors are less satisfactory in real-world practice. With breakthroughs in sequencing technologies, scientists can decipher TME investigations via multiomics and higher resolution. These benefits provide an opportunity to explore the TME in a more comprehensive manner and inspire more findings concerning PSPs in the TME. The current review starts by introducing the canonical knowledge of PSPs, including their members, structures and posttranslational modifications for activities. We then summarize the functions of PSPs in regulating cellular homeostasis. In particular, we specified the up-to-date roles of PSPs in modulating the immune microenvironment, adopting hypoxia, reprogramming metabolic processes, and responding to extracellular matrix remodeling. Finally, we introduce preclinical PSP inhibitors with translational value and conclude with clinical trials of PSP inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Chang HF, Cheng JY. Glioblastoma U-87 cell electrotaxis is hindered by doxycycline with a concomitant reduction in the matrix metallopeptidase-9 expression. Biochem Biophys Rep 2024; 38:101690. [PMID: 38571555 PMCID: PMC10987802 DOI: 10.1016/j.bbrep.2024.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Electric fields (EF) play an essential role in cancer cell migration. Numerous cancer cell types exhibit electrotaxis under direct current electric fields (dcEF) of physiological electric field strength (EFs). This study investigated the effects of doxycycline on the electrotactic responses of U87 cells. After EF stimulation, U87 cells migrated toward the cathode, whereas doxycycline-treated U87 cells exhibited enhanced cell mobility but hindered cathodal migration. We further investigated the expression of the metastasis-correlated proteins matrix metallopeptidase-2 (MMP-2) and MMP-9 in U87 cells. The levels of MMP-2 in the cells were not altered under EF or doxycycline stimulation. In contrast, the EF stimulation greatly enhanced the levels of MMP-9 and then repressed in doxycycline-cotreated cells, accompanied by reduced cathodal migration. Our results demonstrated that an antibiotic at a non-toxic concentration could suppress the enhanced cell migration accelerated by EF of physiological strength. This finding may be applied as an anti-metastatic treatment for cancers.
Collapse
Affiliation(s)
- Hui-Fang Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
- College of Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Holme B, Bjørnerud B, Pedersen NM, de la Ballina LR, Wesche J, Haugsten EM. Automated tracking of cell migration in phase contrast images with CellTraxx. Sci Rep 2023; 13:22982. [PMID: 38151514 PMCID: PMC10752880 DOI: 10.1038/s41598-023-50227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023] Open
Abstract
The ability of cells to move and migrate is required during development, but also in the adult in processes such as wound healing and immune responses. In addition, cancer cells exploit the cells' ability to migrate and invade to spread into nearby tissue and eventually metastasize. The majority of cancer deaths are caused by metastasis and the process of cell migration is therefore intensively studied. A common way to study cell migration is to observe cells through an optical microscope and record their movements over time. However, segmenting and tracking moving cells in phase contrast time-lapse video sequences is a challenging task. Several tools to track the velocity of migrating cells have been developed. Unfortunately, most of the automated tools are made for fluorescence images even though unlabelled cells are often preferred to avoid phototoxicity. Consequently, researchers are constrained with laborious manual tracking tools using ImageJ or similar software. We have therefore developed a freely available, user-friendly, automated tracking tool called CellTraxx. This software makes it easy to measure the velocity and directness of migrating cells in phase contrast images. Here, we demonstrate that our tool efficiently recognizes and tracks unlabelled cells of different morphologies and sizes (HeLa, RPE1, MDA-MB-231, HT1080, U2OS, PC-3) in several types of cell migration assays (random migration, wound healing and cells embedded in collagen). We also provide a detailed protocol and download instructions for CellTraxx.
Collapse
Affiliation(s)
- Børge Holme
- SINTEF Industry, Forskningsveien 1, 0373, Oslo, Norway
| | - Birgitte Bjørnerud
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Department of Nursing, Health and Laboratory Science, Faculty of Health, Welfare and Organisation, Østfold University College, PB 700, NO-1757, Halden, Norway
| | - Laura Rodriguez de la Ballina
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| |
Collapse
|
5
|
Chojnacki JE, Scheinost L, Wang Y, Köhn M. Membrane targeting with palmitoylated lysine added to PP1-disrupting peptide induces PP1-independent signaling. J Pept Sci 2022; 29:e3469. [PMID: 36525306 DOI: 10.1002/psc.3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Protein phosphatase-1 (PP1) is a ubiquitous enzyme involved in multiple processes inside cells. PP1-disrupting peptides (PDPs) are chemical tools that selectively bind to PP1 and release its activity. To restrict the activity of PDPs to a cellular compartment, we developed PDP-Mem, a cell membrane-targeting PDP. The membrane localization was achieved through the introduction of a palmitoylated lysine. PDP-Mem was shown to activate PP1α in vitro and to localize to the membrane of HeLa Kyoto and U2OS cells. However, in cells, the combination of the polybasic sequence for cell penetration and the membrane targeting palmitoylated lysine activates the MAPK signaling pathway and induces cytoplasmic calcium release independently of PP1 activation. Therefore, when targeting peptides to cellular membranes, undesired effects induced by the targeting sequence and lipid modification need to be considered.
Collapse
Affiliation(s)
- Jeremy E Chojnacki
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Laura Scheinost
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Yansong Wang
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maja Köhn
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
6
|
Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. Drug Discov Today 2021; 26:2680-2698. [PMID: 34390863 DOI: 10.1016/j.drudis.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the availability of numerous therapeutic options, tumor heterogeneity and chemoresistance have limited the success of these treatments, and the development of effective anticancer therapies remains a major focus in oncology research. The serine/threonine-protein phosphatase 1 (PP1) and its complexes have been recognized as potential drug targets. Research on the modulation of PP1 complexes is currently at an early stage, but has immense potential. Chemically diverse compounds have been developed to disrupt or stabilize different PP1 complexes in various cancer types, with the objective of inhibiting disease progression. Beneficial results obtained in vitro now require further pre-clinical and clinical validation. In conclusion, the modulation of PP1 complexes seems to be a promising, albeit challenging, therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Saidy B, Kotecha S, Butler A, Rakha EA, Ellis IO, Green AR, Martin SG, Storr SJ. PP1, PKA and DARPP-32 in breast cancer: A retrospective assessment of protein and mRNA expression. J Cell Mol Med 2021; 25:5015-5024. [PMID: 33991172 PMCID: PMC8178272 DOI: 10.1111/jcmm.16447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
Cyclic AMP–dependent protein kinase A (PKA) and protein phosphatase 1 (PP1) are proteins involved in numerous essential signalling pathways that modulate physiological and pathological functions. Both PP1 and PKA can be inhibited by dopamine‐ and cAMP‐regulated phosphoprotein 32 kD (DARPP‐32). Using immunohistochemistry, PKA and PP1 expression was determined in a large primary breast tumour cohort to evaluate associations between clinical outcome and clinicopathological criteria (n > 1100). In addition, mRNA expression of PKA and PP1 subunits was assessed in the METABRIC data set (n = 1980). Low protein expression of PKA was significantly associated with adverse survival of breast cancer patients; interestingly, this relationship was stronger in ER‐positive breast cancer patients. PP1 protein expression was not associated with patient survival. PKA and PP1 subunit mRNA was also assessed; PPP1CA, PRKACG and PRKAR1B were associated with breast cancer–specific survival. In patients with high expression of DARPP‐32, low expression of PP1 was associated with adverse survival when compared to high expression in the same group. PKA expression and PP1 expression are of significant interest in cancer as they are involved in a wide array of cellular processes, and these data indicate PKA and PP1 may play an important role in patient outcome.
Collapse
Affiliation(s)
- Behnaz Saidy
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Shreeya Kotecha
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Anna Butler
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Stewart G Martin
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Sarah J Storr
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| |
Collapse
|
8
|
Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer 2020; 1874:188433. [PMID: 32956763 DOI: 10.1016/j.bbcan.2020.188433] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells take advantage of signaling cascades to meet their requirements for sustained growth and survival. Cell signaling is tightly controlled by reversible protein phosphorylation mechanisms, which require the counterbalanced action of protein kinases and protein phosphatases. Imbalances on this system are associated with cancer development and progression. Protein phosphatase 1 (PP1) is one of the most relevant protein phosphatases in eukaryotic cells. Despite the widely recognized involvement of PP1 in key biological processes, both in health and disease, its relevance in cancer has been largely neglected. Here, we provide compelling evidence that support major roles for PP1 in tumorigenesis.
Collapse
|
9
|
Matos B, Howl J, Jerónimo C, Fardilha M. The disruption of protein-protein interactions as a therapeutic strategy for prostate cancer. Pharmacol Res 2020; 161:105145. [PMID: 32814172 DOI: 10.1016/j.phrs.2020.105145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common male-specific cancers worldwide, with high morbidity and mortality rates associated with advanced disease stages. The current treatment options of PCa are prostatectomy, hormonal therapy, chemotherapy or radiotherapy, the selection of which is usually dependent upon the stage of the disease. The development of PCa to a castration-resistant phenotype (CRPC) is associated with a more severe prognosis requiring the development of a new and effective therapy. Protein-protein interactions (PPIs) have been recognised as an emerging drug modality and targeting PPIs is a promising therapeutic approach for several diseases, including cancer. The efficacy of several compounds in which target PPIs and consequently impair disease progression were validated in phase I/II clinical trials for different types of cancer. In PCa, various small molecules and peptides proved successful in inhibiting important PPIs, mainly associated with the androgen receptor (AR), Bcl-2 family proteins, and kinases/phosphatases, thus impairing the growth of PCa cells in vitro. Moreover, a majority of these compounds require further validation in vivo and, preferably, in clinical trials. In addition, several other PPIs associated with PCa progression have been identified and now require experimental validation as potential therapeutic loci. In conclusion, we consider the disruption of PPIs to be a promising though challenging therapeutic strategy for PCa. Agents which modulate PPIs might be employed as a monotherapy or as an adjunct to classical chemotherapeutics to overcome drug resistance and improve efficacy. The discovery of new PPIs with important roles in disease progression, and of novel optimized strategies to target them are major challenges for the scientific and pharmacological communities.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), Research Center-LAB 3, F Bdg., 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Liu Y, Hu H, Zhang C, Wang Z, Li M, Jiang T. Integrated analysis identified genes associated with a favorable prognosis in oligodendrogliomas. Genes Chromosomes Cancer 2015; 55:169-76. [PMID: 26542540 DOI: 10.1002/gcc.22323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
Oligodendrogliomas (ODs) are the second most common malignant brain tumor and exhibit characteristic co-deletion of chromosomal arms 1p and 19q (co-deletion 1p/19q), which is associated with down-regulation of tumor suppressors. However, co-deletion 1p/19q indicates a favorable prognosis that cannot be explained by the down-regulation of tumor suppressors. In the present study, we determined that co-deletion 1p/19q was associated with reduced Ki-67 protein level based on analysis of 354 ODs. To identify genes associated with reduced Ki-67 and a favorable prognosis of codeletion 1p/19q, we analyzed 96 ODs with RNA-sequencing and 136 ODs and 4 normal brain tissue samples with RNA microarrays. We thus identified seven genes within chromosomal arms 1p/19q with significantly reduced expression in samples with co-deletion of 1p/19q compared to samples with intact 1p/19q. A significant positive correlation was observed between these candidate genes and Ki-67 expression based on analysis of mRNA expression in 305 gliomas and 5 normal brain tissue samples. Survival analysis confirmed the prognostic value of these candidate genes. This finding suggests that these genes within chromosomal arms 1p/19q are associated with low Ki-67 and a favorable prognosis in ODs with co-deletion 1p/19q and provides novel therapeutic targets.
Collapse
Affiliation(s)
- Yanwei Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Chuanbao Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Zheng Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Mingyang Li
- Chinese Glioma Cooperative Group (CGCG), China.,Department of Neurosurgery, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China.,Department of Neurosurgery, Capital Medical University, Beijing Tiantan Hospital, Beijing, China.,Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
11
|
Protein phosphatase PP1-NIPP1 activates mesenchymal genes in HeLa cells. FEBS Lett 2015; 589:1314-21. [DOI: 10.1016/j.febslet.2015.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 11/22/2022]
|
12
|
Felgueiras J, Fardilha M. Phosphoprotein phosphatase 1-interacting proteins as therapeutic targets in prostate cancer. World J Pharmacol 2014; 3:120-139. [DOI: 10.5497/wjp.v3.i4.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major public health concern worldwide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specificity of prostate-specific antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modification critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phosphatase, whose specificity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identified as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.
Collapse
|
13
|
Yang HY, La TD, Isseroff RR. Utilizing custom-designed galvanotaxis chambers to study directional migration of prostate cells. J Vis Exp 2014:51973. [PMID: 25549020 PMCID: PMC4396920 DOI: 10.3791/51973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The physiological electric field serves specific biological functions, such as directing cell migration in embryo development, neuronal outgrowth and epithelial wound healing. Applying a direct current electric field to cultured cells in vitro induces directional cell migration, or galvanotaxis. The 2-dimensional galvanotaxis method we demonstrate here is modified with custom-made poly(vinyl chloride) (PVC) chambers, glass surface, platinum electrodes and the use of a motorized stage on which the cells are imaged. The PVC chambers and platinum electrodes exhibit low cytotoxicity and are affordable and re-useable. The glass surface and the motorized microscope stage improve quality of images and allow possible modifications to the glass surface and treatments to the cells. We filmed the galvanotaxis of two non-tumorigenic, SV40-immortalized prostate cell lines, pRNS-1-1 and PNT2. These two cell lines show similar migration speeds and both migrate toward the cathode, but they do show a different degree of directionality in galvanotaxis. The results obtained via this protocol suggest that the pRNS-1-1 and the PNT2 cell lines may have different intrinsic features that govern their directional migratory responses.
Collapse
Affiliation(s)
- Hsin-ya Yang
- Department of Dermatology, Scool of Medicine, University of California, Davis;
| | - Thi Dinh La
- Department of Dermatology, Scool of Medicine, University of California, Davis
| | - R Rivkah Isseroff
- Department of Dermatology, Scool of Medicine, University of California, Davis
| |
Collapse
|
14
|
Hanin G, Shenhar-Tsarfaty S, Yayon N, Yau YH, Hoe YY, Bennett ER, Sklan EH, Rao DC, Rankinen T, Bouchard C, Geifman-Shochat S, Shifman S, Greenberg DS, Soreq H. Competing targets of microRNA-608 affect anxiety and hypertension. Hum Mol Genet 2014; 23:4569-80. [PMID: 24722204 PMCID: PMC4119407 DOI: 10.1093/hmg/ddu170] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) can repress multiple targets, but how a single de-balanced interaction affects others remained unclear. We found that changing a single miRNA-target interaction can simultaneously affect multiple other miRNA-target interactions and modify physiological phenotype. We show that miR-608 targets acetylcholinesterase (AChE) and demonstrate weakened miR-608 interaction with the rs17228616 AChE allele having a single-nucleotide polymorphism (SNP) in the 3'-untranslated region (3'UTR). In cultured cells, this weakened interaction potentiated miR-608-mediated suppression of other targets, including CDC42 and interleukin-6 (IL6). Postmortem human cortices homozygote for the minor rs17228616 allele showed AChE elevation and CDC42/IL6 decreases compared with major allele homozygotes. Additionally, minor allele heterozygote and homozygote subjects showed reduced cortisol and elevated blood pressure, predicting risk of anxiety and hypertension. Parallel suppression of the conserved brain CDC42 activity by intracerebroventricular ML141 injection caused acute anxiety in mice. We demonstrate that SNPs in miRNA-binding regions could cause expanded downstream effects changing important biological pathways.
Collapse
Affiliation(s)
- Geula Hanin
- The Silberman Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Shani Shenhar-Tsarfaty
- The Silberman Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Nadav Yayon
- The Silberman Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | - Yau Yin Hoe
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Avenue, 637551, Singapore
| | - Estelle R Bennett
- The Silberman Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dabeeru C Rao
- Division of Biostatistics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Susana Geifman-Shochat
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Avenue, 637551, Singapore
| | | | - David S Greenberg
- The Silberman Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Hermona Soreq
- The Silberman Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
15
|
Korrodi-Gregório L, Silva JV, Santos-Sousa L, Freitas MJ, Felgueiras J, Fardilha M. TGF-β cascade regulation by PPP1 and its interactors -impact on prostate cancer development and therapy. J Cell Mol Med 2014; 18:555-67. [PMID: 24629090 PMCID: PMC4000109 DOI: 10.1111/jcmm.12266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is a key mechanism by which normal and cancer cells regulate their main transduction pathways. Protein kinases and phosphatases are precisely orchestrated to achieve the (de)phosphorylation of candidate proteins. Indeed, cellular health is dependent on the fine-tune of phosphorylation systems, which when deregulated lead to cancer. Transforming growth factor beta (TGF-β) pathway involvement in the genesis of prostate cancer has long been established. Many of its members were shown to be hypo- or hyperphosphorylated during the process of malignancy. A major phosphatase that is responsible for the vast majority of the serine/threonine dephosphorylation is the phosphoprotein phosphatase 1 (PPP1). PPP1 has been associated with the dephosphorylation of several proteins involved in the TGF-β cascade. This review will discuss the role of PPP1 in the regulation of several TGF-β signalling members and how the subversion of this pathway is related to prostate cancer development. Furthermore, current challenges on the protein phosphatases field as new targets to cancer therapy will be addressed.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, Health Sciences Department, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G. The regulatory roles of phosphatases in cancer. Oncogene 2014; 33:939-53. [PMID: 23503460 DOI: 10.1038/onc.2013.80] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3-kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - L C Lit
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - R S Darrington
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - O Melaiu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Rudraraju
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
17
|
Martin-Granados C, McCaig CD. Harnessing the Electric Spark of Life to Cure Skin Wounds. Adv Wound Care (New Rochelle) 2014; 3:127-138. [PMID: 24761353 PMCID: PMC3928811 DOI: 10.1089/wound.2013.0451] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/17/2013] [Indexed: 01/02/2023] Open
Abstract
Significance: Skin wounds cause great distress and are a huge economic burden, particularly with an increasingly aging population that heals poorly. There is an urgent need for better therapies that improve repair. Intracellular signaling pathways that regulate wound repair are activated by growth factors, hormones, and cytokines released at the wound. In addition, endogenous electric fields (EFs) are generated by epithelia in response to injury and are an important cue that coordinates cell behavior at wounds. Electrical stimulation (ES), therefore, holds the potential to be effective therapeutically in treating wounds. Recent Advances: ES of wounds is an old idea based on observations of the natural occurrence of EF at wound sites. However, it is now receiving increasing attention, because (1) the underpinning mechanisms are being clarified; (2) devices that measure skin wound currents are in place; and (3) medical devices that apply EF to poorly healing wounds are in clinical use with promising results. Critical Issues: Several signaling proteins transduce the EF influence to cells. However, a bigger picture of the EF-proteome is needed in order to understand this complex process and target it in a controlled manner. Future Directions: Dissecting the signaling pathways driving electrical wound healing will allow further identification of key molecular switches that control the cellular response to EFs. These findings herald the development of a new concept, the use of hydrogel electrodes impregnated with small molecules that target signaling pathways to explore the potential of dual electric-pharmacological therapies to repair wounds.
Collapse
Affiliation(s)
- Cristina Martin-Granados
- College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Colin D. McCaig
- College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
18
|
Felgueiras J, Silva JV, Fardilha M. Prostate cancer: the need for biomarkers and new therapeutic targets. J Zhejiang Univ Sci B 2014; 15:16-42. [PMID: 24390742 PMCID: PMC3891116 DOI: 10.1631/jzus.b1300106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/08/2013] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) incidence and mortality have decreased in recent years. Nonetheless, it remains one of the most prevalent cancers in men, being a disquieting cause of men's death worldwide. Changes in many cell signaling pathways have a predominant role in the onset, development, and progression of the disease. These include prominent pathways involved in the growth, apoptosis, and angiogenesis of the normal prostate gland, such as androgen and estrogen signaling, and other growth factor signaling pathways. Understanding the foundations of PCa is leading to the discovery of key molecules that could be used to improve patient management. The ideal scenario would be to have a panel of molecules, preferably detectable in body fluids, that are specific and sensitive biomarkers for PCa. In the early stages, androgen deprivation is the gold standard therapy. However, as the cancer progresses, it eventually becomes independent of androgens, and hormonal therapy fails. For this reason, androgen-independent PCa is still a major therapeutic challenge. By disrupting specific protein interactions or manipulating the expression of some key molecules, it might be possible to regulate tumor growth and metastasis formation, avoiding the systemic side effects of current therapies. Clinical trials are already underway to assess the efficacy of molecules specially designed to target key proteins or protein interactions. In this review, we address that recent progress made towards understanding PCa development and the molecular pathways underlying this pathology. We also discuss relevant molecular markers for the management of PCa and new therapeutic challenges.
Collapse
|
19
|
Cortese B, Palamà IE, D'Amone S, Gigli G. Influence of electrotaxis on cell behaviour. Integr Biol (Camb) 2014; 6:817-30. [DOI: 10.1039/c4ib00142g] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the mechanism of cell migration and interaction with the microenvironment is not only of critical significance to the function and biology of cells, but also has extreme relevance and impact on physiological processes and diseases such as morphogenesis, wound healing, neuron guidance, and cancer metastasis.
Collapse
Affiliation(s)
- Barbara Cortese
- NNL
- Institute of Nanoscience CNR
- 73100 Lecce, Italy
- Department of Physics
- University Sapienza
| | | | | | - Giuseppe Gigli
- NNL
- Institute of Nanoscience CNR
- 73100 Lecce, Italy
- Department of Mathematics and Physics
- University of Salento
| |
Collapse
|
20
|
Tsai HF, Huang CW, Chang HF, Chen JJW, Lee CH, Cheng JY. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation. PLoS One 2013; 8:e73418. [PMID: 23951353 PMCID: PMC3739739 DOI: 10.1371/journal.pone.0073418] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Physiological electric field (EF) plays a pivotal role in tissue development and regeneration. In vitro, cells under direct-current electric field (dcEF) stimulation may demonstrate directional migration (electrotaxis) and long axis reorientation (electro-alignment). Although the biophysical models and biochemical signaling pathways behind cell electrotaxis have been investigated in numerous normal cells and cancer cells, the molecular signaling mechanisms in CL1 lung adenocarcinoma cells have not been identified. Two subclones of CL1 cells, the low invasive CL1-0 cells and the highly invasive CL 1-5 cells, were investigated in the present study. CL1-0 cells are non-electrotactic while the CL 1-5 cells are anodally electrotactic and have high expression level of epidermal growth factor receptor (EGFR), in this study, we investigated the generally accepted hypothesis of receptor tyrosine kinase (RTK) activation in the two cell lines under dcEF stimulation. Erbitux, a therapeutic drug containing an anti-EGFR monoclonal antibody, cetuximab, was used to investigate the EGFR signaling in the electrotaxis of CL 1-5 cells. To investigate RTK phosphorylation and intracellular signaling in the CL1 cells, large amount of cellular proteins were collected in an airtight dcEF stimulation device, which has advantages of large culture area, uniform EF distribution, easy operation, easy cell collection, no contamination, and no medium evaporation. Commercial antibody arrays and Western blotting were used to study the phosphorylation profiles of major proteins in CL1 cells under dcEF stimulation. We found that electrotaxis of CL 1-5 cells is serum independent and EGFR independent. Moreover, the phosphorylation of Akt and S6 ribosomal protein (rpS6) in dcEF-stimulated CL1 cells are different from that in EGF-stimulated cells. This result suggests that CL1 cells' response to dcEF stimulation is not through EGFR-triggered pathways. The new large-scale dcEF stimulation device developed in the present work will aid the sample preparation for protein-based experiments.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wen Huang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Fang Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeremy J. W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chau-Hwang Lee
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ji-Yen Cheng
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Targeting the untargetable: recent advances in the selective chemical modulation of protein phosphatase-1 activity. Curr Opin Chem Biol 2013; 17:361-8. [PMID: 23647984 DOI: 10.1016/j.cbpa.2013.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/03/2023]
Abstract
Protein phosphatase-1 (PP1) has long been neglected as a potential drug target owing to its misinterpreted unselective nature. However, growing evidence demonstrates that PP1 is highly selective in complex with regulatory proteins at the holoenzyme level, each of which is involved in different essential cellular signaling events. Here we summarize promising approaches to specifically activate or inhibit PP1 activity, and discuss remaining challenges and potential solutions. The summarized chemical tools pave the way for a better understanding of PP1's role in signaling networks, and the effects resulting from their application suggest their potential as future therapeutic candidates.
Collapse
|
22
|
Brun P, Scorzeto M, Vassanelli S, Castagliuolo I, Palù G, Ghezzo F, Messina GM, Iucci G, Battaglia V, Sivolella S, Bagno A, Polzonetti G, Marletta G, Dettin M. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta Biomater 2013; 9:6105-15. [PMID: 23261922 DOI: 10.1016/j.actbio.2012.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration.
Collapse
|
23
|
Minnebo N, Görnemann J, O'Connell N, Van Dessel N, Derua R, Vermunt MW, Page R, Beullens M, Peti W, Van Eynde A, Bollen M. NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes. Nucleic Acids Res 2012; 41:842-54. [PMID: 23241245 PMCID: PMC3553949 DOI: 10.1093/nar/gks1255] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The histone methyltransferase EZH2 regulates cell proliferation and differentiation by silencing Polycomb group target genes. NIPP1, a nuclear regulator of serine/threonine protein phosphatase 1 (PP1), has been implicated in the regulation of EZH2 occupancy at target loci, but the underlying mechanism is not understood. Here, we demonstrate that the phosphorylation of EZH2 by cyclin-dependent kinases at Thr416 creates a docking site for the ForkHead-associated domain of NIPP1. Recruited NIPP1 enables the net phosphorylation of EZH2 by inhibiting its dephosphorylation by PP1. Accordingly, a NIPP1-binding mutant of EZH2 is hypophosphorylated, and the knockdown of NIPP1 results in a reduced phosphorylation of endogenous EZH2. Conversely, the loss of PP1 is associated with a hyperphosphorylation of EZH2. A genome-wide promoter-binding profiling in HeLa cells revealed that the NIPP1-binding mutant shows a deficient association with about a third of the Polycomb target genes, and these are enriched for functions in proliferation. Our data identify PP1 as an EZH2 phosphatase and demonstrate that the phosphorylation-regulated association of EZH2 with proliferation-related targets depends on associated NIPP1.
Collapse
Affiliation(s)
- Nikki Minnebo
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsai HF, Peng SW, Wu CY, Chang HF, Cheng JY. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field. BIOMICROFLUIDICS 2012; 6:34116. [PMID: 24009650 PMCID: PMC3448594 DOI: 10.1063/1.4749826] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/20/2012] [Indexed: 05/21/2023]
Abstract
We report a new design of microfluidic chip (Multiple electric Field with Uniform Flow chip, MFUF chip) to create multiple electric field strengths (EFSs) while providing a uniform flow field simultaneously. MFUF chip was fabricated from poly-methyl methacrylates (PMMA) substrates by using CO2 laser micromachining. A microfluidic network with interconnecting segments was utilized to de-couple the flow field and the electric field (EF). Using our special design, different EFSs were obtained in channel segments that had an identical cross-section and therefore a uniform flow field. Four electric fields with EFS ratio of 7.9:2.8:1:0 were obtained with flow velocity variation of only 7.8% CV (coefficient of variation). Possible biological effect of shear force can therefore be avoided. Cell behavior under three EFSs and the control condition, where there is no EF, was observed in a single experiment. We validated MFUF chip performance using lung adenocarcinoma cell lines and then used the chip to study the electrotaxis of HSC-3, an oral squamous cell carcinoma cell line. The MFUF chip has high throughput capability for studying the EF-induced cell behavior under various EFSs, including the control condition (EFS = 0).
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan ; Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan ; Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | |
Collapse
|